Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories

The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 15; H. 1; S. 7190 - 18
Hauptverfasser: Gezsi, Andras, Van der Auwera, Sandra, Mäkinen, Hannu, Eszlari, Nora, Hullam, Gabor, Nagy, Tamas, Bonk, Sarah, González-Colom, Rubèn, Gonda, Xenia, Garvert, Linda, Paajanen, Teemu, Gal, Zsofia, Kirchner, Kevin, Millinghoffer, Andras, Schmidt, Carsten O., Bolgar, Bence, Roca, Josep, Cano, Isaac, Kuokkanen, Mikko, Antal, Peter, Juhasz, Gabriella
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 21.08.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients. Major depressive disorder is a heterogeneous condition with varied presentation of symptoms, comorbidities, and related genetic factors. This study aimed to identify clusters of major depressive disorder-related longitudinal multimorbidity trajectories and to characterize the clusters using genetic and risk factor data.
AbstractList The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients.
The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients. Major depressive disorder is a heterogeneous condition with varied presentation of symptoms, comorbidities, and related genetic factors. This study aimed to identify clusters of major depressive disorder-related longitudinal multimorbidity trajectories and to characterize the clusters using genetic and risk factor data.
The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients.Major depressive disorder is a heterogeneous condition with varied presentation of symptoms, comorbidities, and related genetic factors. This study aimed to identify clusters of major depressive disorder-related longitudinal multimorbidity trajectories and to characterize the clusters using genetic and risk factor data.
Abstract The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients.
The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients.The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms underlying complex diseases. Current approaches used to identify biological subtypes of major depressive disorder (MDD) mainly focus on clinical characteristics that cannot be linked to specific biological models. Here, we examined multimorbidities to identify MDD subtypes with distinct genetic and non-genetic factors. We leveraged dynamic Bayesian network approaches to determine a minimal set of multimorbidities relevant to MDD and identified seven clusters of disease-burden trajectories throughout the lifespan among 1.2 million participants from cohorts in the UK, Finland, and Spain. The clusters had clear protective- and risk-factor profiles as well as age-specific clinical courses mainly driven by inflammatory processes, and a comprehensive map of heritability and genetic correlations among these clusters was revealed. Our results can guide the development of personalized treatments for MDD based on the unique genetic, clinical and non-genetic risk-factor profiles of patients.
ArticleNumber 7190
Author Kuokkanen, Mikko
Van der Auwera, Sandra
Garvert, Linda
Cano, Isaac
González-Colom, Rubèn
Bolgar, Bence
Eszlari, Nora
Nagy, Tamas
Schmidt, Carsten O.
Millinghoffer, Andras
Hullam, Gabor
Bonk, Sarah
Kirchner, Kevin
Gezsi, Andras
Mäkinen, Hannu
Gal, Zsofia
Paajanen, Teemu
Roca, Josep
Gonda, Xenia
Juhasz, Gabriella
Antal, Peter
Author_xml – sequence: 1
  givenname: Andras
  orcidid: 0000-0003-1022-6356
  surname: Gezsi
  fullname: Gezsi, Andras
  organization: Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics
– sequence: 2
  givenname: Sandra
  orcidid: 0000-0002-1757-7768
  surname: Van der Auwera
  fullname: Van der Auwera, Sandra
  organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald, German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald
– sequence: 3
  givenname: Hannu
  surname: Mäkinen
  fullname: Mäkinen, Hannu
  organization: Department of Public Health and Welfare, Population Health Unit, Public Health Research Team, Finnish Institute for Health and Welfare
– sequence: 4
  givenname: Nora
  surname: Eszlari
  fullname: Eszlari, Nora
  organization: Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University
– sequence: 5
  givenname: Gabor
  surname: Hullam
  fullname: Hullam, Gabor
  organization: Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics, Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University
– sequence: 6
  givenname: Tamas
  surname: Nagy
  fullname: Nagy, Tamas
  organization: Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics, Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University
– sequence: 7
  givenname: Sarah
  surname: Bonk
  fullname: Bonk, Sarah
  organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald
– sequence: 8
  givenname: Rubèn
  orcidid: 0000-0001-7330-9621
  surname: González-Colom
  fullname: González-Colom, Rubèn
  organization: Clínic Barcelona, Fundació de Recerca Clinic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona
– sequence: 9
  givenname: Xenia
  orcidid: 0000-0001-9015-4203
  surname: Gonda
  fullname: Gonda, Xenia
  organization: Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, Department of Psychiatry and Psychotherapy, Semmelweis University
– sequence: 10
  givenname: Linda
  orcidid: 0000-0001-9067-8170
  surname: Garvert
  fullname: Garvert, Linda
  organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald
– sequence: 11
  givenname: Teemu
  orcidid: 0000-0003-3499-4800
  surname: Paajanen
  fullname: Paajanen, Teemu
  organization: Department of Public Health and Welfare, Population Health Unit, Public Health Research Team, Finnish Institute for Health and Welfare
– sequence: 12
  givenname: Zsofia
  orcidid: 0000-0002-9441-1497
  surname: Gal
  fullname: Gal, Zsofia
  organization: Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University
– sequence: 13
  givenname: Kevin
  surname: Kirchner
  fullname: Kirchner, Kevin
  organization: Department of Psychiatry and Psychotherapy, University Medicine Greifswald
– sequence: 14
  givenname: Andras
  surname: Millinghoffer
  fullname: Millinghoffer, Andras
  organization: Abiomics Europe Ltd
– sequence: 15
  givenname: Carsten O.
  orcidid: 0000-0001-5266-9396
  surname: Schmidt
  fullname: Schmidt, Carsten O.
  organization: Institute for Community Medicine, University Medicine Greifswald
– sequence: 16
  givenname: Bence
  surname: Bolgar
  fullname: Bolgar, Bence
  organization: Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics
– sequence: 17
  givenname: Josep
  surname: Roca
  fullname: Roca, Josep
  organization: Clínic Barcelona, Fundació de Recerca Clinic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona
– sequence: 18
  givenname: Isaac
  orcidid: 0000-0003-2938-7459
  surname: Cano
  fullname: Cano, Isaac
  organization: Clínic Barcelona, Fundació de Recerca Clinic Barcelona - Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Universitat de Barcelona
– sequence: 19
  givenname: Mikko
  orcidid: 0000-0003-4375-9327
  surname: Kuokkanen
  fullname: Kuokkanen, Mikko
  organization: Department of Public Health and Welfare, Population Health Unit, Public Health Research Team, Finnish Institute for Health and Welfare, Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine at University of Texas Rio Grande Valley, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki
– sequence: 20
  givenname: Peter
  orcidid: 0000-0002-4370-2198
  surname: Antal
  fullname: Antal, Peter
  organization: Department of Artificial Intelligence and Systems Engineering, Budapest University of Technology and Economics
– sequence: 21
  givenname: Gabriella
  orcidid: 0000-0002-5975-4267
  surname: Juhasz
  fullname: Juhasz, Gabriella
  email: juhasz.gabriella@semmelweis.hu
  organization: Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39168988$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARbZf-AQ4oEhcuAX8ldk4IVUArVeJCz9aL87x4SeLFdir139e7W0rbQ33xk9_M-I09p-RoDjMS8o7RT4wK_TlJJltVUy7rZl-pV-SEU8lqprg4elQfk7OUNrQs0TEt5RtyXIpWd1qfkHw9-78LVmucMXtbwTxU0ac_tQObQ6y2MTg_Yqr8XNlxSRljqoKrJtiU7oDbiCn5G6wGn0IcMNYRR8g4VNMyZj-F2PvB59sqR9jgTtJjekteOxgTnt3vK3L9_duv84v66uePy_OvV7VtJMu1aKHRSCUA1w223PVN33eDprxhPWVcUsuVAxTgqADmpO5sccbASkVbgWJFLg-6Q4CN2UY_Qbw1AbzZH4S4NhCL6xGNFK6noBRSi1IKAAXDoJVwDVPIiu6KfDlobZd-wsHiXByNT0Sfdmb_26zDjWFMiE5QWRQ-3ivEUJ48ZTP5ZHEcYcawJCNo17Sq5VIX6Idn0E1Y4lzeao_iHWuUKKj3j0d6mOXf7xYAPwBsDClFdA8QRs0uReaQIlNSZPYpMqqQ9DOS9RmyDztbfnyZKg7UVO6Z1xj_j_0C6w7dA933
CitedBy_id crossref_primary_10_1038_s43856_025_00825_7
crossref_primary_10_3390_ijms252011332
crossref_primary_10_1098_rsos_242256
crossref_primary_10_1016_j_jad_2025_120018
crossref_primary_10_1186_s12888_024_06419_2
crossref_primary_10_1016_j_euroneuro_2025_05_007
crossref_primary_10_1016_j_socscimed_2025_118605
Cites_doi 10.2196/53162
10.5281/zenodo.12744319
10.1038/s41588-019-0397-8
10.1371/journal.pcbi.1005487
10.1038/s41586-018-0579-z
10.1038/s41593-018-0326-7
10.1038/ng.3168
10.1016/j.biopsych.2022.06.004
10.1038/ng.3931
10.1093/acprof:oso/9780198709022.003.0013
10.1371/journal.pone.0075362
10.1093/bib/bbac410
10.1038/nature13595
10.1093/ije/dyx239
10.1016/S0140-6736(07)61415-9
10.3390/genes11111260
10.1016/j.jad.2014.10.010
10.1038/s41591-023-02420-6
10.1038/s41467-019-11181-1
10.3390/nu13124396
10.1201/9781482296426
10.1016/j.bbi.2020.09.033
10.1038/nri.2015.5
10.1038/s41467-022-33628-8
10.1177/1403494812456637
10.1097/YCO.0b013e3281c61dc5
10.1038/s41467-021-26903-7
10.1186/s13643-022-02067-3
10.1038/s41380-023-01957-9
10.1002/ejhf.549
10.1177/26335565211032880
10.1016/j.jad.2024.05.126
10.1038/s41586-022-05473-8
10.1109/ICDCSW.2011.20
10.1016/j.jpsychires.2014.01.010
10.1038/s41398-019-0454-1
10.1038/ng.3211
10.1186/1741-7015-11-200
10.1093/bioinformatics/17.6.520
10.1038/s41467-019-09718-5
10.1177/26335565221122025
10.3390/ijms24010578
10.1186/s13742-015-0047-8
10.1038/s41380-021-01413-6
10.1101/518027
10.1093/ije/dyac034
10.1016/j.lanepe.2023.100621
10.1002/wps.21110
10.1176/ajp.2006.163.11.1905
10.1534/genetics.120.303161
10.1016/j.jaci.2016.02.045
10.1038/s41598-022-25092-7
10.1002/ajmg.b.32652
10.1038/s41588-021-00870-7
10.1038/s41467-018-03242-8
10.1038/s41588-018-0090-3
10.1073/pnas.0704820104
10.1001/jamapsychiatry.2022.0914
10.1152/physiol.00047.2018
10.1186/s13073-021-00927-6
10.1016/S0140-6736(14)62254-6
10.1038/s41467-018-03819-3
10.1101/060012
10.1038/nrg2918
10.1371/journal.pcbi.1004219
10.1038/s41380-021-01306-8
10.1126/science.aap8757
10.1016/j.jpsychores.2014.06.008
10.1093/nar/gkz369
10.1016/j.jad.2016.04.023
10.1126/science.1257601
10.1016/j.biopsych.2019.06.031
10.1186/s12916-020-01813-5
10.3389/fimmu.2021.665160
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-51467-7
DatabaseName SpringerOpen
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_43fb0a77e0ce443aa7add873f517e19c
PMC11339304
39168988
10_1038_s41467_024_51467_7
Genre Journal Article
GeographicLocations United Kingdom
Finland
Spain
GeographicLocations_xml – name: United Kingdom
– name: Finland
– name: Spain
GrantInformation_xml – fundername: This research has been conducted using the UK Biobank Resource under Application Number 1602. Linked health data Copyright © 2019, NHS England. Re-used with the permission of the UK Biobank. All rights reserved. This study was supported by the Hungarian National Research, Development, and Innovation Office 2019-2.1.7-ERA-NET-2020-00005 under the frame of ERA PerMed (ERAPERMED2019-108); the Hungarian National Research, Development, and Innovation Office (K 143391, K 139330, PD 146014, and PD 134449 grants); the Hungarian Brain Research Program 3.0 (NAP2022-I-4/2022); and the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, under the TKP2021-EGA funding scheme (TKP2021-EGA-25 and TKP2021-EGA-02). Supported by the European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory.
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c541t-36a58e04aa285e62fb5bb9d80251b01240c27fae3af03a1f489c3911ac47063e3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296093800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:43:05 EDT 2025
Tue Nov 04 02:05:29 EST 2025
Sun Nov 09 14:17:28 EST 2025
Tue Oct 07 07:19:36 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Sat Nov 29 03:55:13 EST 2025
Tue Nov 18 20:58:41 EST 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-36a58e04aa285e62fb5bb9d80251b01240c27fae3af03a1f489c3911ac47063e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1757-7768
0000-0002-9441-1497
0000-0002-4370-2198
0000-0001-9015-4203
0000-0003-3499-4800
0000-0001-9067-8170
0000-0002-5975-4267
0000-0003-2938-7459
0000-0003-4375-9327
0000-0003-1022-6356
0000-0001-5266-9396
0000-0001-7330-9621
OpenAccessLink https://doaj.org/article/43fb0a77e0ce443aa7add873f517e19c
PMID 39168988
PQID 3095291573
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_43fb0a77e0ce443aa7add873f517e19c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11339304
proquest_miscellaneous_3095676248
proquest_journals_3095291573
pubmed_primary_39168988
crossref_primary_10_1038_s41467_024_51467_7
crossref_citationtrail_10_1038_s41467_024_51467_7
springer_journals_10_1038_s41467_024_51467_7
PublicationCentury 2000
PublicationDate 2024-08-21
PublicationDateYYYYMMDD 2024-08-21
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AtunRTransitioning health systems for multimorbidityLancet20153867217222606347310.1016/S0140-6736(14)62254-6
PembertonRFuller TyszkiewiczMDFactors contributing to depressive mood states in everyday life: a systematic reviewJ. Affect. Disord.20162001031102713150310.1016/j.jad.2016.04.023
SteinsaltzDDahlAWachterKWOn negative heritability and negative estimates of heritabilityGenetics202021534335732291292726899110.1534/genetics.120.303161
FarréNMedical resource use and expenditure in patients with chronic heart failure: a population-based analysis of 88 195 patientsEur. J. Heart Fail.201618113211402710848110.1002/ejhf.549
Gamerman, D. & Lopes, H. F. Markov Chain Monte Carlo (Chapman and Hall/CRC, 2006).
FangYFritscheLGMukherjeeBSenSRichmond-RakerdLSPolygenic liability to depression is associated with multiple medical conditions in the electronic health record: phenome-wide association study of 46,782 individualsBiol. Psychiatry202292923931359651081071265110.1016/j.biopsych.2022.06.004
WrayNRGenome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressionNat. Genet.2018506686811:CAS:528:DC%2BC1cXosVCks74%3D29700475593432610.1038/s41588-018-0090-3
ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigaScience2015425722852434219310.1186/s13742-015-0047-8
Eszlari, N. et al. Biology of perseverative negative thinking: the role of timing and folate intake. Nutrientshttps://doi.org/10.3390/nu13124396 (2021).
SchoepfDUppalHPotluriRChandranSHeunRComorbidity and its relevance on general hospital based mortality in major depressive disorder: a naturalistic 12-year follow-up in general hospital admissionsJ. Psychiatr. Res.20145228352451349910.1016/j.jpsychires.2014.01.010
SmithDJPrevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participantsPLoS ONE20138e753622013PLoSO...875362S24282498383990710.1371/journal.pone.0075362
KurkiMIFinnGen provides genetic insights from a well-phenotyped isolated populationNature20236135085182023Natur.613..508K1:CAS:528:DC%2BB3sXhslKmtrs%3D36653562984912610.1038/s41586-022-05473-8
BycroftCThe UK Biobank resource with deep phenotyping and genomic dataNature20185622032092018Natur.562..203B1:CAS:528:DC%2BC1cXhvV2qsbvI30305743678697510.1038/s41586-018-0579-z
SundRQuality of the Finnish Hospital Discharge Register: a systematic reviewScand. J. Public Health2012405055152289956110.1177/1403494812456637
BonkSImpact of gene-by-trauma interaction in MDD-related multimorbidity clustersJ. Affect. Disord.20243593823911:CAS:528:DC%2BB2cXht1eisbzL3880606510.1016/j.jad.2024.05.126
Cuellar-Partida, G. et al. Complex-traits genetics virtual lab: a community-driven web platform for post-GWAS analyses. Preprint at bioRxivhttps://doi.org/10.1101/518027 (2019).
GuptaJResolving the etiology of atopic disorders by using genetic analysis of racial ancestryJ. Allergy Clin. Immunol.201613867669927297995501467910.1016/j.jaci.2016.02.045
RzhetskyAWajngurtDParkNZhengTProbing genetic overlap among complex human phenotypesProc. Natl. Acad. Sci. USA200710411694116992007PNAS..10411694R1:CAS:528:DC%2BD2sXotVaksb4%3D17609372190672710.1073/pnas.0704820104
WilladsenTGThe effect of disease onset chronology on mortality among patients with multimorbidity: A Danish nationwide register studyJ. Multimorb. Comorb.2022122633556522112202536032184940040310.1177/26335565221122025
Gezsi, A., et al. Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories. Zenodohttps://doi.org/10.5281/zenodo.12744319, https://github.com/gezsi/mdd-clustering (2024).
Prasad, B., Bjourson, A. J. & Shukla, P. Data-driven patient stratification of UK Biobank cohort suggests five endotypes of multimorbidity. Brief. Bioinform.https://doi.org/10.1093/bib/bbac410 (2022).
VölzkeHCohort profile update: The Study of Health in Pomerania (SHIP)Int. J. Epidemiol.202251e372e3833534870510.1093/ije/dyac034
Flint, J. The genetic basis of major depressive disorder. Mol. Psychiatry; https://doi.org/10.1038/s41380-023-01957-9 (2023).
NguyenT-DGenetic heterogeneity and subtypes of major depressionMol. Psychiatry202227166716751:CAS:528:DC%2BB38XhtVeisLzL34997191910683410.1038/s41380-021-01413-6
EszlariNGenome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of ruminationTransl. Psychiatry2019930886212642313310.1038/s41398-019-0454-1
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2022).
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a “Kneedle” in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).
RaudvereUg:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)Nucleic Acids Res.201947W191W1981:CAS:528:DC%2BB3cXktVyit70%3D31066453660246110.1093/nar/gkz369
GeTChenC-YNiYFengY-CASmollerJWPolygenic prediction via Bayesian regression and continuous shrinkage priorsNat. Commun.2019102019NatCo..10.1776G30992449646799810.1038/s41467-019-09718-5
MerikangasKRKalaydjianAMagnitude and impact of comorbidity of mental disorders from epidemiologic surveysCurr. Opin. Psychiatry2007203533581755135010.1097/YCO.0b013e3281c61dc5
KudesiaPThe incidence of multimorbidity and patterns in accumulation of chronic conditions: a systematic reviewJ. Multimorb. Comorb.2021112633556521103288034350127828742410.1177/26335565211032880
BarabásiA-LGulbahceNLoscalzoJNetwork medicine: a network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918
LeeuwCAdeMooijJMHeskesTPosthumaDMAGMA: generalized gene-set analysis of GWAS dataPLoS Comput. Biol.201511e100421925885710440165710.1371/journal.pcbi.1004219
Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Sciencehttps://doi.org/10.1126/science.aap8757 (2018).
ChanKLCathomasFRussoSJCentral and peripheral inflammation link metabolic syndrome and major depressive disorderPhysiology2019341231331:CAS:528:DC%2BC1MXhs1SmtLnE30724127658683210.1152/physiol.00047.2018
WatanabeKUmićević MirkovMde LeeuwCAvan den HeuvelMPPosthumaDGenetic mapping of cell type specificity for complex traitsNat. Commun.2019102019NatCo..10.3222W1:CAS:528:DC%2BC1MXhsVels73L31324783664211210.1038/s41467-019-11181-1
Fratelli, C., Siqueira, J., Silva, C., Ferreira, E. & Silva, I. 5HTTLPR genetic variant and major depressive disorder: a review. Geneshttps://doi.org/10.3390/genes11111260 (2020).
BerkMSo depression is an inflammatory disease, but where does the inflammation come from?BMC Med.2013112013arsm.book.....B24228900384668210.1186/1741-7015-11-200
LeisersonMDMPan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexesNat. Genet.2015471061141:CAS:528:DC%2BC2cXitFKltL%2FO2550139210.1038/ng.3168
GlanvilleKPClassical human leukocyte antigen alleles and C4 haplotypes are not significantly associated with depressionBiol. Psychiatry2020874194301:CAS:528:DC%2BC1MXhvVOqt7vM31570195700104010.1016/j.biopsych.2019.06.031
HowardDMGenome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathwaysNat. Commun.201892018NatCo...9.1470H29662059590262810.1038/s41467-018-03819-3
ToendersYJInflammation and depression in young people: a systematic review and proposed inflammatory pathwaysMol. Psychiatry2022273153271:CAS:528:DC%2BB38XktVCksrs%3D3463578910.1038/s41380-021-01306-8
RushAJAcute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D reportAm. J. Psychiatry2006163190519171707494210.1176/ajp.2006.163.11.1905
SchulzAThe impact of childhood trauma on depression: does resilience matter? Population-based results from the Study of Health in PomeraniaJ. Psychosom. Res.201477971032507784910.1016/j.jpsychores.2014.06.008
Antal, P. et al. Bayesian, systems-based, multilevel analysis of associations for complex phenotypes: from interpretation to decision. In Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics (eds Sinoquet, C. & Mourad, R.) 318–360 (Oxford Univ. Press, Oxford, 2014).
CaoHLiSBaranovaAZhangFShared genetic liability between major depressive disorder and atopic diseasesFront. Immunol.2021126651601:CAS:528:DC%2BB3MXisVaksL%2FL34566951845595010.3389/fimmu.2021.665160
SarrisJMultiple lifestyle factors and depressed mood: a cross-sectional and longitudinal analysis of the UK Biobank (N = 84,860)BMC Med.20201833176802766127110.1186/s12916-020-01813-5
Korotkevich G., Sukhov V., Sergushichev A. Fast gene set enrichment analysis. Preprint at bioRxivhttp://biorxiv.org/content/early/2016/06/20/060012 (2019).
MoussaviSDepression, chronic diseases, and decrements in health: results from the World Health SurveysLancet20073708518581782617010.1016/S0140-6736(07)61415-9
WangKGaitschHPoonHCoxNJRzhetskyAClassification of common human diseases derived from shared genetic and environmental determinantsNat. Genet.201749131913251:CAS:528:DC%2BC2sXht1yhs7%2FM28783162557736310.1038/ng.3931
BradleyTSystematic review of lifestyle interventions to improve weight, physical activity and diet among people with a mental health conditionSyst. Rev.20221136085250946207210.1186/s13643-022-02067-3
TroyanskayaOMissing value estimation methods for DNA microarraysBioinformatics2001175205251:CAS:528:DC%2BD3MXltFOgsLY%3D1139542810.1093/bioinformatics/17.6.520
Schizophrenia Working Group of the Psychiatric Genomics Consortium.Biological insights from 108 schizophrenia-associated genetic lociNature20145114214272014Natur.511..421S411237910.1038/nature13595
TamouzaRKrishnamoorthyRLeboyerMUnderstanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic contextBrain Behav. Immun.2021917317391:CAS:528:DC%2BB3cX
KL Chan (51467_CR38) 2019; 34
T Pan (51467_CR24) 2022; 12
51467_CR43
C Bycroft (51467_CR44) 2018; 562
DS Tylee (51467_CR30) 2022; 79
K Borodulin (51467_CR48) 2018; 47
CC Chang (51467_CR55) 2015; 4
51467_CR49
A Schulz (51467_CR51) 2014; 77
K Watanabe (51467_CR57) 2019; 10
H Völzke (51467_CR50) 2022; 51
BK Bulik-Sullivan (51467_CR62) 2015; 47
MI Kurki (51467_CR19) 2023; 613
G Dong (51467_CR8) 2021; 13
M Berk (51467_CR69) 2023; 22
J Gupta (51467_CR27) 2016; 138
S Moussavi (51467_CR71) 2007; 370
51467_CR52
51467_CR53
TG Willadsen (51467_CR23) 2022; 12
51467_CR54
51467_CR12
N Farré (51467_CR46) 2016; 18
T Ge (51467_CR63) 2019; 10
J Mbatchou (51467_CR56) 2021; 53
51467_CR59
51467_CR16
A Rzhetsky (51467_CR76) 2007; 104
C Langenberg (51467_CR10) 2023; 29
M Nagel (51467_CR42) 2018; 9
T Bradley (51467_CR21) 2022; 11
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (51467_CR18) 2014; 511
R Pemberton (51467_CR22) 2016; 200
CE Aubert (51467_CR11) 2019; 149
Y Fang (51467_CR29) 2022; 92
P Marx (51467_CR15) 2017; 13
R Tamouza (51467_CR34) 2021; 91
DM Howard (51467_CR5) 2019; 22
DM Howard (51467_CR36) 2018; 9
EI Fried (51467_CR3) 2015; 172
O Troyanskaya (51467_CR66) 2001; 17
51467_CR61
51467_CR64
MD Krebs (51467_CR14) 2021; 12
K Wang (51467_CR73) 2017; 49
T-D Nguyen (51467_CR7) 2022; 27
51467_CR67
M Berk (51467_CR33) 2013; 11
YJ Toenders (51467_CR40) 2022; 27
H Cao (51467_CR28) 2021; 12
U Raudvere (51467_CR60) 2019; 47
JA Pasman (51467_CR68) 2023; 29
S Bonk (51467_CR37) 2024; 359
R Sund (51467_CR47) 2012; 40
NR Wray (51467_CR6) 2018; 50
AH Miller (51467_CR39) 2016; 16
DS Tylee (51467_CR26) 2018; 177
A-L Barabási (51467_CR75) 2011; 12
AJ Rush (51467_CR2) 2006; 163
D Steinsaltz (51467_CR20) 2020; 215
R Atun (51467_CR9) 2015; 386
N Eszlari (51467_CR45) 2019; 9
51467_CR1
J Menche (51467_CR74) 2015; 347
51467_CR4
EA Stahl (51467_CR17) 2019; 51
51467_CR72
KP Glanville (51467_CR35) 2020; 87
51467_CR32
P Kudesia (51467_CR13) 2021; 11
J Sarris (51467_CR25) 2020; 18
KR Merikangas (51467_CR70) 2007; 20
DJ Smith (51467_CR41) 2013; 8
CA Leeuw (51467_CR58) 2015; 11
G Jia (51467_CR77) 2022; 13
D Schoepf (51467_CR31) 2014; 52
MDM Leiserson (51467_CR65) 2015; 47
References_xml – reference: Cuellar-Partida, G. et al. Complex-traits genetics virtual lab: a community-driven web platform for post-GWAS analyses. Preprint at bioRxivhttps://doi.org/10.1101/518027 (2019).
– reference: Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a “Kneedle” in a haystack: detecting knee points in system behavior. In 2011 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).
– reference: FriedEINesseRMDepression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D studyJ. Affect. Disord.2015172961022545140110.1016/j.jad.2014.10.010
– reference: HowardDMGenome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regionsNat. Neurosci.2019223433521:CAS:528:DC%2BC1MXmtF2ntrw%3D30718901652236310.1038/s41593-018-0326-7
– reference: Eszlari, N. et al. Biology of perseverative negative thinking: the role of timing and folate intake. Nutrientshttps://doi.org/10.3390/nu13124396 (2021).
– reference: MerikangasKRKalaydjianAMagnitude and impact of comorbidity of mental disorders from epidemiologic surveysCurr. Opin. Psychiatry2007203533581755135010.1097/YCO.0b013e3281c61dc5
– reference: SundRQuality of the Finnish Hospital Discharge Register: a systematic reviewScand. J. Public Health2012405055152289956110.1177/1403494812456637
– reference: TyleeDSGenetic correlations among psychiatric and immune-related phenotypes based on genome-wide association dataAm. J. Med. Genet. B Neuropsychiatr. Genet.201817764165730325587623030410.1002/ajmg.b.32652
– reference: LeisersonMDMPan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexesNat. Genet.2015471061141:CAS:528:DC%2BC2cXitFKltL%2FO2550139210.1038/ng.3168
– reference: CaoHLiSBaranovaAZhangFShared genetic liability between major depressive disorder and atopic diseasesFront. Immunol.2021126651601:CAS:528:DC%2BB3MXisVaksL%2FL34566951845595010.3389/fimmu.2021.665160
– reference: Korotkevich G., Sukhov V., Sergushichev A. Fast gene set enrichment analysis. Preprint at bioRxivhttp://biorxiv.org/content/early/2016/06/20/060012 (2019).
– reference: WangKGaitschHPoonHCoxNJRzhetskyAClassification of common human diseases derived from shared genetic and environmental determinantsNat. Genet.201749131913251:CAS:528:DC%2BC2sXht1yhs7%2FM28783162557736310.1038/ng.3931
– reference: Schizophrenia Working Group of the Psychiatric Genomics Consortium.Biological insights from 108 schizophrenia-associated genetic lociNature20145114214272014Natur.511..421S411237910.1038/nature13595
– reference: PanTThe impact of depression and physical multimorbidity on health-related quality of life in China: a national longitudinal quantile regression studySci. Rep.2022122022NatSR..1221620P1:CAS:528:DC%2BB38XjtFart7vJ36517510975098810.1038/s41598-022-25092-7
– reference: RaudvereUg:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)Nucleic Acids Res.201947W191W1981:CAS:528:DC%2BB3cXktVyit70%3D31066453660246110.1093/nar/gkz369
– reference: SmithDJPrevalence and characteristics of probable major depression and bipolar disorder within UK biobank: cross-sectional study of 172,751 participantsPLoS ONE20138e753622013PLoSO...875362S24282498383990710.1371/journal.pone.0075362
– reference: HowardDMGenome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathwaysNat. Commun.201892018NatCo...9.1470H29662059590262810.1038/s41467-018-03819-3
– reference: KrebsMDAssociations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factorsNat. Commun.2021122021NatCo..12.6617K1:CAS:528:DC%2BB3MXisFSjt7vI34785645859537410.1038/s41467-021-26903-7
– reference: LeeuwCAdeMooijJMHeskesTPosthumaDMAGMA: generalized gene-set analysis of GWAS dataPLoS Comput. Biol.201511e100421925885710440165710.1371/journal.pcbi.1004219
– reference: NguyenT-DGenetic heterogeneity and subtypes of major depressionMol. Psychiatry202227166716751:CAS:528:DC%2BB38XhtVeisLzL34997191910683410.1038/s41380-021-01413-6
– reference: DongGFengJSunFChenJZhaoX-MA global overview of genetically interpretable multimorbidities among common diseases in the UK BiobankGenome Med.20211334225788825896210.1186/s13073-021-00927-6
– reference: SchulzAThe impact of childhood trauma on depression: does resilience matter? Population-based results from the Study of Health in PomeraniaJ. Psychosom. Res.201477971032507784910.1016/j.jpsychores.2014.06.008
– reference: PembertonRFuller TyszkiewiczMDFactors contributing to depressive mood states in everyday life: a systematic reviewJ. Affect. Disord.20162001031102713150310.1016/j.jad.2016.04.023
– reference: AtunRTransitioning health systems for multimorbidityLancet20153867217222606347310.1016/S0140-6736(14)62254-6
– reference: TamouzaRKrishnamoorthyRLeboyerMUnderstanding the genetic contribution of the human leukocyte antigen system to common major psychiatric disorders in a world pandemic contextBrain Behav. Immun.2021917317391:CAS:528:DC%2BB3cXitVCls7nN3303191810.1016/j.bbi.2020.09.033
– reference: BradleyTSystematic review of lifestyle interventions to improve weight, physical activity and diet among people with a mental health conditionSyst. Rev.20221136085250946207210.1186/s13643-022-02067-3
– reference: Fratelli, C., Siqueira, J., Silva, C., Ferreira, E. & Silva, I. 5HTTLPR genetic variant and major depressive disorder: a review. Geneshttps://doi.org/10.3390/genes11111260 (2020).
– reference: MbatchouJComputationally efficient whole-genome regression for quantitative and binary traitsNat. Genet.202153109711031:CAS:528:DC%2BB3MXhtFehsbrI3401714010.1038/s41588-021-00870-7
– reference: FarréNMedical resource use and expenditure in patients with chronic heart failure: a population-based analysis of 88 195 patientsEur. J. Heart Fail.201618113211402710848110.1002/ejhf.549
– reference: Bulik-SullivanBKLD score regression distinguishes confounding from polygenicity in genome-wide association studiesNat. Genet.2015472912951:CAS:528:DC%2BC2MXhvFCntb8%3D25642630449576910.1038/ng.3211
– reference: SteinsaltzDDahlAWachterKWOn negative heritability and negative estimates of heritabilityGenetics202021534335732291292726899110.1534/genetics.120.303161
– reference: ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigaScience2015425722852434219310.1186/s13742-015-0047-8
– reference: TroyanskayaOMissing value estimation methods for DNA microarraysBioinformatics2001175205251:CAS:528:DC%2BD3MXltFOgsLY%3D1139542810.1093/bioinformatics/17.6.520
– reference: NagelMWatanabeKStringerSPosthumaDvan der SluisSItem-level analyses reveal genetic heterogeneity in neuroticismNat. Commun.201892018NatCo...9..905N29500382583446810.1038/s41467-018-03242-8
– reference: Antal, P. et al. Bayesian, systems-based, multilevel analysis of associations for complex phenotypes: from interpretation to decision. In Probabilistic Graphical Models for Genetics, Genomics, and Postgenomics (eds Sinoquet, C. & Mourad, R.) 318–360 (Oxford Univ. Press, Oxford, 2014).
– reference: MencheJDisease networks. Uncovering disease-disease relationships through the incomplete interactomeScience2015347125760125700523443574110.1126/science.1257601
– reference: JiaGDiscerning asthma endotypes through comorbidity mappingNat. Commun.2022132022NatCo..13.6712J1:CAS:528:DC%2BB38XivVahurbI36344522964064410.1038/s41467-022-33628-8
– reference: KudesiaPThe incidence of multimorbidity and patterns in accumulation of chronic conditions: a systematic reviewJ. Multimorb. Comorb.2021112633556521103288034350127828742410.1177/26335565211032880
– reference: GlanvilleKPClassical human leukocyte antigen alleles and C4 haplotypes are not significantly associated with depressionBiol. Psychiatry2020874194301:CAS:528:DC%2BC1MXhvVOqt7vM31570195700104010.1016/j.biopsych.2019.06.031
– reference: Heistaro, S. Methodology Report. Health 2000 Survey (National Public Health Institute, Helsinki, 2008).
– reference: Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Sciencehttps://doi.org/10.1126/science.aap8757 (2018).
– reference: EszlariNGenome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of ruminationTransl. Psychiatry2019930886212642313310.1038/s41398-019-0454-1
– reference: RzhetskyAWajngurtDParkNZhengTProbing genetic overlap among complex human phenotypesProc. Natl. Acad. Sci. USA200710411694116992007PNAS..10411694R1:CAS:528:DC%2BD2sXotVaksb4%3D17609372190672710.1073/pnas.0704820104
– reference: WatanabeKUmićević MirkovMde LeeuwCAvan den HeuvelMPPosthumaDGenetic mapping of cell type specificity for complex traitsNat. Commun.2019102019NatCo..10.3222W1:CAS:528:DC%2BC1MXhsVels73L31324783664211210.1038/s41467-019-11181-1
– reference: WilladsenTGThe effect of disease onset chronology on mortality among patients with multimorbidity: A Danish nationwide register studyJ. Multimorb. Comorb.2022122633556522112202536032184940040310.1177/26335565221122025
– reference: R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2022).
– reference: StahlEAGenome-wide association study identifies 30 loci associated with bipolar disorderNat. Genet.2019517938031:CAS:528:DC%2BC1MXoslKqtr8%3D31043756695673210.1038/s41588-019-0397-8
– reference: FangYFritscheLGMukherjeeBSenSRichmond-RakerdLSPolygenic liability to depression is associated with multiple medical conditions in the electronic health record: phenome-wide association study of 46,782 individualsBiol. Psychiatry202292923931359651081071265110.1016/j.biopsych.2022.06.004
– reference: Gamerman, D. & Lopes, H. F. Markov Chain Monte Carlo (Chapman and Hall/CRC, 2006).
– reference: MarxPComorbidities in the diseasome are more apparent than real: What Bayesian filtering reveals about the comorbidities of depressionPLoS Comput. Biol.201713e100548728644851550732210.1371/journal.pcbi.1005487
– reference: PasmanJAEpidemiological overview of major depressive disorder in Scandinavia using nationwide registersLancet Reg. Health Eur.202329100621372657841023061610.1016/j.lanepe.2023.100621
– reference: VölzkeHCohort profile update: The Study of Health in Pomerania (SHIP)Int. J. Epidemiol.202251e372e3833534870510.1093/ije/dyac034
– reference: ChanKLCathomasFRussoSJCentral and peripheral inflammation link metabolic syndrome and major depressive disorderPhysiology2019341231331:CAS:528:DC%2BC1MXhs1SmtLnE30724127658683210.1152/physiol.00047.2018
– reference: BycroftCThe UK Biobank resource with deep phenotyping and genomic dataNature20185622032092018Natur.562..203B1:CAS:528:DC%2BC1cXhvV2qsbvI30305743678697510.1038/s41586-018-0579-z
– reference: GuptaJResolving the etiology of atopic disorders by using genetic analysis of racial ancestryJ. Allergy Clin. Immunol.201613867669927297995501467910.1016/j.jaci.2016.02.045
– reference: Prasad, B., Bjourson, A. J. & Shukla, P. Data-driven patient stratification of UK Biobank cohort suggests five endotypes of multimorbidity. Brief. Bioinform.https://doi.org/10.1093/bib/bbac410 (2022).
– reference: BonkSImpact of gene-by-trauma interaction in MDD-related multimorbidity clustersJ. Affect. Disord.20243593823911:CAS:528:DC%2BB2cXht1eisbzL3880606510.1016/j.jad.2024.05.126
– reference: WrayNRGenome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressionNat. Genet.2018506686811:CAS:528:DC%2BC1cXosVCks74%3D29700475593432610.1038/s41588-018-0090-3
– reference: RushAJAcute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D reportAm. J. Psychiatry2006163190519171707494210.1176/ajp.2006.163.11.1905
– reference: AubertCEPatterns of multimorbidity in internal medicine patients in Swiss university hospitals: a multicentre cohort studySwiss Med. Wkly.2019149w2009431256414
– reference: BerkMSo depression is an inflammatory disease, but where does the inflammation come from?BMC Med.2013112013arsm.book.....B24228900384668210.1186/1741-7015-11-200
– reference: BerkMComorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and managementWorld Psychiatry202322366387377135681050392910.1002/wps.21110
– reference: GeTChenC-YNiYFengY-CASmollerJWPolygenic prediction via Bayesian regression and continuous shrinkage priorsNat. Commun.2019102019NatCo..10.1776G30992449646799810.1038/s41467-019-09718-5
– reference: SchoepfDUppalHPotluriRChandranSHeunRComorbidity and its relevance on general hospital based mortality in major depressive disorder: a naturalistic 12-year follow-up in general hospital admissionsJ. Psychiatr. Res.20145228352451349910.1016/j.jpsychires.2014.01.010
– reference: Flint, J. The genetic basis of major depressive disorder. Mol. Psychiatry; https://doi.org/10.1038/s41380-023-01957-9 (2023).
– reference: Harsanyi, S., Kupcova, I., Danisovic, L. & Klein, M. Selected biomarkers of depression: what are the effects of cytokines and inflammation? Int. J. Mol. Sci.https://doi.org/10.3390/ijms24010578 (2022).
– reference: MoussaviSDepression, chronic diseases, and decrements in health: results from the World Health SurveysLancet20073708518581782617010.1016/S0140-6736(07)61415-9
– reference: González-Colom, R. et al. Multicentric assessment of a multimorbidity adjusted disability score to stratify depression-related risks using temporal disease maps. J. Med. Internet Res.https://doi.org/10.2196/53162 (2023).
– reference: MillerAHRaisonCLThe role of inflammation in depression: from evolutionary imperative to modern treatment targetNat. Rev. Immunol.20161622341:CAS:528:DC%2BC2MXitV2msLfN26711676554267810.1038/nri.2015.5
– reference: BarabásiA-LGulbahceNLoscalzoJNetwork medicine: a network-based approach to human diseaseNat. Rev. Genet.201112566821164525314005210.1038/nrg2918
– reference: LangenbergCHingoraniADWhittyCJMBiological and functional multimorbidity-from mechanisms to managementNat. Med.202329164916571:CAS:528:DC%2BB3sXhsFSgtL3K3746403110.1038/s41591-023-02420-6
– reference: KurkiMIFinnGen provides genetic insights from a well-phenotyped isolated populationNature20236135085182023Natur.613..508K1:CAS:528:DC%2BB3sXhslKmtrs%3D36653562984912610.1038/s41586-022-05473-8
– reference: Gezsi, A., et al. Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories. Zenodohttps://doi.org/10.5281/zenodo.12744319, https://github.com/gezsi/mdd-clustering (2024).
– reference: SarrisJMultiple lifestyle factors and depressed mood: a cross-sectional and longitudinal analysis of the UK Biobank (N = 84,860)BMC Med.20201833176802766127110.1186/s12916-020-01813-5
– reference: BorodulinKCohort profile: The National FINRISK StudyInt. J. Epidemiol.201847696696i2916569910.1093/ije/dyx239
– reference: TyleeDSAn atlas of genetic correlations and genetically informed associations linking psychiatric and immune-related phenotypesJAMA Psychiatry20227966767635507366906934210.1001/jamapsychiatry.2022.0914
– reference: ToendersYJInflammation and depression in young people: a systematic review and proposed inflammatory pathwaysMol. Psychiatry2022273153271:CAS:528:DC%2BB38XktVCksrs%3D3463578910.1038/s41380-021-01306-8
– ident: 51467_CR16
  doi: 10.2196/53162
– ident: 51467_CR67
  doi: 10.5281/zenodo.12744319
– volume: 51
  start-page: 793
  year: 2019
  ident: 51467_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0397-8
– volume: 13
  start-page: e1005487
  year: 2017
  ident: 51467_CR15
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005487
– volume: 562
  start-page: 203
  year: 2018
  ident: 51467_CR44
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– ident: 51467_CR49
– volume: 22
  start-page: 343
  year: 2019
  ident: 51467_CR5
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0326-7
– volume: 47
  start-page: 106
  year: 2015
  ident: 51467_CR65
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3168
– volume: 92
  start-page: 923
  year: 2022
  ident: 51467_CR29
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2022.06.004
– volume: 49
  start-page: 1319
  year: 2017
  ident: 51467_CR73
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3931
– ident: 51467_CR53
  doi: 10.1093/acprof:oso/9780198709022.003.0013
– volume: 8
  start-page: e75362
  year: 2013
  ident: 51467_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0075362
– ident: 51467_CR12
  doi: 10.1093/bib/bbac410
– volume: 511
  start-page: 421
  year: 2014
  ident: 51467_CR18
  publication-title: Nature
  doi: 10.1038/nature13595
– volume: 47
  start-page: 696
  year: 2018
  ident: 51467_CR48
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyx239
– volume: 370
  start-page: 851
  year: 2007
  ident: 51467_CR71
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61415-9
– ident: 51467_CR54
– ident: 51467_CR1
  doi: 10.3390/genes11111260
– volume: 172
  start-page: 96
  year: 2015
  ident: 51467_CR3
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2014.10.010
– volume: 29
  start-page: 1649
  year: 2023
  ident: 51467_CR10
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02420-6
– volume: 10
  year: 2019
  ident: 51467_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11181-1
– ident: 51467_CR43
  doi: 10.3390/nu13124396
– ident: 51467_CR52
  doi: 10.1201/9781482296426
– volume: 91
  start-page: 731
  year: 2021
  ident: 51467_CR34
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2020.09.033
– volume: 16
  start-page: 22
  year: 2016
  ident: 51467_CR39
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2015.5
– volume: 13
  year: 2022
  ident: 51467_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33628-8
– volume: 40
  start-page: 505
  year: 2012
  ident: 51467_CR47
  publication-title: Scand. J. Public Health
  doi: 10.1177/1403494812456637
– volume: 20
  start-page: 353
  year: 2007
  ident: 51467_CR70
  publication-title: Curr. Opin. Psychiatry
  doi: 10.1097/YCO.0b013e3281c61dc5
– volume: 12
  year: 2021
  ident: 51467_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26903-7
– volume: 11
  year: 2022
  ident: 51467_CR21
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-022-02067-3
– ident: 51467_CR4
  doi: 10.1038/s41380-023-01957-9
– volume: 18
  start-page: 1132
  year: 2016
  ident: 51467_CR46
  publication-title: Eur. J. Heart Fail.
  doi: 10.1002/ejhf.549
– volume: 11
  start-page: 263355652110328
  year: 2021
  ident: 51467_CR13
  publication-title: J. Multimorb. Comorb.
  doi: 10.1177/26335565211032880
– volume: 359
  start-page: 382
  year: 2024
  ident: 51467_CR37
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2024.05.126
– volume: 613
  start-page: 508
  year: 2023
  ident: 51467_CR19
  publication-title: Nature
  doi: 10.1038/s41586-022-05473-8
– ident: 51467_CR64
  doi: 10.1109/ICDCSW.2011.20
– volume: 52
  start-page: 28
  year: 2014
  ident: 51467_CR31
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2014.01.010
– volume: 9
  year: 2019
  ident: 51467_CR45
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-019-0454-1
– volume: 149
  start-page: w20094
  year: 2019
  ident: 51467_CR11
  publication-title: Swiss Med. Wkly.
– volume: 47
  start-page: 291
  year: 2015
  ident: 51467_CR62
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3211
– volume: 11
  year: 2013
  ident: 51467_CR33
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-11-200
– volume: 17
  start-page: 520
  year: 2001
  ident: 51467_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 10
  year: 2019
  ident: 51467_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09718-5
– volume: 12
  start-page: 263355652211220
  year: 2022
  ident: 51467_CR23
  publication-title: J. Multimorb. Comorb.
  doi: 10.1177/26335565221122025
– ident: 51467_CR32
  doi: 10.3390/ijms24010578
– volume: 4
  year: 2015
  ident: 51467_CR55
  publication-title: GigaScience
  doi: 10.1186/s13742-015-0047-8
– volume: 27
  start-page: 1667
  year: 2022
  ident: 51467_CR7
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-021-01413-6
– ident: 51467_CR61
  doi: 10.1101/518027
– volume: 51
  start-page: e372
  year: 2022
  ident: 51467_CR50
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyac034
– volume: 29
  start-page: 100621
  year: 2023
  ident: 51467_CR68
  publication-title: Lancet Reg. Health Eur.
  doi: 10.1016/j.lanepe.2023.100621
– volume: 22
  start-page: 366
  year: 2023
  ident: 51467_CR69
  publication-title: World Psychiatry
  doi: 10.1002/wps.21110
– volume: 163
  start-page: 1905
  year: 2006
  ident: 51467_CR2
  publication-title: Am. J. Psychiatry
  doi: 10.1176/ajp.2006.163.11.1905
– volume: 215
  start-page: 343
  year: 2020
  ident: 51467_CR20
  publication-title: Genetics
  doi: 10.1534/genetics.120.303161
– volume: 138
  start-page: 676
  year: 2016
  ident: 51467_CR27
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2016.02.045
– volume: 12
  year: 2022
  ident: 51467_CR24
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25092-7
– volume: 177
  start-page: 641
  year: 2018
  ident: 51467_CR26
  publication-title: Am. J. Med. Genet. B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.32652
– volume: 53
  start-page: 1097
  year: 2021
  ident: 51467_CR56
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00870-7
– volume: 9
  year: 2018
  ident: 51467_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03242-8
– volume: 50
  start-page: 668
  year: 2018
  ident: 51467_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0090-3
– volume: 104
  start-page: 11694
  year: 2007
  ident: 51467_CR76
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704820104
– volume: 79
  start-page: 667
  year: 2022
  ident: 51467_CR30
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2022.0914
– volume: 34
  start-page: 123
  year: 2019
  ident: 51467_CR38
  publication-title: Physiology
  doi: 10.1152/physiol.00047.2018
– volume: 13
  year: 2021
  ident: 51467_CR8
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00927-6
– volume: 386
  start-page: 721
  year: 2015
  ident: 51467_CR9
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)62254-6
– volume: 9
  year: 2018
  ident: 51467_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03819-3
– ident: 51467_CR59
  doi: 10.1101/060012
– volume: 12
  start-page: 56
  year: 2011
  ident: 51467_CR75
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2918
– volume: 11
  start-page: e1004219
  year: 2015
  ident: 51467_CR58
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004219
– volume: 27
  start-page: 315
  year: 2022
  ident: 51467_CR40
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-021-01306-8
– ident: 51467_CR72
  doi: 10.1126/science.aap8757
– volume: 77
  start-page: 97
  year: 2014
  ident: 51467_CR51
  publication-title: J. Psychosom. Res.
  doi: 10.1016/j.jpsychores.2014.06.008
– volume: 47
  start-page: W191
  year: 2019
  ident: 51467_CR60
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz369
– volume: 200
  start-page: 103
  year: 2016
  ident: 51467_CR22
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2016.04.023
– volume: 347
  start-page: 1257601
  year: 2015
  ident: 51467_CR74
  publication-title: Science
  doi: 10.1126/science.1257601
– volume: 87
  start-page: 419
  year: 2020
  ident: 51467_CR35
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2019.06.031
– volume: 18
  year: 2020
  ident: 51467_CR25
  publication-title: BMC Med.
  doi: 10.1186/s12916-020-01813-5
– volume: 12
  start-page: 665160
  year: 2021
  ident: 51467_CR28
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.665160
SSID ssj0000391844
Score 2.5030987
Snippet The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological mechanisms...
Abstract The heterogeneity and complexity of symptom presentation, comorbidities and genetic factors pose challenges to the identification of biological...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7190
SubjectTerms 45
45/43
631/114/1314
631/208/205/2138
692/308/2056
692/699/476/1414
692/700/478/174
Adult
Aged
Bayes Theorem
Bayesian analysis
Clusters
Comorbidity
Complexity
Depressive Disorder, Major - epidemiology
Depressive Disorder, Major - genetics
Female
Finland - epidemiology
Genetic factors
Genetic Predisposition to Disease
Heritability
Heterogeneity
Humanities and Social Sciences
Humans
Life span
Male
Mathematical models
Mental depression
Middle Aged
multidisciplinary
Multimorbidity
Risk Factors
Science
Science (multidisciplinary)
Spain - epidemiology
United Kingdom - epidemiology
Young Adult
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSlPNsGCjISN4hqx87aOSFAVBxQ1QNFvVl-0q3apGx2K_Xfd-w4qZZHL9yi2JHszNsz_gaht9SRyjDw3IKxruTCgUiBo1xSXbNGGuJEqib88U0cHMjj4-YwH7j1uaxy1IlJUbvOxjPyPQa-QNXQWrAPF7_K2DUqZldzC4276F5ESWCpdO9wOmOJ6OeS83xXhjC51_OkGcAwlXV6Emv2KMH2_83X_LNk8re8aTJH-4_-dyOP0WZ2RPHHgXOeoDu-fYoeDK0pr56h5VFCdsXAX_GaI9atw7EMvRwa9ODc67vH8xbbs1WEW-hxF_C5PoXRsb720mOX4T3LdGvGO5xKGM-7hZk7iAAw7PM0ZQ4gZH-Ojva_fP_8tcwdGkpbc7os2UzX0hOudSVrP6uCqY1pnIyBiwHTx4mtRNCe6UCYpoHLxgJNqLZcgG_k2RbaaLvW7yDcEA3qxYbIPFxDHCWDltxUHiJAN2OsQHSkk7IZvjx20ThTKY3OpBpoq-BzlWirRIHeTd9cDOAdt87-FMk_zYzA2-lFt_ipshwrzoIhWghPrOecaS3AQEjBQk2Fp40t0O5IdZW1Qa9uSF6gN9MwyHFMzujWd6thzgwsE5cF2h54bVpJvBwtGwkjco0L15a6PtLOTxJWOKWMNYzwAr0fGfZmXf_-Fy9u38ZL9LCKMkRAy9JdtLFcrPwrdN9eLuf94nUSwmsdrTp3
  priority: 102
  providerName: ProQuest
Title Unique genetic and risk-factor profiles in clusters of major depressive disorder-related multimorbidity trajectories
URI https://link.springer.com/article/10.1038/s41467-024-51467-7
https://www.ncbi.nlm.nih.gov/pubmed/39168988
https://www.proquest.com/docview/3095291573
https://www.proquest.com/docview/3095676248
https://pubmed.ncbi.nlm.nih.gov/PMC11339304
https://doaj.org/article/43fb0a77e0ce443aa7add873f517e19c
Volume 15
WOSCitedRecordID wos001296093800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1daxQxMGhV8EX8dms9IvimS5NN9pI8WmlR0GMRK6cvIZ_0Srsnt3eF_nsn2b2z5-eLL8uyk8DsfGRmkskMQi-oJ5Vl4LlF63zJhQeVAke5pKZmSlriRc4m_PxeTCZyOlXNlVZfKSesLw_cE26fs2iJESIQFzhnxgjQSClYrKkIVLm0-oLXcyWYymswUxC68OGWDGFyv-N5TQCTVNb5TWxZolyw_3de5q_Jkj-dmGZDdHQX3Rk8SPy6x_weuhba--hW31Py8gFaHueSrBgEI91PxKb1OOWPl31nHTw06e7wrMXubJXqJHR4HvG5OQXoOjH2ImA_1OUs83WX4HHOPTyfL-zMg-uOAc3TvOUPsfZDdHx0-OnN23JorVC6mtNlycamloFwYypZh3EVbW2t8jJFHBZsFieuEtEEZiJhhkYulQOSUuO4AKcmsEdop5234QnCihhYF1xMXOcGAiAZjeS2ChC6-TFjBaJrMms31B1P7S_OdD7_ZlL3rNEwXWfWaFGgl5s53_qqG38dfZC4txmZKmbnDyBHepAj_S85KtDemvd6UONOM3BAK0VrAX_xfAMGBUynKqYN81U_ZgwmhcsCPe5FZYNJutUslQSI3BKiLVS3Ie3sJBf5ppQxxQgv0Ku1vP3A68-02P0ftHiKblcpdSdvNu2hneViFZ6hm-5iOesWI3RdTEV-yhG6cXA4aT6OsvaNUuJsA8-m_gqQ5t2H5st39rY0Mw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHj2Fk7B4R4Va26rHpoUW-uYzvtVm1SNrtF_VP8RsZOstXy6K0HblHsRI7zzTdjex4Ar6hN0oKh5VYWxsZcWBQpNJRjqjOWyyKxIngTfhuK0Uju7uZbS_Czj4XxbpU9JwaitrXxe-SrDG2BNKeZYO9Pvse-apQ_Xe1LaLSw2HRnP3DJ1rzb-Iz_93Warn3Z_rQed1UFYpNxOo3ZQGfSJVzrVGZukJZFVhS5ld7YLpCueWJSUWrHdJkwTUsuc8OQErThAvW5Y_jeK3AVzYhUBlfBrfmejs-2LjnvYnMSJlcbHpgIFWGchSuxoP9CmYC_2bZ_umj-dk4b1N_a7f9t4u7Arc7QJh9aybgLS666B9fb0ptn92G6EzLXEpQfH8ZJdGWJd7OP2wJEpKtl3pBxRczRzKeTaEhdkmN9iK29__CpI7ZLXxqHqCBnSXDRPK4nxdjiCofgvB6Gk5Gxax7AzqV88kNYrurKPQaSJxrp05ReOLjGdaIsteRF6nCFaweMRUB7XCjTpWf3VUKOVHATYFK1WFL4uApYUiKCN_NnTtrkJBf2_ujhNu_pE4uHG_VkX3U8pTgri0QL4RLjOGdaC1SAUrAyo8LR3ESw0qNMdWzXqHOIRfBy3ow85Q-fdOXqWdtngJqXywgetdiej8QHf8tcYotcQP3CUBdbqvFByIVOKWM5S3gEb3sBOR_Xv-fiycWf8QJurG9_HarhxmjzKdxMvfwmqFHoCixPJzP3DK6Z0-m4mTwPBEBg77IF5xdzbZYh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeYgL70eggJHgBNHasbN2DggBZUXVarUHinpzHT9gqzYpm92i_jV-HWMn2Wp59NYDtyh2IseZ-WZsz3yD0AtqSVYy8Nx8aWzKhQWVAkc5pTpnhSyJFTGa8MuOGI_l3l4xWUM_-1yYEFbZY2IEalubsEc-YOALZAXNBRv4Lixisjl6e_w9DRWkwklrX06jFZFtd_oDlm_Nm61N-Ncvs2z08fOHT2lXYSA1OafzlA11Lh3hWmcyd8PMl3lZFlYGx7sE6ObEZMJrx7QnTFPPZWEYwIM2XIBtdwzeewldFoG0PIYNTpb7O4F5XXLe5ekQJgcNj6gERjHN45VYsYWxZMDf_Nw_wzV_O7ONpnB083-exFvoRueA43etxtxGa666g662JTlP76L5bmS0xaBXIb0T68riEH6ftoWJcFfjvMHTCpvDRaCZaHDt8ZE-gNY-rvjEYdvRmqYxW8hZHEM3j-pZObWw8sEwxwfxxGTqmnto90I--T5ar-rKPUS4IBpg1figNFzD-lF6LXmZOVj52iFjCaK9jCjT0baH6iGHKoYPMKlauVLwuIpypUSCXi2fOW5JS87t_T6I3rJnIByPN-rZV9Xhl-LMl0QL4YhxnDOtBRhGKZjPqXC0MAna6CVOdSjYqDNxS9DzZTPgVziU0pWrF22fIVhkLhP0oJXz5UhCUrgsJLTIFQ1YGepqSzX9FjnSKWWsYIQn6HWvLGfj-vdcPDr_M56ha6AvamdrvP0YXc-CKhMwNHQDrc9nC_cEXTEn82kzexqxAKP9i9abX2Scnt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+genetic+and+risk-factor+profiles+in+clusters+of+major+depressive+disorder-related+multimorbidity+trajectories&rft.jtitle=Nature+communications&rft.au=Gezsi%2C+Andras&rft.au=Van+der+Auwera%2C+Sandra&rft.au=M%C3%A4kinen%2C+Hannu&rft.au=Eszlari%2C+Nora&rft.date=2024-08-21&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7190&rft_id=info:doi/10.1038%2Fs41467-024-51467-7&rft_id=info%3Apmid%2F39168988&rft.externalDocID=39168988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon