TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records
Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through f...
Uloženo v:
| Vydáno v: | Nature communications Ročník 14; číslo 1; s. 7857 - 10 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.11.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% (
p
< 0.001) for pancreatic cancer onset and by 24% (
p
= 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.
Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records. |
|---|---|
| AbstractList | Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% ( p < 0.001) for pancreatic cancer onset and by 24% ( p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective-predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR's encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision-recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data.Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records. Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% (p < 0.001) for pancreatic cancer onset and by 24% (p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or outcomes. Pretraining on a large dataset can help such models map the input space better and boost their performance on relevant tasks through finetuning with limited data. In this study, we present TransformEHR, a generative encoder-decoder model with transformer that is pretrained using a new pretraining objective—predicting all diseases and outcomes of a patient at a future visit from previous visits. TransformEHR’s encoder-decoder framework, paired with the novel pretraining objective, helps it achieve the new state-of-the-art performance on multiple clinical prediction tasks. Comparing with the previous model, TransformEHR improves area under the precision–recall curve by 2% ( p < 0.001) for pancreatic cancer onset and by 24% ( p = 0.007) for intentional self-harm in patients with post-traumatic stress disorder. The high performance in predicting intentional self-harm shows the potential of TransformEHR in building effective clinical intervention systems. TransformEHR is also generalizable and can be easily finetuned for clinical prediction tasks with limited data. Using AI to predict disease can improve interventions slow down or prevent disease. Here, the authors show that generative AI models built on the framework of Transformer, the model that also empowers ChatGPT, can achieve state-of-the-art performance on disease predictions based on longitudinal electronic records. |
| ArticleNumber | 7857 |
| Author | Mitra, Avijit Berlowitz, Dan Yang, Zhichao Liu, Weisong Yu, Hong |
| Author_xml | – sequence: 1 givenname: Zhichao orcidid: 0000-0002-2797-4257 surname: Yang fullname: Yang, Zhichao organization: College of Information and Computer Science, University of Massachusetts Amherst – sequence: 2 givenname: Avijit surname: Mitra fullname: Mitra, Avijit organization: College of Information and Computer Science, University of Massachusetts Amherst – sequence: 3 givenname: Weisong surname: Liu fullname: Liu, Weisong organization: School of Computer & Information Sciences, University of Massachusetts Lowell, Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System – sequence: 4 givenname: Dan surname: Berlowitz fullname: Berlowitz, Dan organization: Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System, Department of Public Health, University of Massachusetts Lowell – sequence: 5 givenname: Hong orcidid: 0000-0001-9263-5035 surname: Yu fullname: Yu, Hong email: Hong_Yu@uml.edu organization: College of Information and Computer Science, University of Massachusetts Amherst, School of Computer & Information Sciences, University of Massachusetts Lowell, Center for Healthcare Organization and Implementation Research, VA Bedford Health Care System, Center for Biomedical and Health Research in Data Sciences, University of Massachusetts Lowell |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38030638$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kkFvFCEUxyemxtbaL-DBkHjxMgrDMMN4MaaptkkTE1PP5C08dtnMwApME_sR_NSyu21teygXePD__94D3uvqwAePVfWW0Y-Mcvkptazt-po2vG55z0R986I6amjLatY3_ODB-rA6SWlNy-ADk237qjrkknLacXlU_b2K4JMNcTo7__mZ5LsIY72AhIag18GUyOBuJkv0GCG7ayRT2RhJDkWzAq-RbCIap7MLngRLjEtYECTMWYcJE5mT80uCI-ocg3earBDGvCKxoKNJb6qXFsaEJ7fzcfXr29nV6Xl9-eP7xenXy1qLluWaC2aFscJSoRcUKdWspbKVoLXllnOgRkLHBwDJBw0C7CBM3-mF7ru-6wZ-XF3suSbAWm2imyD-UQGc2m2EuFQQs9MjKpRdYTYgaCdb3QopaU8bS2EBpiTfsr7sWZt5MaHR6MsLjo-gj0-8W6lluFasEPuGsUL4cEuI4feMKavJJY3jCB7DnFQjB9Gzknab7P0T6TrM0Ze32qloJ3q5Bb57WNJ9LXd_XgTNXqBjSCmivZcwqra9pfa9pUpvqV1vqZtikk9M2mXYfnW5lhuft_K9NZU8fonxf9nPuP4BcAPmyA |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_103620 crossref_primary_10_3390_s25165179 crossref_primary_10_1016_j_inffus_2025_103546 crossref_primary_10_1111_jnu_13009 crossref_primary_10_1016_j_jbi_2025_104855 crossref_primary_10_1016_j_jbi_2025_104851 crossref_primary_10_1007_s10115_025_02514_2 crossref_primary_10_3389_frai_2024_1397298 crossref_primary_10_3390_computers14040148 crossref_primary_10_1016_j_tre_2025_104136 crossref_primary_10_1038_s41467_024_55035_x crossref_primary_10_1007_s13755_024_00332_4 crossref_primary_10_1016_j_knosys_2025_114102 crossref_primary_10_1038_s44387_025_00011_z crossref_primary_10_3390_app15116054 crossref_primary_10_1038_s41586_025_09529_3 crossref_primary_10_1109_ACCESS_2025_3603596 crossref_primary_10_2196_67748 crossref_primary_10_1016_j_neucom_2025_130999 crossref_primary_10_1038_s44172_024_00309_x crossref_primary_10_3389_frai_2025_1521886 crossref_primary_10_3390_epidemiologia5040047 crossref_primary_10_1038_s41746_025_01692_1 crossref_primary_10_1016_j_eswa_2025_126876 crossref_primary_10_1016_j_jbi_2024_104768 crossref_primary_10_3390_jcm14092943 crossref_primary_10_1016_j_cell_2025_05_018 crossref_primary_10_3390_app14219697 crossref_primary_10_2196_56700 crossref_primary_10_1002_hcs2_114 crossref_primary_10_1186_s12911_025_02994_w crossref_primary_10_1371_journal_pone_0329963 crossref_primary_10_1016_j_engappai_2024_109649 crossref_primary_10_3390_info16010054 crossref_primary_10_1016_j_ijmedinf_2024_105567 crossref_primary_10_1038_s41598_025_90216_8 crossref_primary_10_3390_electronics13081541 crossref_primary_10_14309_ajg_0000000000002870 crossref_primary_10_1109_ACCESS_2025_3558878 crossref_primary_10_1007_s40747_025_01794_z crossref_primary_10_2196_49724 crossref_primary_10_4274_dir_2024_242631 crossref_primary_10_1038_s41746_024_01166_w crossref_primary_10_2196_49704 |
| Cites_doi | 10.1038/s41467-021-21390-2 10.1038/s41746-022-00742-2 10.1038/s41598-020-62922-y 10.1038/nature14581 10.1038/s41746-018-0029-1 10.1002/pds.2037 10.1162/neco.1997.9.8.1735 10.1038/s41598-020-68771-z 10.1038/srep26094 10.2196/16374 10.1016/j.apmr.2017.05.021 10.1038/s41467-021-20910-4 10.1097/HTR.0000000000000249 10.1038/s41467-023-37209-1 10.1016/j.jpsychires.2014.08.017 10.1001/jama.2021.13027 10.1038/s41591-023-02332-5 10.1177/2167702617691560 10.1017/S0033291717002537 10.1111/j.1751-7176.2011.00434.x 10.1109/TKDE.2009.191 10.1016/j.janxdis.2015.02.003 10.1016/j.jacc.2014.03.016 10.1016/j.apmr.2017.03.026 10.1037/abn0000317 10.1370/afm.983 10.1038/s41746-023-00879-8 10.1176/appi.ajp.2018.17101167 10.1038/s41591-021-01614-0 10.2147/DMSO.S51325 10.3389/fpsyt.2020.00390 10.1038/s41598-021-93832-2 10.1093/jamiaopen/ooab011 10.1038/s41597-022-01899-x 10.1037/tra0000962 10.1038/s41398-020-0684-2 10.1609/aaai.v32i1.11501 10.24963/ijcai.2019/607 10.1001/jamapsychiatry.2021.0089 10.1371/journal.pone.0118432 10.18653/v1/2020.acl-main.703 10.1080/02699052.2018.1542508 10.1111/j.1600-0447.2008.01162.x 10.1097/01.nmd.0000168238.13252.b3 10.1109/JBHI.2021.3063721 10.1093/jamia/ocac144 10.1038/s41746-021-00455-y 10.1109/ACCESS.2018.2875677 |
| ContentType | Journal Article |
| Copyright | This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023 – notice: 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-43715-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_e86f3f2a50684c45880702f0abadcb09 PMC10687211 38030638 10_1038_s41467_023_43715_z |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH125027 funderid: https://doi.org/10.13039/100000025 – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) grantid: R01AG080670 funderid: https://doi.org/10.13039/100000049 – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse (NIDA) grantid: R01DA056470 funderid: https://doi.org/10.13039/100000026 – fundername: U.S. Department of Veterans Affairs (Department of Veterans Affairs) grantid: I01HX003711 funderid: https://doi.org/10.13039/100000738 – fundername: NIDA NIH HHS grantid: R01 DA056470 – fundername: HSRD VA grantid: I01 HX003711 – fundername: NIMH NIH HHS grantid: R01 MH125027 – fundername: NIA NIH HHS grantid: R01 AG080670 – fundername: ; grantid: I01HX003711 – fundername: ; grantid: R01DA056470 – fundername: ; grantid: R01AG080670 – fundername: ; grantid: R01MH125027 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-351f5df5f05cb0e00c140848accf3f33a0d8a639aa839ca5af95d76cbc7676693 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001111154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 04:33:05 EST 2025 Tue Nov 04 02:06:26 EST 2025 Thu Oct 02 06:48:22 EDT 2025 Tue Oct 07 07:44:06 EDT 2025 Mon Jul 21 05:57:15 EDT 2025 Sat Nov 29 03:29:38 EST 2025 Tue Nov 18 22:35:35 EST 2025 Fri Feb 21 02:39:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-351f5df5f05cb0e00c140848accf3f33a0d8a639aa839ca5af95d76cbc7676693 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9263-5035 0000-0002-2797-4257 |
| OpenAccessLink | https://doaj.org/article/e86f3f2a50684c45880702f0abadcb09 |
| PMID | 38030638 |
| PQID | 2895065781 |
| PQPubID | 546298 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e86f3f2a50684c45880702f0abadcb09 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10687211 proquest_miscellaneous_2895710709 proquest_journals_2895065781 pubmed_primary_38030638 crossref_primary_10_1038_s41467_023_43715_z crossref_citationtrail_10_1038_s41467_023_43715_z springer_journals_10_1038_s41467_023_43715_z |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-29 |
| PublicationDateYYYYMMDD | 2023-11-29 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Nock (CR43) 2018; 127 Melo (CR33) 2015; 523 CR39 Valderas, Starfield, Sibbald, Salisbury, Roland (CR17) 2009; 7 CR35 CR34 Hochreiter, Schmidhuber (CR37) 1997; 9 CR31 CR30 Pugh (CR54) 2018; 99 Wornow (CR4) 2023; 6 Long, Dagogo-Jack (CR18) 2011; 13 Kopitar, Kokol, Stiglic (CR8) 2020; 10 CR6 CR5 Pan, Yang (CR29) 2010; 22 CR7 Large (CR45) 2017; 48 Yuan (CR26) 2021; 12 CR49 Kessler (CR1) 2020; 11 Anderson (CR46) 2014; 63 Li (CR14) 2020; 10 Patrick (CR48) 2010; 19 Gradus (CR58) 2017; 28 CR42 CR41 CR40 Park, Chawla, O’Reilly (CR32) 2021; 326 Goh (CR3) 2021; 12 Galatzer-Levy, Karstoft, Statnikov, Shalev (CR9) 2014; 59 Fulton (CR52) 2015; 31 Colosia, Palencia, Khan (CR19) 2013; 6 McHugo (CR57) 2017; 32 CR16 CR15 CR13 CR56 CR11 Miotto, Li, Kidd, Dudley (CR38) 2016; 6 CR55 Zhao, Jiang, Qiu (CR2) 2021; 11 Rajkomar (CR25) 2018; 1 Simon (CR44) 2018; 175 CR50 Rongali (CR47) 2020; 22 Rajpurkar, Chen, Banerjee, Topol (CR10) 2022; 28 Seal (CR53) 2017; 98 Walsh, Ribeiro, Franklin (CR36) 2017; 5 Yang (CR12) 2022; 5 CR28 CR27 CR24 CR23 Placido (CR51) 2023; 29 CR22 CR21 Powell (CR20) 2023; 14 AD Colosia (43715_CR19) 2013; 6 43715_CR40 43715_CR41 JM Valderas (43715_CR17) 2009; 7 W Zhao (43715_CR2) 2021; 11 A Rajkomar (43715_CR25) 2018; 1 43715_CR42 43715_CR49 IR Galatzer-Levy (43715_CR9) 2014; 59 S Hochreiter (43715_CR37) 1997; 9 AR Patrick (43715_CR48) 2010; 19 JJ Fulton (43715_CR52) 2015; 31 M Wornow (43715_CR4) 2023; 6 43715_CR50 KH Goh (43715_CR3) 2021; 12 CG Walsh (43715_CR36) 2017; 5 P Rajpurkar (43715_CR10) 2022; 28 L Kopitar (43715_CR8) 2020; 10 W Park (43715_CR32) 2021; 326 RC Kessler (43715_CR1) 2020; 11 43715_CR11 43715_CR55 43715_CR56 GE Simon (43715_CR44) 2018; 175 J Gradus (43715_CR58) 2017; 28 43715_CR15 43715_CR16 43715_CR13 KH Seal (43715_CR53) 2017; 98 AN Long (43715_CR18) 2011; 13 MJ Pugh (43715_CR54) 2018; 99 43715_CR7 43715_CR6 W Yuan (43715_CR26) 2021; 12 43715_CR5 NR Powell (43715_CR20) 2023; 14 43715_CR28 X Yang (43715_CR12) 2022; 5 GJ McHugo (43715_CR57) 2017; 32 43715_CR22 43715_CR23 43715_CR21 D Placido (43715_CR51) 2023; 29 43715_CR27 43715_CR24 43715_CR30 R Miotto (43715_CR38) 2016; 6 Y Li (43715_CR14) 2020; 10 SA Melo (43715_CR33) 2015; 523 SJ Pan (43715_CR29) 2010; 22 43715_CR39 MK Nock (43715_CR43) 2018; 127 S Rongali (43715_CR47) 2020; 22 43715_CR34 43715_CR31 JL Anderson (43715_CR46) 2014; 63 43715_CR35 M Large (43715_CR45) 2017; 48 |
| References_xml | – ident: CR22 – volume: 12 year: 2021 ident: CR26 article-title: Temporal bias in case-control design: preventing reliable predictions of the future publication-title: Nat. Commun. doi: 10.1038/s41467-021-21390-2 – volume: 5 start-page: 194 year: 2022 ident: CR12 article-title: A large language model for electronic health records publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00742-2 – volume: 10 year: 2020 ident: CR14 article-title: BEHRT: transformer for electronic health records publication-title: Sci. Rep. doi: 10.1038/s41598-020-62922-y – ident: CR49 – volume: 523 start-page: 177 year: 2015 end-page: 182 ident: CR33 article-title: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer publication-title: Nature doi: 10.1038/nature14581 – ident: CR39 – ident: CR16 – volume: 1 start-page: 18 year: 2018 ident: CR25 article-title: Scalable and accurate deep learning with electronic health records publication-title: Npj Digit. Med doi: 10.1038/s41746-018-0029-1 – volume: 19 start-page: 1263 year: 2010 end-page: 1275 ident: CR48 article-title: Identification of hospitalizations for intentional self-harm when E-Codes are incompletely recorded publication-title: Pharmacoepidemiol. Drug Saf. doi: 10.1002/pds.2037 – volume: 28 start-page: 1050 year: 2017 end-page: 1835 ident: CR58 article-title: PTSD and death from suicide publication-title: Natl Cent. Posttraumatic Stress Disord. – ident: CR35 – ident: CR42 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR37 article-title: Long short-term memory publication-title: Neural. Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: CR21 – volume: 10 year: 2020 ident: CR8 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. doi: 10.1038/s41598-020-68771-z – volume: 6 year: 2016 ident: CR38 article-title: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records publication-title: Sci. Rep. doi: 10.1038/srep26094 – volume: 22 start-page: e16374 year: 2020 ident: CR47 article-title: Learning latent space representations to predict patient outcomes: model development and validation publication-title: J. Med. Internet Res. doi: 10.2196/16374 – ident: CR15 – ident: CR50 – volume: 99 start-page: S40 year: 2018 end-page: S49 ident: CR54 article-title: Traumatic brain injury severity, comorbidity, social support, family functioning, and community reintegration among veterans of the Afghanistan and Iraq Wars publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2017.05.021 – volume: 12 year: 2021 ident: CR3 article-title: Artificial intelligence in sepsis early prediction and diagnosis using unstructured data in healthcare publication-title: Nat. Commun. doi: 10.1038/s41467-021-20910-4 – volume: 32 start-page: E65 year: 2017 end-page: E74 ident: CR57 article-title: The prevalence of traumatic brain injury among people with co-occurring mental health and substance use disorders publication-title: J. Head. Trauma Rehabil. doi: 10.1097/HTR.0000000000000249 – ident: CR11 – volume: 14 year: 2023 ident: CR20 article-title: Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease publication-title: Nat. Commun. doi: 10.1038/s41467-023-37209-1 – ident: CR5 – volume: 59 start-page: 68 year: 2014 end-page: 76 ident: CR9 article-title: Quantitative forecasting of PTSD from early trauma responses: a machine learning application. publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2014.08.017 – volume: 326 start-page: 851 year: 2021 end-page: 862 ident: CR32 article-title: Pancreatic cancer: a review publication-title: JAMA doi: 10.1001/jama.2021.13027 – volume: 29 start-page: 1113 year: 2023 end-page: 1122 ident: CR51 article-title: A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories publication-title: Nat. Med. doi: 10.1038/s41591-023-02332-5 – volume: 5 start-page: 457 year: 2017 end-page: 469 ident: CR36 article-title: Predicting risk of suicide attempts over time through machine learning. publication-title: Clin. Psychol. Sci. doi: 10.1177/2167702617691560 – volume: 48 start-page: 1119 year: 2017 end-page: 1127 ident: CR45 article-title: Suicide risk assessment among psychiatric inpatients: a systematic review and meta-analysis of high-risk categories publication-title: Psychol. Med. doi: 10.1017/S0033291717002537 – ident: CR30 – volume: 13 start-page: 244 year: 2011 end-page: 251 ident: CR18 article-title: Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection publication-title: J. Clin. Hypertens. doi: 10.1111/j.1751-7176.2011.00434.x – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: CR29 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 31 start-page: 98 year: 2015 end-page: 107 ident: CR52 article-title: The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis publication-title: J. Anxiety Disord. doi: 10.1016/j.janxdis.2015.02.003 – ident: CR6 – ident: CR56 – ident: CR40 – volume: 63 start-page: 2304 year: 2014 end-page: 2322 ident: CR46 article-title: ACC/AHA statement on cost/value methodology in clinical practice guidelines and performance measures: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and Task Force publication-title: Pract. Guidel. J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.03.016 – ident: CR27 – ident: CR23 – volume: 98 start-page: 1636 year: 2017 end-page: 1645 ident: CR53 article-title: Association of traumatic brain injury with chronic pain in Iraq and Afghanistan veterans: effect of comorbid mental health conditions publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2017.03.026 – volume: 127 start-page: 139 year: 2018 end-page: 49 ident: CR43 article-title: Risk factors for the transition from suicide ideation to suicide attempt: results from the army study to assess risk and resilience in servicemembers (Army STARRS) publication-title: J. Abnorm. Psychol. doi: 10.1037/abn0000317 – volume: 7 start-page: 357 year: 2009 end-page: 363 ident: CR17 article-title: Defining comorbidity: implications for understanding health and health services publication-title: Ann. Fam. Med. doi: 10.1370/afm.983 – volume: 6 start-page: 135 year: 2023 ident: CR4 article-title: The shaky foundations of large language models and foundation models for electronic health records publication-title: NPJ Digit. Med. doi: 10.1038/s41746-023-00879-8 – volume: 175 start-page: 951 year: 2018 end-page: 960 ident: CR44 article-title: Predicting suicide attempts and suicide deaths following outpatient visits using electronic health records publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2018.17101167 – ident: CR31 – ident: CR13 – ident: CR34 – ident: CR55 – ident: CR7 – volume: 28 start-page: 31 year: 2022 end-page: 38 ident: CR10 article-title: AI in health and medicine publication-title: Nat. Med. doi: 10.1038/s41591-021-01614-0 – volume: 6 start-page: 327 year: 2013 end-page: 338 ident: CR19 article-title: Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review publication-title: Diabetes Metab. Syndr. Obes. Targets Ther. doi: 10.2147/DMSO.S51325 – volume: 11 start-page: 390 year: 2020 ident: CR1 article-title: Using administrative data to predict suicide after psychiatric hospitalization in the veterans health administration system publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2020.00390 – ident: CR28 – ident: CR41 – ident: CR24 – volume: 11 year: 2021 ident: CR2 article-title: Deep learning for COVID-19 detection based on CT images publication-title: Sci. Rep. doi: 10.1038/s41598-021-93832-2 – ident: 43715_CR30 – volume: 10 year: 2020 ident: 43715_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-020-68771-z – ident: 43715_CR40 doi: 10.1093/jamiaopen/ooab011 – ident: 43715_CR31 doi: 10.1038/s41597-022-01899-x – volume: 19 start-page: 1263 year: 2010 ident: 43715_CR48 publication-title: Pharmacoepidemiol. Drug Saf. doi: 10.1002/pds.2037 – ident: 43715_CR24 – ident: 43715_CR34 doi: 10.1037/tra0000962 – volume: 28 start-page: 1050 year: 2017 ident: 43715_CR58 publication-title: Natl Cent. Posttraumatic Stress Disord. – volume: 22 start-page: 1345 year: 2010 ident: 43715_CR29 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 14 year: 2023 ident: 43715_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37209-1 – ident: 43715_CR49 doi: 10.1038/s41398-020-0684-2 – ident: 43715_CR6 doi: 10.1609/aaai.v32i1.11501 – volume: 6 year: 2016 ident: 43715_CR38 publication-title: Sci. Rep. doi: 10.1038/srep26094 – volume: 32 start-page: E65 year: 2017 ident: 43715_CR57 publication-title: J. Head. Trauma Rehabil. doi: 10.1097/HTR.0000000000000249 – volume: 99 start-page: S40 year: 2018 ident: 43715_CR54 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2017.05.021 – ident: 43715_CR7 doi: 10.24963/ijcai.2019/607 – volume: 11 year: 2021 ident: 43715_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93832-2 – ident: 43715_CR27 – ident: 43715_CR28 doi: 10.1001/jamapsychiatry.2021.0089 – volume: 22 start-page: e16374 year: 2020 ident: 43715_CR47 publication-title: J. Med. Internet Res. doi: 10.2196/16374 – volume: 28 start-page: 31 year: 2022 ident: 43715_CR10 publication-title: Nat. Med. doi: 10.1038/s41591-021-01614-0 – volume: 59 start-page: 68 year: 2014 ident: 43715_CR9 publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2014.08.017 – volume: 48 start-page: 1119 year: 2017 ident: 43715_CR45 publication-title: Psychol. Med. doi: 10.1017/S0033291717002537 – ident: 43715_CR35 doi: 10.1371/journal.pone.0118432 – volume: 98 start-page: 1636 year: 2017 ident: 43715_CR53 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2017.03.026 – volume: 1 start-page: 18 year: 2018 ident: 43715_CR25 publication-title: Npj Digit. Med doi: 10.1038/s41746-018-0029-1 – volume: 31 start-page: 98 year: 2015 ident: 43715_CR52 publication-title: J. Anxiety Disord. doi: 10.1016/j.janxdis.2015.02.003 – volume: 10 year: 2020 ident: 43715_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-020-62922-y – volume: 326 start-page: 851 year: 2021 ident: 43715_CR32 publication-title: JAMA doi: 10.1001/jama.2021.13027 – ident: 43715_CR23 doi: 10.18653/v1/2020.acl-main.703 – volume: 523 start-page: 177 year: 2015 ident: 43715_CR33 publication-title: Nature doi: 10.1038/nature14581 – volume: 13 start-page: 244 year: 2011 ident: 43715_CR18 publication-title: J. Clin. Hypertens. doi: 10.1111/j.1751-7176.2011.00434.x – volume: 63 start-page: 2304 year: 2014 ident: 43715_CR46 publication-title: Pract. Guidel. J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.03.016 – ident: 43715_CR22 – volume: 29 start-page: 1113 year: 2023 ident: 43715_CR51 publication-title: Nat. Med. doi: 10.1038/s41591-023-02332-5 – volume: 6 start-page: 135 year: 2023 ident: 43715_CR4 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-023-00879-8 – volume: 175 start-page: 951 year: 2018 ident: 43715_CR44 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2018.17101167 – ident: 43715_CR16 – ident: 43715_CR55 doi: 10.1080/02699052.2018.1542508 – ident: 43715_CR39 – volume: 6 start-page: 327 year: 2013 ident: 43715_CR19 publication-title: Diabetes Metab. Syndr. Obes. Targets Ther. doi: 10.2147/DMSO.S51325 – ident: 43715_CR41 doi: 10.1111/j.1600-0447.2008.01162.x – ident: 43715_CR42 doi: 10.1097/01.nmd.0000168238.13252.b3 – volume: 12 year: 2021 ident: 43715_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21390-2 – ident: 43715_CR15 doi: 10.1109/JBHI.2021.3063721 – volume: 5 start-page: 194 year: 2022 ident: 43715_CR12 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-022-00742-2 – volume: 12 year: 2021 ident: 43715_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20910-4 – ident: 43715_CR50 doi: 10.1093/jamia/ocac144 – ident: 43715_CR56 – volume: 7 start-page: 357 year: 2009 ident: 43715_CR17 publication-title: Ann. Fam. Med. doi: 10.1370/afm.983 – ident: 43715_CR21 – ident: 43715_CR13 doi: 10.1038/s41746-021-00455-y – volume: 5 start-page: 457 year: 2017 ident: 43715_CR36 publication-title: Clin. Psychol. Sci. doi: 10.1177/2167702617691560 – volume: 11 start-page: 390 year: 2020 ident: 43715_CR1 publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2020.00390 – volume: 9 start-page: 1735 year: 1997 ident: 43715_CR37 publication-title: Neural. Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 43715_CR5 – volume: 127 start-page: 139 year: 2018 ident: 43715_CR43 publication-title: J. Abnorm. Psychol. doi: 10.1037/abn0000317 – ident: 43715_CR11 doi: 10.1109/ACCESS.2018.2875677 |
| SSID | ssj0000391844 |
| Score | 2.6686625 |
| Snippet | Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical diseases or... Abstract Deep learning transformer-based models using longitudinal electronic health records (EHRs) have shown a great success in prediction of clinical... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7857 |
| SubjectTerms | 639/705/117 692/308/1426 692/700/459 Deep learning Disease Electric Power Supplies Electronic Health Records Electronic medical records Encoders-Decoders Generative artificial intelligence Humanities and Social Sciences Humans Machine learning Mental disorders Mental Recall multidisciplinary Pancreatic cancer Pancreatic Neoplasms Performance prediction Post traumatic stress disorder Predictions Psychological stress Science Science (multidisciplinary) Self destructive behavior Self-injury Stress Disorders, Post-Traumatic System effectiveness Transformers |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJG4gdUkjhOHCwLUqqcKoSLtzXL82FaqkiXJItGfwK9mxnF2tTx64bTKxonGmc8zY4_9DSGvfa6NtmD9IJRvWCGanNUuz1ijvdDWaJdpGYpNVCcncrGoP8cFtyFuq5xtYjDUtjO4Rn4AEwMB7rKS2fvVN4ZVozC7GktoXCc3sGw24rxaVJs1FmQ_l0URz8qkXB4MRbAM4KhYwatMsMsdfxRo-_8Wa_65ZfK3vGlwR0d3_7cj98idGIjSDxNy7pNrrn1Abk2lKX88JD9P54j28PjLOzrOV65n6PgsRQJMC1fWhV-6DPzVaDxpqK5Dxw7anCGo6KrHdBBCgHaexpwQ7dYjSOwGinvvl3RbkIdOhzPptIA0PCJfjw5PPx2zWLeBGVFkIx4O8MJ64VNhmtSlqYFZnCykNsZzz7lOrdQQGWkN0ZnRQvta2Ko0janKqixr_pjstV3rnhJaeF16CXGI4xAoIZNP2vjaeCuQRt-UCclm7SkTSc2xtsaFCsl1LtWkcQUaV0Hj6jIhbzbPrCZKjytbf0RQbFoiHXf4o-uXKo5u5WQJPcs1KFYWBg__giXNfaobwHuT1gnZn7Ggoo0Y1BYICXm1uQ2jG1M2unXdemoDMWCFr3gyIXAjCZc43-MyIXIHmzui7t5pz88Cg3gGcuLUPyFvZxhv5fr3t3h2dTeek9s5jqwsY3m9T_bGfu1ekJvm-3g-9C_D0PwFhQREwg priority: 102 providerName: ProQuest |
| Title | TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records |
| URI | https://link.springer.com/article/10.1038/s41467-023-43715-z https://www.ncbi.nlm.nih.gov/pubmed/38030638 https://www.proquest.com/docview/2895065781 https://www.proquest.com/docview/2895710709 https://pubmed.ncbi.nlm.nih.gov/PMC10687211 https://doaj.org/article/e86f3f2a50684c45880702f0abadcb09 |
| Volume | 14 |
| WOSCitedRecordID | wos001111154200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdggMQL4pvCOAWJN6jWNk2b8sbQTeOBUzUN6eClStNkm4Ta6dpDYn8CfzV20t52fL7w0lMvviiyHcc-Oz8DvLSJ0qpB64eufB2mok7CwiRxWCsrVKOViZV0zSbyxUIul0V5pdUX1YR5eGDPuD0jM8txRhFlMtV0rxKVNLGRqnGq2l_di_LiSjDlbDAvMHRJx1syEZd7fepsAh5RYcrzWIQXWyeRA-z_nZf5a7HkTxlTdxAd3IU7owfJ3vqV34Nrpr0Pt3xPyW8P4Pvx5IrOD4_esGF6M6uQTqyGEXJlg2-NcZ_sxAFPk9Vjri0OGzqkOSVtYOcryuOQ7Fhn2ZjMYd16QD01PaOi-RN22UmH-VuVzP_z0z-Ejwfz43eH4dhwIdQijQeq6reiscJGAllrokhj-CVTqbRGGXCuokYqdGmUQrdKK6FsIZo807XOszzLCv4IdtquNU-ApVZlVqIDYTh6OATBE9W20LYRhH-vswDiifmVHtHIqSnGl8plxbmsvMAqFFjlBFZdBPBq85tzj8XxV-p9kumGknC03ReoXdWoXdW_tCuA3UkjqnFz9xXGqEiPpi4O4MVmGLcl5VpUa7q1p0HnLacpHnsF2qyESwrUuAxAbqnW1lK3R9qzUwf9jQG8pJg9gNeTFl6u68-8ePo_ePEMbie0feI4TIpd2BlWa_Mcbuqvw1m_msH1fJm7p5zBjf35ojyauT05o3LaEp-l-Iwj5fsP5acfMaM9yA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOhC8cL8EBhgJniBabk4cJIS4bGq1rapQkban4Dh2Nwk1pUlB20_gx_AbOcdJWpXL3vbAU5TEiRznOxf7-JwP4JkJpJIFaj905XM34nngpjrw3VwaLgsltS-FJZtIhkNxeJiONuBnlwtD2yo7nWgVdVEqWiPfxokBR3OZCP_N7KtLrFEUXe0oNBpY7OnT7zhlq14PPuD_fR4Euzvj9323ZRVwFY_8mrauG14Ybjyuck97nsI5hoiEVMqEJgylVwiJdltK9B2U5NKkvEhilaskTuKYii-hyt-MEOxeDzZHg4PR0XJVh-qtiyhqs3O8UGxXkdVFaBrdKEx87p6tWUBLFPA37_bPTZq_RWqtAdy9_r8N3Q241rra7G0jGzdhQ09vweWGfPP0NvwYdz77Tv_jK1Z3Z3rukmkvGJX4LPCs0PbIJrZCN5kHZvmDWF1im2MSGzabU8CLQM5Kw9qoFysXNY6QrhhlF0zYinKINemnrFkiq-7ApwsZiLvQm5ZTfR9YZGRsBHpaOkRXkGoVeblJlSk4EQWo2AG_Q0um2rLtxB7yJbPbB0KRNQjLEGGZRVh25sCL5TOzpmjJua3fEQiXLanguL1QzidZq78yLWL8skAikESkKL0ZbUVgPJmjROde6sBWh72s1YJVtgKeA0-Xt1F_UVBKTnW5aNqgl5vQK-41iF_2JBQ0ow2FA2JNFta6un5nenJsa6T72E9a3HDgZSc2q379eywenP8ZT-BKf3ywn-0PhnsP4WpAUu37bpBuQa-eL_QjuKS-1SfV_HGrGBh8vmiB-gX5ZKQJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvB-GAosEJ7Dit9eVKkRpolZFUVQVqbdlvd5NK6E4xA6o_Qn8JH4dM2s7UXj01gOnyPEmWq-_ee3szAfwygRSyQK1H7ryuRvFeeBmOvDdXJpYFkpqX3JLNpGORvzkJBtvwM-uFoaOVXY60SrqolS0R97HwCBGc5lyv2_aYxHjveG72VeXGKQo09rRaTQQOdTn3zF8q3YO9vBdvw6C4eD4w77bMgy4Ko78mo6xm7gwsfFilXva8xTGGzziUikTmjCUXsEl2nAp0Y9QMpYmi4s0UblKkzRJqBETqv_NNMSgpwebu4PR-Gi5w0O913kUtZU6Xsj7VWT1EppJNwpTP3Yv1qyhJQ34m6f754HN37K21hgOb__Py3gHbrUuOHvfyMxd2NDTe3C9IeU8vw8_jjtffrB_tM3q7krPXTL5BaPWnwVeFdp-sont3E1mg1leIVaXOOaUxInN5pQII_Cz0rA2G8bKRY2rpStGVQcTtqIiYk1ZKmu2zqoH8OlKFuIh9KblVD8GFhmZGI4emA7RRaQeRl5uMmWKmAgEVOKA3yFHqLadO7GKfBH2WEHIRYM2gWgTFm3iwoE3y9_MmmYml47eJUAuR1IjcvtFOZ-IVq8JzRN8skAiqHikqOwZbUhgPJmjpOde5sBWh0PRasdKrEDowMvlbdRrlKySU10umjHo_ab0F48a9C9nEnKKdEPuAF-Ti7Wprt-Znp3a3uk-zpM2PRx424nQal7_Xosnlz_GC7iBUiQ-HowOn8LNgATc990g24JePV_oZ3BNfavPqvnzVkcw-HzV8vQLuRusow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TransformEHR%3A+transformer-based+encoder-decoder+generative+model+to+enhance+prediction+of+disease+outcomes+using+electronic+health+records&rft.jtitle=Nature+communications&rft.au=Yang%2C+Zhichao&rft.au=Mitra%2C+Avijit&rft.au=Liu%2C+Weisong&rft.au=Berlowitz%2C+Dan&rft.date=2023-11-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-43715-z&rft.externalDocID=10_1038_s41467_023_43715_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |