TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records

Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 14; číslo 1; s. 7857 - 10
Hlavní autoři: Yang, Zhichao, Mitra, Avijit, Liu, Weisong, Berlowitz, Dan, Yu, Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 29.11.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% ( p  < 0.001) for pancreatic cancer onset and by 24% ( p  = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records.
AbstractList Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% ( p  < 0.001) for pancreatic cancer onset and by 24% ( p  = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records.
Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% ( p  < 0.001) for pancreatic cancer onset and by 24% ( p  = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records.
ArticleNumber 7857
Author Mitra, Avijit
Berlowitz, Dan
Yang, Zhichao
Liu, Weisong
Yu, Hong
Author_xml – sequence: 1
  givenname: Zhichao
  orcidid: 0000-0002-2797-4257
  surname: Yang
  fullname: Yang, Zhichao
  organization: College of Information and Computer Science, University of Massachusetts Amherst
– sequence: 2
  givenname: Avijit
  surname: Mitra
  fullname: Mitra, Avijit
  organization: College of Information and Computer Science, University of Massachusetts Amherst
– sequence: 3
  givenname: Weisong
  surname: Liu
  fullname: Liu, Weisong
  organization: School of Computer & Information Sciences, University of Massachusetts Lowell, Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System
– sequence: 4
  givenname: Dan
  surname: Berlowitz
  fullname: Berlowitz, Dan
  organization: Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System, Department of Public Health, University of Massachusetts Lowell
– sequence: 5
  givenname: Hong
  orcidid: 0000-0001-9263-5035
  surname: Yu
  fullname: Yu, Hong
  email: Hong_Yu@uml.edu
  organization: College of Information and Computer Science, University of Massachusetts Amherst, School of Computer & Information Sciences, University of Massachusetts Lowell, Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System, Center for Biomedical and Health Research in Data Sciences, University of Massachusetts Lowell
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38030638$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvFCEUxyemxtbaL-DBkHjxMgrDMMN4MaaptkkTE1PP5C08dtnMwApME_sR_NSyu21teygXePD__94D3uvqwAePVfWW0Y-Mcvkptazt-po2vG55z0R986I6amjLatY3_ODB-rA6SWlNy-ADk237qjrkknLacXlU_b2K4JMNcTo7__mZ5LsIY72AhIag18GUyOBuJkv0GCG7ayRT2RhJDkWzAq-RbCIap7MLngRLjEtYECTMWYcJE5mT80uCI-ocg3earBDGvCKxoKNJb6qXFsaEJ7fzcfXr29nV6Xl9-eP7xenXy1qLluWaC2aFscJSoRcUKdWspbKVoLXllnOgRkLHBwDJBw0C7CBM3-mF7ru-6wZ-XF3suSbAWm2imyD-UQGc2m2EuFQQs9MjKpRdYTYgaCdb3QopaU8bS2EBpiTfsr7sWZt5MaHR6MsLjo-gj0-8W6lluFasEPuGsUL4cEuI4feMKavJJY3jCB7DnFQjB9Gzknab7P0T6TrM0Ze32qloJ3q5Bb57WNJ9LXd_XgTNXqBjSCmivZcwqra9pfa9pUpvqV1vqZtikk9M2mXYfnW5lhuft_K9NZU8fonxf9nPuP4BcAPmyA
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103620
crossref_primary_10_3390_s25165179
crossref_primary_10_1016_j_inffus_2025_103546
crossref_primary_10_1111_jnu_13009
crossref_primary_10_1016_j_jbi_2025_104855
crossref_primary_10_1016_j_jbi_2025_104851
crossref_primary_10_1007_s10115_025_02514_2
crossref_primary_10_3389_frai_2024_1397298
crossref_primary_10_3390_computers14040148
crossref_primary_10_1016_j_tre_2025_104136
crossref_primary_10_1038_s41467_024_55035_x
crossref_primary_10_1007_s13755_024_00332_4
crossref_primary_10_1016_j_knosys_2025_114102
crossref_primary_10_1038_s44387_025_00011_z
crossref_primary_10_3390_app15116054
crossref_primary_10_1038_s41586_025_09529_3
crossref_primary_10_1109_ACCESS_2025_3603596
crossref_primary_10_2196_67748
crossref_primary_10_1016_j_neucom_2025_130999
crossref_primary_10_1038_s44172_024_00309_x
crossref_primary_10_3389_frai_2025_1521886
crossref_primary_10_3390_epidemiologia5040047
crossref_primary_10_1038_s41746_025_01692_1
crossref_primary_10_1016_j_eswa_2025_126876
crossref_primary_10_1016_j_jbi_2024_104768
crossref_primary_10_3390_jcm14092943
crossref_primary_10_1016_j_cell_2025_05_018
crossref_primary_10_3390_app14219697
crossref_primary_10_2196_56700
crossref_primary_10_1002_hcs2_114
crossref_primary_10_1186_s12911_025_02994_w
crossref_primary_10_1371_journal_pone_0329963
crossref_primary_10_1016_j_engappai_2024_109649
crossref_primary_10_3390_info16010054
crossref_primary_10_1016_j_ijmedinf_2024_105567
crossref_primary_10_1038_s41598_025_90216_8
crossref_primary_10_3390_electronics13081541
crossref_primary_10_14309_ajg_0000000000002870
crossref_primary_10_1109_ACCESS_2025_3558878
crossref_primary_10_1007_s40747_025_01794_z
crossref_primary_10_2196_49724
crossref_primary_10_4274_dir_2024_242631
crossref_primary_10_1038_s41746_024_01166_w
crossref_primary_10_2196_49704
Cites_doi 10.1038/s41467-021-21390-2
10.1038/s41746-022-00742-2
10.1038/s41598-020-62922-y
10.1038/nature14581
10.1038/s41746-018-0029-1
10.1002/pds.2037
10.1162/neco.1997.9.8.1735
10.1038/s41598-020-68771-z
10.1038/srep26094
10.2196/16374
10.1016/j.apmr.2017.05.021
10.1038/s41467-021-20910-4
10.1097/HTR.0000000000000249
10.1038/s41467-023-37209-1
10.1016/j.jpsychires.2014.08.017
10.1001/jama.2021.13027
10.1038/s41591-023-02332-5
10.1177/2167702617691560
10.1017/S0033291717002537
10.1111/j.1751-7176.2011.00434.x
10.1109/TKDE.2009.191
10.1016/j.janxdis.2015.02.003
10.1016/j.jacc.2014.03.016
10.1016/j.apmr.2017.03.026
10.1037/abn0000317
10.1370/afm.983
10.1038/s41746-023-00879-8
10.1176/appi.ajp.2018.17101167
10.1038/s41591-021-01614-0
10.2147/DMSO.S51325
10.3389/fpsyt.2020.00390
10.1038/s41598-021-93832-2
10.1093/jamiaopen/ooab011
10.1038/s41597-022-01899-x
10.1037/tra0000962
10.1038/s41398-020-0684-2
10.1609/aaai.v32i1.11501
10.24963/ijcai.2019/607
10.1001/jamapsychiatry.2021.0089
10.1371/journal.pone.0118432
10.18653/v1/2020.acl-main.703
10.1080/02699052.2018.1542508
10.1111/j.1600-0447.2008.01162.x
10.1097/01.nmd.0000168238.13252.b3
10.1109/JBHI.2021.3063721
10.1093/jamia/ocac144
10.1038/s41746-021-00455-y
10.1109/ACCESS.2018.2875677
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023
2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023
– notice: 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-43715-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_e86f3f2a50684c45880702f0abadcb09
PMC10687211
38030638
10_1038_s41467_023_43715_z
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R01MH125027
  funderid: https://doi.org/10.13039/100000025
– fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
  grantid: R01AG080670
  funderid: https://doi.org/10.13039/100000049
– fundername: U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA)
  grantid: R01DA056470
  funderid: https://doi.org/10.13039/100000026
– fundername: U.S. Department of Veterans Affairs (Department of Veterans Affairs)
  grantid: I01HX003711
  funderid: https://doi.org/10.13039/100000738
– fundername: NIDA NIH HHS
  grantid: R01 DA056470
– fundername: HSRD VA
  grantid: I01 HX003711
– fundername: NIMH NIH HHS
  grantid: R01 MH125027
– fundername: NIA NIH HHS
  grantid: R01 AG080670
– fundername: ;
  grantid: I01HX003711
– fundername: ;
  grantid: R01DA056470
– fundername: ;
  grantid: R01AG080670
– fundername: ;
  grantid: R01MH125027
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-351f5df5f05cb0e00c140848accf3f33a0d8a639aa839ca5af95d76cbc7676693
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Mon Nov 10 04:33:05 EST 2025
Tue Nov 04 02:06:26 EST 2025
Thu Oct 02 06:48:22 EDT 2025
Tue Oct 07 07:44:06 EDT 2025
Mon Jul 21 05:57:15 EDT 2025
Sat Nov 29 03:29:38 EST 2025
Tue Nov 18 22:35:35 EST 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-351f5df5f05cb0e00c140848accf3f33a0d8a639aa839ca5af95d76cbc7676693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9263-5035
0000-0002-2797-4257
OpenAccessLink https://doaj.org/article/e86f3f2a50684c45880702f0abadcb09
PMID 38030638
PQID 2895065781
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_e86f3f2a50684c45880702f0abadcb09
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687211
proquest_miscellaneous_2895710709
proquest_journals_2895065781
pubmed_primary_38030638
crossref_primary_10_1038_s41467_023_43715_z
crossref_citationtrail_10_1038_s41467_023_43715_z
springer_journals_10_1038_s41467_023_43715_z
PublicationCentury 2000
PublicationDate 2023-11-29
PublicationDateYYYYMMDD 2023-11-29
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nock (CR43) 2018; 127
Melo (CR33) 2015; 523
CR39
Valderas, Starfield, Sibbald, Salisbury, Roland (CR17) 2009; 7
CR35
CR34
Hochreiter, Schmidhuber (CR37) 1997; 9
CR31
CR30
Pugh (CR54) 2018; 99
Wornow (CR4) 2023; 6
Long, Dagogo-Jack (CR18) 2011; 13
Kopitar, Kokol, Stiglic (CR8) 2020; 10
CR6
CR5
Pan, Yang (CR29) 2010; 22
CR7
Large (CR45) 2017; 48
Yuan (CR26) 2021; 12
CR49
Kessler (CR1) 2020; 11
Anderson (CR46) 2014; 63
Li (CR14) 2020; 10
Patrick (CR48) 2010; 19
Gradus (CR58) 2017; 28
CR42
CR41
CR40
Park, Chawla, O’Reilly (CR32) 2021; 326
Goh (CR3) 2021; 12
Galatzer-Levy, Karstoft, Statnikov, Shalev (CR9) 2014; 59
Fulton (CR52) 2015; 31
Colosia, Palencia, Khan (CR19) 2013; 6
McHugo (CR57) 2017; 32
CR16
CR15
CR13
CR56
CR11
Miotto, Li, Kidd, Dudley (CR38) 2016; 6
CR55
Zhao, Jiang, Qiu (CR2) 2021; 11
Rajkomar (CR25) 2018; 1
Simon (CR44) 2018; 175
CR50
Rongali (CR47) 2020; 22
Rajpurkar, Chen, Banerjee, Topol (CR10) 2022; 28
Seal (CR53) 2017; 98
Walsh, Ribeiro, Franklin (CR36) 2017; 5
Yang (CR12) 2022; 5
CR28
CR27
CR24
CR23
Placido (CR51) 2023; 29
CR22
CR21
Powell (CR20) 2023; 14
AD Colosia (43715_CR19) 2013; 6
43715_CR40
43715_CR41
JM Valderas (43715_CR17) 2009; 7
W Zhao (43715_CR2) 2021; 11
A Rajkomar (43715_CR25) 2018; 1
43715_CR42
43715_CR49
IR Galatzer-Levy (43715_CR9) 2014; 59
S Hochreiter (43715_CR37) 1997; 9
AR Patrick (43715_CR48) 2010; 19
JJ Fulton (43715_CR52) 2015; 31
M Wornow (43715_CR4) 2023; 6
43715_CR50
KH Goh (43715_CR3) 2021; 12
CG Walsh (43715_CR36) 2017; 5
P Rajpurkar (43715_CR10) 2022; 28
L Kopitar (43715_CR8) 2020; 10
W Park (43715_CR32) 2021; 326
RC Kessler (43715_CR1) 2020; 11
43715_CR11
43715_CR55
43715_CR56
GE Simon (43715_CR44) 2018; 175
J Gradus (43715_CR58) 2017; 28
43715_CR15
43715_CR16
43715_CR13
KH Seal (43715_CR53) 2017; 98
AN Long (43715_CR18) 2011; 13
MJ Pugh (43715_CR54) 2018; 99
43715_CR7
43715_CR6
W Yuan (43715_CR26) 2021; 12
43715_CR5
NR Powell (43715_CR20) 2023; 14
43715_CR28
X Yang (43715_CR12) 2022; 5
GJ McHugo (43715_CR57) 2017; 32
43715_CR22
43715_CR23
43715_CR21
D Placido (43715_CR51) 2023; 29
43715_CR27
43715_CR24
43715_CR30
R Miotto (43715_CR38) 2016; 6
Y Li (43715_CR14) 2020; 10
SA Melo (43715_CR33) 2015; 523
SJ Pan (43715_CR29) 2010; 22
43715_CR39
MK Nock (43715_CR43) 2018; 127
S Rongali (43715_CR47) 2020; 22
43715_CR34
43715_CR31
JL Anderson (43715_CR46) 2014; 63
43715_CR35
M Large (43715_CR45) 2017; 48
References_xml – ident: CR22
– volume: 12
  year: 2021
  ident: CR26
  article-title: Temporal bias in case-control design: preventing reliable predictions of the future
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21390-2
– volume: 5
  start-page: 194
  year: 2022
  ident: CR12
  article-title: A large language model for electronic health records
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00742-2
– volume: 10
  year: 2020
  ident: CR14
  article-title: BEHRT: transformer for electronic health records
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62922-y
– ident: CR49
– volume: 523
  start-page: 177
  year: 2015
  end-page: 182
  ident: CR33
  article-title: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature14581
– ident: CR39
– ident: CR16
– volume: 1
  start-page: 18
  year: 2018
  ident: CR25
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: Npj Digit. Med
  doi: 10.1038/s41746-018-0029-1
– volume: 19
  start-page: 1263
  year: 2010
  end-page: 1275
  ident: CR48
  article-title: Identification of hospitalizations for intentional self-harm when E-Codes are incompletely recorded
  publication-title: Pharmacoepidemiol. Drug Saf.
  doi: 10.1002/pds.2037
– volume: 28
  start-page: 1050
  year: 2017
  end-page: 1835
  ident: CR58
  article-title: PTSD and death from suicide
  publication-title: Natl Cent. Posttraumatic Stress Disord.
– ident: CR35
– ident: CR42
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR37
  article-title: Long short-term memory
  publication-title: Neural. Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR21
– volume: 10
  year: 2020
  ident: CR8
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68771-z
– volume: 6
  year: 2016
  ident: CR38
  article-title: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– volume: 22
  start-page: e16374
  year: 2020
  ident: CR47
  article-title: Learning latent space representations to predict patient outcomes: model development and validation
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16374
– ident: CR15
– ident: CR50
– volume: 99
  start-page: S40
  year: 2018
  end-page: S49
  ident: CR54
  article-title: Traumatic brain injury severity, comorbidity, social support, family functioning, and community reintegration among veterans of the Afghanistan and Iraq Wars
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2017.05.021
– volume: 12
  year: 2021
  ident: CR3
  article-title: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20910-4
– volume: 32
  start-page: E65
  year: 2017
  end-page: E74
  ident: CR57
  article-title: The prevalence of traumatic brain injury among people with co-occurring mental health and substance use disorders
  publication-title: J. Head. Trauma Rehabil.
  doi: 10.1097/HTR.0000000000000249
– ident: CR11
– volume: 14
  year: 2023
  ident: CR20
  article-title: Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37209-1
– ident: CR5
– volume: 59
  start-page: 68
  year: 2014
  end-page: 76
  ident: CR9
  article-title: Quantitative forecasting of PTSD from early trauma responses: a machine learning application.
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2014.08.017
– volume: 326
  start-page: 851
  year: 2021
  end-page: 862
  ident: CR32
  article-title: Pancreatic cancer: a review
  publication-title: JAMA
  doi: 10.1001/jama.2021.13027
– volume: 29
  start-page: 1113
  year: 2023
  end-page: 1122
  ident: CR51
  article-title: A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02332-5
– volume: 5
  start-page: 457
  year: 2017
  end-page: 469
  ident: CR36
  article-title: Predicting risk of suicide attempts over time through machine learning.
  publication-title: Clin. Psychol. Sci.
  doi: 10.1177/2167702617691560
– volume: 48
  start-page: 1119
  year: 2017
  end-page: 1127
  ident: CR45
  article-title: Suicide risk assessment among psychiatric inpatients: a systematic review and meta-analysis of high-risk categories
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291717002537
– ident: CR30
– volume: 13
  start-page: 244
  year: 2011
  end-page: 251
  ident: CR18
  article-title: Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/j.1751-7176.2011.00434.x
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: CR29
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 31
  start-page: 98
  year: 2015
  end-page: 107
  ident: CR52
  article-title: The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis
  publication-title: J. Anxiety Disord.
  doi: 10.1016/j.janxdis.2015.02.003
– ident: CR6
– ident: CR56
– ident: CR40
– volume: 63
  start-page: 2304
  year: 2014
  end-page: 2322
  ident: CR46
  article-title: ACC/AHA statement on cost/value methodology in clinical practice guidelines and performance measures: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force
  publication-title: Pract. Guidel. J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.03.016
– ident: CR27
– ident: CR23
– volume: 98
  start-page: 1636
  year: 2017
  end-page: 1645
  ident: CR53
  article-title: Association of traumatic brain injury with chronic pain in Iraq and Afghanistan veterans: effect of comorbid mental health conditions
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2017.03.026
– volume: 127
  start-page: 139
  year: 2018
  end-page: 49
  ident: CR43
  article-title: Risk factors for the transition from suicide ideation to suicide attempt: results from the army study to assess risk and resilience in servicemembers (Army STARRS)
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/abn0000317
– volume: 7
  start-page: 357
  year: 2009
  end-page: 363
  ident: CR17
  article-title: Defining comorbidity: implications for understanding health and health services
  publication-title: Ann. Fam. Med.
  doi: 10.1370/afm.983
– volume: 6
  start-page: 135
  year: 2023
  ident: CR4
  article-title: The shaky foundations of large language models and foundation models for electronic health records
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00879-8
– volume: 175
  start-page: 951
  year: 2018
  end-page: 960
  ident: CR44
  article-title: Predicting suicide attempts and suicide deaths following outpatient visits using electronic health records
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2018.17101167
– ident: CR31
– ident: CR13
– ident: CR34
– ident: CR55
– ident: CR7
– volume: 28
  start-page: 31
  year: 2022
  end-page: 38
  ident: CR10
  article-title: AI in health and medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
– volume: 6
  start-page: 327
  year: 2013
  end-page: 338
  ident: CR19
  article-title: Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review
  publication-title: Diabetes Metab. Syndr. Obes. Targets Ther.
  doi: 10.2147/DMSO.S51325
– volume: 11
  start-page: 390
  year: 2020
  ident: CR1
  article-title: Using administrative data to predict suicide after psychiatric hospitalization in the veterans health administration system
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2020.00390
– ident: CR28
– ident: CR41
– ident: CR24
– volume: 11
  year: 2021
  ident: CR2
  article-title: Deep learning for COVID-19 detection based on CT images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93832-2
– ident: 43715_CR30
– volume: 10
  year: 2020
  ident: 43715_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68771-z
– ident: 43715_CR40
  doi: 10.1093/jamiaopen/ooab011
– ident: 43715_CR31
  doi: 10.1038/s41597-022-01899-x
– volume: 19
  start-page: 1263
  year: 2010
  ident: 43715_CR48
  publication-title: Pharmacoepidemiol. Drug Saf.
  doi: 10.1002/pds.2037
– ident: 43715_CR24
– ident: 43715_CR34
  doi: 10.1037/tra0000962
– volume: 28
  start-page: 1050
  year: 2017
  ident: 43715_CR58
  publication-title: Natl Cent. Posttraumatic Stress Disord.
– volume: 22
  start-page: 1345
  year: 2010
  ident: 43715_CR29
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 14
  year: 2023
  ident: 43715_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37209-1
– ident: 43715_CR49
  doi: 10.1038/s41398-020-0684-2
– ident: 43715_CR6
  doi: 10.1609/aaai.v32i1.11501
– volume: 6
  year: 2016
  ident: 43715_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep26094
– volume: 32
  start-page: E65
  year: 2017
  ident: 43715_CR57
  publication-title: J. Head. Trauma Rehabil.
  doi: 10.1097/HTR.0000000000000249
– volume: 99
  start-page: S40
  year: 2018
  ident: 43715_CR54
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2017.05.021
– ident: 43715_CR7
  doi: 10.24963/ijcai.2019/607
– volume: 11
  year: 2021
  ident: 43715_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93832-2
– ident: 43715_CR27
– ident: 43715_CR28
  doi: 10.1001/jamapsychiatry.2021.0089
– volume: 22
  start-page: e16374
  year: 2020
  ident: 43715_CR47
  publication-title: J. Med. Internet Res.
  doi: 10.2196/16374
– volume: 28
  start-page: 31
  year: 2022
  ident: 43715_CR10
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
– volume: 59
  start-page: 68
  year: 2014
  ident: 43715_CR9
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2014.08.017
– volume: 48
  start-page: 1119
  year: 2017
  ident: 43715_CR45
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291717002537
– ident: 43715_CR35
  doi: 10.1371/journal.pone.0118432
– volume: 98
  start-page: 1636
  year: 2017
  ident: 43715_CR53
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2017.03.026
– volume: 1
  start-page: 18
  year: 2018
  ident: 43715_CR25
  publication-title: Npj Digit. Med
  doi: 10.1038/s41746-018-0029-1
– volume: 31
  start-page: 98
  year: 2015
  ident: 43715_CR52
  publication-title: J. Anxiety Disord.
  doi: 10.1016/j.janxdis.2015.02.003
– volume: 10
  year: 2020
  ident: 43715_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62922-y
– volume: 326
  start-page: 851
  year: 2021
  ident: 43715_CR32
  publication-title: JAMA
  doi: 10.1001/jama.2021.13027
– ident: 43715_CR23
  doi: 10.18653/v1/2020.acl-main.703
– volume: 523
  start-page: 177
  year: 2015
  ident: 43715_CR33
  publication-title: Nature
  doi: 10.1038/nature14581
– volume: 13
  start-page: 244
  year: 2011
  ident: 43715_CR18
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/j.1751-7176.2011.00434.x
– volume: 63
  start-page: 2304
  year: 2014
  ident: 43715_CR46
  publication-title: Pract. Guidel. J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.03.016
– ident: 43715_CR22
– volume: 29
  start-page: 1113
  year: 2023
  ident: 43715_CR51
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02332-5
– volume: 6
  start-page: 135
  year: 2023
  ident: 43715_CR4
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-023-00879-8
– volume: 175
  start-page: 951
  year: 2018
  ident: 43715_CR44
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2018.17101167
– ident: 43715_CR16
– ident: 43715_CR55
  doi: 10.1080/02699052.2018.1542508
– ident: 43715_CR39
– volume: 6
  start-page: 327
  year: 2013
  ident: 43715_CR19
  publication-title: Diabetes Metab. Syndr. Obes. Targets Ther.
  doi: 10.2147/DMSO.S51325
– ident: 43715_CR41
  doi: 10.1111/j.1600-0447.2008.01162.x
– ident: 43715_CR42
  doi: 10.1097/01.nmd.0000168238.13252.b3
– volume: 12
  year: 2021
  ident: 43715_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21390-2
– ident: 43715_CR15
  doi: 10.1109/JBHI.2021.3063721
– volume: 5
  start-page: 194
  year: 2022
  ident: 43715_CR12
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-022-00742-2
– volume: 12
  year: 2021
  ident: 43715_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20910-4
– ident: 43715_CR50
  doi: 10.1093/jamia/ocac144
– ident: 43715_CR56
– volume: 7
  start-page: 357
  year: 2009
  ident: 43715_CR17
  publication-title: Ann. Fam. Med.
  doi: 10.1370/afm.983
– ident: 43715_CR21
– ident: 43715_CR13
  doi: 10.1038/s41746-021-00455-y
– volume: 5
  start-page: 457
  year: 2017
  ident: 43715_CR36
  publication-title: Clin. Psychol. Sci.
  doi: 10.1177/2167702617691560
– volume: 11
  start-page: 390
  year: 2020
  ident: 43715_CR1
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2020.00390
– volume: 9
  start-page: 1735
  year: 1997
  ident: 43715_CR37
  publication-title: Neural. Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 43715_CR5
– volume: 127
  start-page: 139
  year: 2018
  ident: 43715_CR43
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/abn0000317
– ident: 43715_CR11
  doi: 10.1109/ACCESS.2018.2875677
SSID ssj0000391844
Score 2.6686625
Snippet Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or...
Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7857
SubjectTerms 639/705/117
692/308/1426
692/700/459
Deep learning
Disease
Electric Power Supplies
Electronic Health Records
Electronic medical records
Encoders-Decoders
Generative artificial intelligence
Humanities and Social Sciences
Humans
Machine learning
Mental disorders
Mental Recall
multidisciplinary
Pancreatic cancer
Pancreatic Neoplasms
Performance prediction
Post traumatic stress disorder
Predictions
Psychological stress
Science
Science (multidisciplinary)
Self destructive behavior
Self-injury
Stress Disorders, Post-Traumatic
System effectiveness
Transformers
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdUkjhOHCwLUqqcKoSLtzXL82FaqkiXJItGfwK9mxnF2tTx64bTKxonGmc8zY4_9DSGvfa6NtmD9IJRvWCGanNUuz1ijvdDWaJdpGYpNVCcncrGoP8cFtyFuq5xtYjDUtjO4Rn4AEwMB7rKS2fvVN4ZVozC7GktoXCc3sGw24rxaVJs1FmQ_l0URz8qkXB4MRbAM4KhYwatMsMsdfxRo-_8Wa_65ZfK3vGlwR0d3_7cj98idGIjSDxNy7pNrrn1Abk2lKX88JD9P54j28PjLOzrOV65n6PgsRQJMC1fWhV-6DPzVaDxpqK5Dxw7anCGo6KrHdBBCgHaexpwQ7dYjSOwGinvvl3RbkIdOhzPptIA0PCJfjw5PPx2zWLeBGVFkIx4O8MJ64VNhmtSlqYFZnCykNsZzz7lOrdQQGWkN0ZnRQvta2Ko0janKqixr_pjstV3rnhJaeF16CXGI4xAoIZNP2vjaeCuQRt-UCclm7SkTSc2xtsaFCsl1LtWkcQUaV0Hj6jIhbzbPrCZKjytbf0RQbFoiHXf4o-uXKo5u5WQJPcs1KFYWBg__giXNfaobwHuT1gnZn7Ggoo0Y1BYICXm1uQ2jG1M2unXdemoDMWCFr3gyIXAjCZc43-MyIXIHmzui7t5pz88Cg3gGcuLUPyFvZxhv5fr3t3h2dTeek9s5jqwsY3m9T_bGfu1ekJvm-3g-9C_D0PwFhQREwg
  priority: 102
  providerName: ProQuest
Title TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records
URI https://link.springer.com/article/10.1038/s41467-023-43715-z
https://www.ncbi.nlm.nih.gov/pubmed/38030638
https://www.proquest.com/docview/2895065781
https://www.proquest.com/docview/2895710709
https://pubmed.ncbi.nlm.nih.gov/PMC10687211
https://doaj.org/article/e86f3f2a50684c45880702f0abadcb09
Volume 14
WOSCitedRecordID wos001111154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdggMQL4pvCOAWJN6jWNk2b8sbQTeOBUzUN6eClStNkm4Ta6dpDYn8CfzV20t52fL7w0lMvviiyHcc-Oz8DvLSJ0qpB64eufB2mok7CwiRxWCsrVKOViZV0zSbyxUIul0V5pdUX1YR5eGDPuD0jM8txRhFlMtV0rxKVNLGRqnGq2l_di_LiSjDlbDAvMHRJx1syEZd7fepsAh5RYcrzWIQXWyeRA-z_nZf5a7HkTxlTdxAd3IU7owfJ3vqV34Nrpr0Pt3xPyW8P4Pvx5IrOD4_esGF6M6uQTqyGEXJlg2-NcZ_sxAFPk9Vjri0OGzqkOSVtYOcryuOQ7Fhn2ZjMYd16QD01PaOi-RN22UmH-VuVzP_z0z-Ejwfz43eH4dhwIdQijQeq6reiscJGAllrokhj-CVTqbRGGXCuokYqdGmUQrdKK6FsIZo807XOszzLCv4IdtquNU-ApVZlVqIDYTh6OATBE9W20LYRhH-vswDiifmVHtHIqSnGl8plxbmsvMAqFFjlBFZdBPBq85tzj8XxV-p9kumGknC03ReoXdWoXdW_tCuA3UkjqnFz9xXGqEiPpi4O4MVmGLcl5VpUa7q1p0HnLacpHnsF2qyESwrUuAxAbqnW1lK3R9qzUwf9jQG8pJg9gNeTFl6u68-8ePo_ePEMbie0feI4TIpd2BlWa_Mcbuqvw1m_msH1fJm7p5zBjf35ojyauT05o3LaEp-l-Iwj5fsP5acfMaM9yA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOhC8cL8EBhgJniBabk4cJIS4bGq1rapQkban4Dh2Nwk1pUlB20_gx_AbOcdJWpXL3vbAU5TEiRznOxf7-JwP4JkJpJIFaj905XM34nngpjrw3VwaLgsltS-FJZtIhkNxeJiONuBnlwtD2yo7nWgVdVEqWiPfxokBR3OZCP_N7KtLrFEUXe0oNBpY7OnT7zhlq14PPuD_fR4Euzvj9323ZRVwFY_8mrauG14Ybjyuck97nsI5hoiEVMqEJgylVwiJdltK9B2U5NKkvEhilaskTuKYii-hyt-MEOxeDzZHg4PR0XJVh-qtiyhqs3O8UGxXkdVFaBrdKEx87p6tWUBLFPA37_bPTZq_RWqtAdy9_r8N3Q241rra7G0jGzdhQ09vweWGfPP0NvwYdz77Tv_jK1Z3Z3rukmkvGJX4LPCs0PbIJrZCN5kHZvmDWF1im2MSGzabU8CLQM5Kw9qoFysXNY6QrhhlF0zYinKINemnrFkiq-7ApwsZiLvQm5ZTfR9YZGRsBHpaOkRXkGoVeblJlSk4EQWo2AG_Q0um2rLtxB7yJbPbB0KRNQjLEGGZRVh25sCL5TOzpmjJua3fEQiXLanguL1QzidZq78yLWL8skAikESkKL0ZbUVgPJmjROde6sBWh72s1YJVtgKeA0-Xt1F_UVBKTnW5aNqgl5vQK-41iF_2JBQ0ow2FA2JNFta6un5nenJsa6T72E9a3HDgZSc2q379eywenP8ZT-BKf3ywn-0PhnsP4WpAUu37bpBuQa-eL_QjuKS-1SfV_HGrGBh8vmiB-gX5ZKQJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvB-GAosEJ7Dit9eVKkRpolZFUVQVqbdlvd5NK6E4xA6o_Qn8JH4dM2s7UXj01gOnyPEmWq-_ee3szAfwygRSyQK1H7ryuRvFeeBmOvDdXJpYFkpqX3JLNpGORvzkJBtvwM-uFoaOVXY60SrqolS0R97HwCBGc5lyv2_aYxHjveG72VeXGKQo09rRaTQQOdTn3zF8q3YO9vBdvw6C4eD4w77bMgy4Ko78mo6xm7gwsfFilXva8xTGGzziUikTmjCUXsEl2nAp0Y9QMpYmi4s0UblKkzRJqBETqv_NNMSgpwebu4PR-Gi5w0O913kUtZU6Xsj7VWT1EppJNwpTP3Yv1qyhJQ34m6f754HN37K21hgOb__Py3gHbrUuOHvfyMxd2NDTe3C9IeU8vw8_jjtffrB_tM3q7krPXTL5BaPWnwVeFdp-sont3E1mg1leIVaXOOaUxInN5pQII_Cz0rA2G8bKRY2rpStGVQcTtqIiYk1ZKmu2zqoH8OlKFuIh9KblVD8GFhmZGI4emA7RRaQeRl5uMmWKmAgEVOKA3yFHqLadO7GKfBH2WEHIRYM2gWgTFm3iwoE3y9_MmmYml47eJUAuR1IjcvtFOZ-IVq8JzRN8skAiqHikqOwZbUhgPJmjpOde5sBWh0PRasdKrEDowMvlbdRrlKySU10umjHo_ab0F48a9C9nEnKKdEPuAF-Ti7Wprt-Znp3a3uk-zpM2PRx424nQal7_Xosnlz_GC7iBUiQ-HowOn8LNgATc990g24JePV_oZ3BNfavPqvnzVkcw-HzV8vQLuRusow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TransformEHR%3A+transformer-based+encoder-decoder+generative+model+to+enhance+prediction+of+disease+outcomes+using+electronic+health+records&rft.jtitle=Nature+communications&rft.au=Yang%2C+Zhichao&rft.au=Mitra%2C+Avijit&rft.au=Liu%2C+Weisong&rft.au=Berlowitz%2C+Dan&rft.date=2023-11-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-43715-z&rft.externalDocID=10_1038_s41467_023_43715_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon