Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance

Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the...

Full description

Saved in:
Bibliographic Details
Published in:BMC biology Vol. 21; no. 1; pp. 294 - 15
Main Authors: Zhu, Huan, Hao, Hongxia, Yu, Liang
Format: Journal Article
Language:English
Published: London BioMed Central 20.12.2023
Springer Nature B.V
BMC
Subjects:
ISSN:1741-7007, 1741-7007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement. Results In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer’s disease, Crohn’s disease, and colorectal neoplasms, to validate the effectiveness of our framework. Conclusions Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
AbstractList Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement. In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer's disease, Crohn's disease, and colorectal neoplasms, to validate the effectiveness of our framework. Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement.BACKGROUNDEnormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement.In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer's disease, Crohn's disease, and colorectal neoplasms, to validate the effectiveness of our framework.RESULTSIn this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer's disease, Crohn's disease, and colorectal neoplasms, to validate the effectiveness of our framework.Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.CONCLUSIONSSignificantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
BackgroundEnormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement.ResultsIn this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer’s disease, Crohn’s disease, and colorectal neoplasms, to validate the effectiveness of our framework.ConclusionsSignificantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement. Results In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer’s disease, Crohn’s disease, and colorectal neoplasms, to validate the effectiveness of our framework. Conclusions Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
Abstract Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanisms, but also facilitate early diagnosis and promote precision medicine. Due to the data perturbation and unsatisfactory latent representation, there is a significant room for improvement. Results In this work, we proposed a novel framework, Multi-scale Variational Graph AutoEncoder embedding Wasserstein distance (MVGAEW) to predict disease-related microbes, which had the ability to resist data perturbation and effectively generate latent representations for both microbes and diseases from the perspective of distribution. First, we calculated multiple similarities and integrated them through similarity network confusion. Subsequently, we obtained node latent representations by improved variational graph autoencoder. Ultimately, XGBoost classifier was employed to predict potential disease-related microbes. We also introduced multi-order node embedding reconstruction to enhance the representation capacity. We also performed ablation studies to evaluate the contribution of each section of our model. Moreover, we conducted experiments on common drugs and case studies, including Alzheimer’s disease, Crohn’s disease, and colorectal neoplasms, to validate the effectiveness of our framework. Conclusions Significantly, our model exceeded other currently state-of-the-art methods, exhibiting a great improvement on the HMDAD database.
ArticleNumber 294
Author Yu, Liang
Zhu, Huan
Hao, Hongxia
Author_xml – sequence: 1
  givenname: Huan
  surname: Zhu
  fullname: Zhu, Huan
  organization: School of Computer Science and Technology, Xidian University
– sequence: 2
  givenname: Hongxia
  surname: Hao
  fullname: Hao, Hongxia
  email: hxhao@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8351-3332
  surname: Yu
  fullname: Yu, Liang
  email: lyu@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38115088$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFAR_YA_wAFF4sIl4I8ktk8IVXysVIkLiKP1HL9svUrsxXZW6r-vd7eFtoeebD3PjEdv5rw68cFjVb2l5COlsv-UKFO0awjjDaFC9Y18UZ1R0dJGECJOHtxPq_OUNoSwTgj-qjrlktKOSHlW7VYWfXbjjfPr2rqEkLCJOEFGW89uiMFgqk2Z2jr4el6m7Jo0wIT1DqKD7IKHqV5H2F7XsOSAfggWY42zQWv3qn8gJYwpo_P7HzL4AV9XL0eYEr65Oy-q39--_rr80Vz9_L66_HLVDF1Lc8MpY9SQURnboqTAWmBSGskFomDAYewNcNUOgJb3VhkAYS2qjnFGSTfyi2p11LUBNnob3QzxRgdw-jAIca0hZjdMqJUd1dgJK6zpWzRUkrI5hVZRKSWMWLQ-H7W2i5nRDmVvEaZHoo9fvLvW67DTlAhOheiLwoc7hRj-Lpiynl0acJrAY1iSZoq0tOuZJAX6_gl0E5ZYVr1H0ZaVHJkqqHcPLf3zcp9vAcgjoASZUsRRDy4fQisO3VSs6X2V9LFKulRJH6qk91T2hHqv_iyJH0mpgP0a43_bz7BuAdom3mc
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108484
crossref_primary_10_1093_bib_bbae584
crossref_primary_10_1016_j_jmb_2025_168978
crossref_primary_10_1186_s12915_024_02064_z
crossref_primary_10_1016_j_ab_2025_115968
crossref_primary_10_3389_fmicb_2024_1438942
crossref_primary_10_1016_j_ymeth_2024_01_017
crossref_primary_10_3390_ijms252413674
crossref_primary_10_1016_j_compbiomed_2024_108129
crossref_primary_10_1016_j_compbiomed_2024_108249
crossref_primary_10_1016_j_ijbiomac_2024_134146
crossref_primary_10_3390_info15030163
crossref_primary_10_1016_j_compbiomed_2024_107937
crossref_primary_10_1016_j_compbiolchem_2025_108612
crossref_primary_10_3389_fgene_2024_1369811
crossref_primary_10_1109_TCBBIO_2025_3565912
crossref_primary_10_1016_j_future_2024_05_029
crossref_primary_10_1109_JBHI_2024_3390092
crossref_primary_10_1016_j_artmed_2025_103198
crossref_primary_10_3389_fgene_2024_1443532
crossref_primary_10_3390_ijms25137049
crossref_primary_10_1016_j_jmb_2024_168741
crossref_primary_10_1093_bib_bbaf189
crossref_primary_10_1021_acsomega_5c01924
crossref_primary_10_1073_pnas_2317284121
crossref_primary_10_1093_bib_bbaf026
crossref_primary_10_1016_j_omtn_2024_102425
crossref_primary_10_1186_s12915_024_01968_0
crossref_primary_10_1093_bib_bbae534
crossref_primary_10_1016_j_compbiomed_2024_108534
crossref_primary_10_3390_ijms25189844
crossref_primary_10_1016_j_ymeth_2025_04_012
crossref_primary_10_1371_journal_pcbi_1012544
crossref_primary_10_1016_j_ymeth_2024_09_010
crossref_primary_10_3389_fmed_2025_1529335
crossref_primary_10_1016_j_ymeth_2024_05_012
crossref_primary_10_1186_s12915_025_02221_y
crossref_primary_10_1016_j_ymeth_2024_05_010
crossref_primary_10_1093_bib_bbae504
crossref_primary_10_1186_s12915_025_02206_x
Cites_doi 10.1007/978-3-642-73778-7_164
10.1186/s12866-018-1197-5
10.1093/bib/bbac080
10.1145/3488560.3498531
10.1155/2013/610393
10.3389/fmicb.2020.592430
10.1093/bioinformatics/btab792
10.1038/s41598-017-08127-2
10.1016/j.cmet.2015.07.001
10.1109/TCBB.2021.3132611
10.1038/nrmicro2974
10.1038/s43587-022-00311-y
10.1093/bioinformatics/btw715
10.1093/bib/bbaa146
10.1093/nar/gkw1012
10.3389/fcimb.2017.00381
10.1093/bioinformatics/btq241
10.48550/arXiv.1711.01558
10.1038/nmeth.2810
10.1016/j.phrs.2017.12.009
10.3389/fmicb.2020.00579
10.1007/s12539-022-00514-2
10.1093/bib/bbaa157
10.1093/bioinformatics/btt426
10.1126/science.1124234
10.1016/j.jaci.2014.11.011
10.1093/bib/bbw005
10.1111/j.1574-695X.2002.tb00632.x
10.1016/j.gpb.2020.11.001
10.1186/2041-2223-3-19
10.48550/arXiv.1301.2262
10.1038/d41586-020-03069-8
10.48550/arXiv.1412.6980
10.1016/j.jalz.2019.01.010
10.1109/DSC53577.2021.00013
10.1186/s12967-021-02732-6
10.1371/journal.ppat.1008375
10.1038/nature11234
10.1038/ncomms5212
10.1145/2939672.2939754
10.1038/nrc3610
10.48550/arXiv.1611.07308
10.1145/2939672.2939785
10.1002/alz.12399
10.1109/JBHI.2021.3088342
10.1038/nrgastro.2015.114
10.1086/510385
10.1093/nar/gkx1157
10.1093/nar/gkaa902
10.3389/fcimb.2018.00424
10.1016/j.bbadis.2014.05.023
10.1007/978-3-540-71050-9
10.1002/cac2.12200
10.48550/arXiv.2202.09025
10.1152/ajpgi.00190.2011
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12915-023-01796-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (ProQuest)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 15
ExternalDocumentID oai_doaj_org_article_9df9f57d7db64eb1807009ed91888afe
PMC10731776
38115088
10_1186_s12915_023_01796_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072353; 62272065
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62272065
– fundername: National Natural Science Foundation of China
  grantid: 62072353
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-31221b0f9bd4e81a24a288b837ee72a3af6ba394caed36d9baa7dde95232105f3
IEDL.DBID M7P
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001127795700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-7007
IngestDate Tue Oct 14 19:00:03 EDT 2025
Tue Nov 04 02:06:10 EST 2025
Fri Sep 05 09:27:41 EDT 2025
Mon Oct 06 18:38:33 EDT 2025
Mon Jul 21 05:56:11 EDT 2025
Sat Nov 29 04:14:37 EST 2025
Tue Nov 18 22:42:29 EST 2025
Sat Sep 06 07:29:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Microbe-disease association
Wasserstein distance
Variational graph autoencoder
XGBoost
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-31221b0f9bd4e81a24a288b837ee72a3af6ba394caed36d9baa7dde95232105f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8351-3332
OpenAccessLink https://www.proquest.com/docview/2914277329?pq-origsite=%requestingapplication%
PMID 38115088
PQID 2914277329
PQPubID 42637
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9df9f57d7db64eb1807009ed91888afe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10731776
proquest_miscellaneous_2904156280
proquest_journals_2914277329
pubmed_primary_38115088
crossref_citationtrail_10_1186_s12915_023_01796_8
crossref_primary_10_1186_s12915_023_01796_8
springer_journals_10_1186_s12915_023_01796_8
PublicationCentury 2000
PublicationDate 2023-12-20
PublicationDateYYYYMMDD 2023-12-20
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC biology
PublicationTitleAbbrev BMC Biol
PublicationTitleAlternate BMC Biol
PublicationYear 2023
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References D Xu (1796_CR22) 2021; 19
AF Cockburn (1796_CR40) 2012; 3
YJ Huang (1796_CR11) 2015; 135
L Peng (1796_CR21) 2020; 11
ML Cross (1796_CR8) 2002; 34
JS Bajaj (1796_CR41) 2012; 302
G Yao (1796_CR46) 2020; 18
Y-Z Sun (1796_CR51) 2018; 8
X Zhou (1796_CR49) 2014; 5
Y Ding (1796_CR54) 2021; 26
D Wang (1796_CR48) 2010; 26
F Wang (1796_CR31) 2017; 7
PB Eckburg (1796_CR36) 2007; 44
HS Yang (1796_CR43) 2022; 18
S Shoaie (1796_CR7) 2015; 22
1796_CR39
Y Long (1796_CR23) 2021; 22
L Wang (1796_CR16) 2022; 23
1796_CR30
Q Yan (1796_CR14) 2017; 7
Z Wen (1796_CR17) 2021; 22
1796_CR33
1796_CR32
L Wen (1796_CR12) 2008; 455
C Mancuso (1796_CR34) 2018; 129
Y Janssens (1796_CR45) 2018; 18
E Holmes (1796_CR4) 2015; 12
K Rathje (1796_CR9) 2020; 16
RF Schwabe (1796_CR13) 2013; 13
M Cénit (1796_CR1) 2014; 1842
B Wang (1796_CR25) 2014; 11
EL Amitay (1796_CR37) 2018; 9
X Chen (1796_CR18) 2017; 33
1796_CR28
1796_CR27
1796_CR3
1796_CR26
1796_CR5
1796_CR20
1796_CR60
W Ma (1796_CR44) 2017; 18
1796_CR61
D Kingma (1796_CR29) 2021; 34
M Hua (1796_CR24) 2022; 14
MH Lee (1796_CR10) 2021; 41
X Lei (1796_CR19) 2020; 11
F Sommer (1796_CR2) 2013; 11
G Skoufos (1796_CR47) 2021; 49
X Chen (1796_CR50) 2013; 29
1796_CR57
1796_CR56
1796_CR15
1796_CR59
1796_CR58
I Moreno-Indias (1796_CR42) 2016; 8
SR Gill (1796_CR6) 2006; 312
A Rajput (1796_CR52) 2018; 46
1796_CR55
L Deng (1796_CR53) 2022; 38
N Rappaport (1796_CR35) 2017; 45
A As (1796_CR38) 2019; 15
References_xml – ident: 1796_CR59
  doi: 10.1007/978-3-642-73778-7_164
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 1796_CR45
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-018-1197-5
– volume: 23
  start-page: bbac080
  issue: 3
  year: 2022
  ident: 1796_CR16
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac080
– ident: 1796_CR28
  doi: 10.1145/3488560.3498531
– ident: 1796_CR15
  doi: 10.1155/2013/610393
– volume: 11
  start-page: 592430
  year: 2020
  ident: 1796_CR21
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.592430
– volume: 34
  start-page: 21696
  year: 2021
  ident: 1796_CR29
  publication-title: Adv Neural Inf Process Syst
– volume: 38
  start-page: 1118
  issue: 4
  year: 2022
  ident: 1796_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab792
– volume: 7
  start-page: 7601
  issue: 1
  year: 2017
  ident: 1796_CR31
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08127-2
– volume: 22
  start-page: 320
  issue: 2
  year: 2015
  ident: 1796_CR7
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.07.001
– ident: 1796_CR33
– volume: 8
  start-page: 5672
  issue: 12
  year: 2016
  ident: 1796_CR42
  publication-title: Am J Transl Res
– ident: 1796_CR32
  doi: 10.1109/TCBB.2021.3132611
– volume: 11
  start-page: 227
  issue: 4
  year: 2013
  ident: 1796_CR2
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2974
– ident: 1796_CR39
  doi: 10.1038/s43587-022-00311-y
– volume: 33
  start-page: 733
  issue: 5
  year: 2017
  ident: 1796_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw715
– volume: 22
  start-page: bbaa146
  issue: 3
  year: 2021
  ident: 1796_CR23
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa146
– volume: 45
  start-page: D877
  issue: D1
  year: 2017
  ident: 1796_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1012
– volume: 7
  start-page: 381
  year: 2017
  ident: 1796_CR14
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2017.00381
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: 1796_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 455
  start-page: 1109
  issue: 7216
  year: 2008
  ident: 1796_CR12
  publication-title: Nat Methods
– ident: 1796_CR57
  doi: 10.48550/arXiv.1711.01558
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 1796_CR25
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 129
  start-page: 329
  year: 2018
  ident: 1796_CR34
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2017.12.009
– volume: 11
  start-page: 579
  year: 2020
  ident: 1796_CR19
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00579
– volume: 14
  start-page: 669
  issue: 3
  year: 2022
  ident: 1796_CR24
  publication-title: Interdiscip Sci
  doi: 10.1007/s12539-022-00514-2
– volume: 22
  start-page: bbaa157
  issue: 3
  year: 2021
  ident: 1796_CR17
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa157
– volume: 29
  start-page: 2617
  issue: 20
  year: 2013
  ident: 1796_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt426
– volume: 312
  start-page: 1355
  issue: 5778
  year: 2006
  ident: 1796_CR6
  publication-title: Sci
  doi: 10.1126/science.1124234
– volume: 135
  start-page: 25
  issue: 1
  year: 2015
  ident: 1796_CR11
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.11.011
– volume: 18
  start-page: 85
  issue: 1
  year: 2017
  ident: 1796_CR44
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw005
– volume: 34
  start-page: 245
  issue: 4
  year: 2002
  ident: 1796_CR8
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1111/j.1574-695X.2002.tb00632.x
– volume: 18
  start-page: 760
  issue: 6
  year: 2020
  ident: 1796_CR46
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/j.gpb.2020.11.001
– volume: 3
  start-page: 1
  issue: 1
  year: 2012
  ident: 1796_CR40
  publication-title: Investigative Genet
  doi: 10.1186/2041-2223-3-19
– ident: 1796_CR56
  doi: 10.48550/arXiv.1301.2262
– volume: 9
  start-page: 293
  issue: 4
  year: 2018
  ident: 1796_CR37
  publication-title: Gut Microbes
– ident: 1796_CR5
  doi: 10.1038/d41586-020-03069-8
– ident: 1796_CR61
  doi: 10.48550/arXiv.1412.6980
– volume: 15
  start-page: 321
  issue: 3
  year: 2019
  ident: 1796_CR38
  publication-title: Alzheimer's Dementia
  doi: 10.1016/j.jalz.2019.01.010
– ident: 1796_CR55
  doi: 10.1109/DSC53577.2021.00013
– ident: 1796_CR60
– volume: 19
  start-page: 1
  year: 2021
  ident: 1796_CR22
  publication-title: J Transl Med
  doi: 10.1186/s12967-021-02732-6
– volume: 16
  start-page: e1008375
  issue: 3
  year: 2020
  ident: 1796_CR9
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008375
– ident: 1796_CR3
  doi: 10.1038/nature11234
– volume: 5
  start-page: 4212
  issue: 1
  year: 2014
  ident: 1796_CR49
  publication-title: Nat Commun
  doi: 10.1038/ncomms5212
– ident: 1796_CR20
  doi: 10.1145/2939672.2939754
– volume: 13
  start-page: 800
  issue: 11
  year: 2013
  ident: 1796_CR13
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3610
– ident: 1796_CR26
  doi: 10.48550/arXiv.1611.07308
– ident: 1796_CR30
  doi: 10.1145/2939672.2939785
– volume: 18
  start-page: 645
  issue: 4
  year: 2022
  ident: 1796_CR43
  publication-title: Alzheimer's Dementia
  doi: 10.1002/alz.12399
– volume: 26
  start-page: 446
  issue: 1
  year: 2021
  ident: 1796_CR54
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3088342
– volume: 12
  start-page: 458
  issue: 8
  year: 2015
  ident: 1796_CR4
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2015.114
– volume: 44
  start-page: 256
  issue: 2
  year: 2007
  ident: 1796_CR36
  publication-title: Clin Infect Dis
  doi: 10.1086/510385
– volume: 46
  start-page: D894
  issue: D1
  year: 2018
  ident: 1796_CR52
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1157
– volume: 49
  start-page: D1328
  issue: D1
  year: 2021
  ident: 1796_CR47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa902
– volume: 8
  start-page: 424
  year: 2018
  ident: 1796_CR51
  publication-title: Front Cell Infect Microbiol
  doi: 10.3389/fcimb.2018.00424
– volume: 1842
  start-page: 1981
  issue: 10
  year: 2014
  ident: 1796_CR1
  publication-title: Biochim Biophys Acta Mol Basis Dis
  doi: 10.1016/j.bbadis.2014.05.023
– ident: 1796_CR58
  doi: 10.1007/978-3-540-71050-9
– volume: 41
  start-page: 937
  issue: 10
  year: 2021
  ident: 1796_CR10
  publication-title: Cancer Commun
  doi: 10.1002/cac2.12200
– ident: 1796_CR27
  doi: 10.48550/arXiv.2202.09025
– volume: 302
  start-page: G168
  issue: 1
  year: 2012
  ident: 1796_CR41
  publication-title: J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00190.2011
SSID ssj0025773
Score 2.5797262
Snippet Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes...
Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases...
BackgroundEnormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes...
Abstract Background Enormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms Ablation
Accuracy
Alzheimer's disease
Bacteria
Biomedical and Life Sciences
Colorectal cancer
Colorectal Neoplasms
Crohn's disease
Embedding
Experiments
Graphical representations
Humans
Life Sciences
Medical research
Microbe-disease association
Microorganisms
Neighborhoods
Neoplasms
Neural networks
Neurodegenerative diseases
Performance evaluation
Perturbation
Precision Medicine
Regularization methods
Research Article
Variational graph autoencoder
Wasserstein distance
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QCiQuiDeFBQWJG1Q7Sdo8joBYcVpxALG3KE0csRLbQdPOSPx77LQdGJ4XblWbKm7s-NHYnxl7FiHkDKatAyhdN-gi45XQtVJOBSuzMNmWZhPm7Myen7t3P7T6opywCR54WrgTl7LLrUkmdbpBxWJRRlcOkhMYu4UMpH3R61mCqTnUao1RS4mM1ScDWjVBlciUO2Scru2BGSpo_b9zMX_NlPzpuLRYodOb7MbsPvKXE9m32BXob7NrU0PJr3fYbqq7LbVLfD57qUu5CiR-Sbl3HQycLFfi656XbMJ6QDYB32HQPP8Y5AXFmoftuCaYywQbDpcdJDJz_GMoBZrUJJNmGElq7rIPp2_ev35bz50V6tg2YkTFK6XoVtl1qQErgmyCtLbDYBXAyKBC1l1QrokBktLJdSEY1IMOo1YMEdus7rGjft3DA8ajpYPBaFZRq6az6HAmmVSKUQQbonMVE8tC-zjDjlP3i8--hB9W-4k5HpnjC3O8rdjz_TtfJtCNv45-RfzbjyTA7HIDxcjPYuT_JUYVO1647-ddPHicqZEoSRK_4un-Me4_OlQJPay3NIZADrS0q4rdn4RlTwl6QwS3jxTaAzE6IPXwSX_xqWB8Y1SOnp3RFXuxSNx3uv68Fg__x1o8YtclbRUhUYces6Nxs4XH7GrcjRfD5knZaN8AbTsulw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaggNQLb2igICNxg4i1ndjjIyAqThXi2Zvl-AGVaII22ZX494ydB1ooSHCLEkeZtee5M_MNIY9dsDEGVZc2CFlW6CLjFZOlEFpY4JGpCHnYhDo-hpMT_WZqCuvnavc5JZk1dRZrkM96tEwsdROn-h-lZQkXySU0d5DE8e27j0uYVSsl5vaYc9_bMUEZqf889_L3KslfUqXZAh1d-z_ar5Ork8dJn48scoNcCO1NcmWcQfn9FtmOrbq53YlO6Zoyd7gET89SuV4TepqMnaddS3MBYtnjyQa6xTh7-i-RZuBrajdDl5AxfVjTcNYEnywj_WRzT2eaq5m-MCRGu00-HL16__J1OQ1jKF1dsQF1NeesWUXd-CoAs7yyHKDB-DYExa2wUTZW6MrZ4IX0urFWoerUGOhiVFlHcYfstV0bDgh1kHKJTq2cFFUD6KN67oV3jlmwTuuCsPl8jJuQytPAjK8mRywgzbifBvfT5P00UJAnyzvfRpyOv65-kY59WZkwtvONbv3ZTCJrtI861sor38gKTRqgdlzp4DUDABtDQQ5npjGT4PcGv1RxZECOv-LR8hhFNuVhbBu6TVqTcBEkh1VB7o48tlCCDlRC6EcKYYf7dkjdfdKefsmw4BjIozOoZEGezkz4k64_78W9f1t-n-zzxMeMo4I9JHvDehMekMtuO5z264dZEn8AXowyLQ
  priority: 102
  providerName: Springer Nature
Title Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance
URI https://link.springer.com/article/10.1186/s12915-023-01796-8
https://www.ncbi.nlm.nih.gov/pubmed/38115088
https://www.proquest.com/docview/2914277329
https://www.proquest.com/docview/2904156280
https://pubmed.ncbi.nlm.nih.gov/PMC10731776
https://doaj.org/article/9df9f57d7db64eb1807009ed91888afe
Volume 21
WOSCitedRecordID wos001127795700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RSV
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZbxMxELZoC1JfuI-FEhmJN1g1tjc-nhBFreChISpXeFp5bS9UandLNonEv2fGe1Th6Asvq03sKN6d8RyemW8Iee6CLcugJqkNQqYZmMhwx2QqhBFW85KpUsdmE2o61fO5mXUHbk2XVtnLxCiofe3wjHyfG5ZxpQQ3ry5-pNg1CqOrXQuNLbKDKAkipu7NBodrAvP7Qhkt9xvQbQzrkTGDSBmZ6g1lFDH7_2Zo_pkv-VvQNOqio1v_-xS3yc3OCqWvW7a5Q66F6i650fal_HmPrNvy3VgCRbsQThqrXoKn55jCV4SGogL0tK5oTEpMG6B2oGvwvbvzRRrBsKldLWtEy_RhQcN5ETxqS_rFxjpP7LWJ_7BE5rtPPh0dfnzzNu0aNKRukrElyG_OWTEuTeGzoJnlmeVaF-DzhqC4FbaUhRUmczZ4Ib0prFUgTg04v-BpTkrxgGxXdRUeEeo0xhedGjspskKD3eq5F945ZrV1xiSE9ZTKXYdejk00zvLoxWiZt9TNgbp5pG6uE_Ji-M1Fi91x5ewDZIBhJuJuxy_qxbe828a58aUpJ8orX8gM1JwGiTk2wRumtbZlSMheT_e8EwZNfkn0hDwbhmEbY2zGVqFe4RzESpBcjxPysOW2YSVgVCFqP6xQb_DhxlI3R6rT7xEqHJx7MBCVTMjLnmUv1_Xvd_H46sd4QnY57iLGQcjuke3lYhWekutuvTxtFiOypeYqXvWI7BwcTmcno3jUAddj_n4U9yiMzN4dz77Cp5MPn38B0lNEIw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFfQkUMBKcIOrYzsT2ASG2qlXLqIcienMd22lHokmZzAzqn-I38p6TTDUsvfXALUqc5CX53pa3EfLCBVuWQQ5TG0SeZmAiwxbLUyG0sIqXTJYqDpuQo5Ha39e7K-RnXwuDaZW9TIyC2tcO_5Gvc80yLqXg-u3J9xSnRmF0tR-h0cJiO5z-AJetebP1Eb7vS843Pu192Ey7qQKpG2ZsCkKHc1YMSl34LChmeWa5UgU4aiFIboUt88IKnTkbvMi9LqyVIAM0eGzgHg1LAde9RC6DGcFVTBXcXTh4Q6CvL8xR-XoDupRh_TNmLEmdp2pJ-cUZAX8zbP_Mz_wtSBt138bN_-2t3SI3OiubvmvZ4jZZCdUdcrWdu3l6l8zb8uRY4kW7EFUaq3qCp8eYoliEhqKC97SuaEy6TBtAc6BzOxl3_09pbPZN7WxaYzdQHyY0HBfBozVAv9pYx4qzRPEOU2Sue-TLhTz0fbJa1VV4SKhTGD91cuBykRUK7HLPvfDOMaus0zohrEeGcV13dhwS8s1EL03lpkWTATSZiCajEvJqcc5J25vk3NXvEXCLldhXPO6oJ4emE1NG-1KXQ-mlL_IM1LgCjTDQwWumlLJlSMhajzPTCbvGnIEsIc8Xh0FMYezJVqGe4RrsBZFzNUjIgxbdC0rAaMSpBEChWsL9EqnLR6rxUWyFzkBDMSnzhLzuWeSMrn-_i0fnP8Yzcm1z7_OO2dkabT8m1zlyMOOgUNbI6nQyC0_IFTefjpvJ08j_lBxcNOv8AiDimhw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VsogL-2IoMEhwAiuZsTPLASGgRFRFUQ4gejPjWSAStUucBPWv8et4b2ynCktvPXCz7LH9bH9v89sIeWK9CcHLUWp8JtIcTGTYYiLNMp0ZxQOTQcVhE3IyUQcHerpFfva1MJhW2cvEKKhdbfEf-YBrlnMpM64HoUuLmO6OXx59T3GCFEZa-3EaLUT2_fEPcN-aF3u78K2fcj5---HNu7SbMJDaUc4WIIA4Z-Uw6NLlXjHDc8OVKsFp815yk5kgSpPp3BrvMuF0aYwEeaDBewNXaRQyuO45cl5i0_KYNjhdO3sjoLUv0lFi0IBeZVgLjdlLUotUbSjCOC_gb0bun7mavwVsox4cX_2f3-A1cqWzvumrll2uky1f3SAX23mcxzfJqi1bjqVftAtdpbHaxzt6iKmLpW8oKn5H64rGZMy0AZR7ujLzWfdflcYm4NQsFzV2CXV-Tv1h6R1aCfSTifWtOGMU77BAprtFPp7JQ98m21Vd-buEWoVxVSuHVmR5qcBed9xlzlpmlLFaJ4T1KCls17Udh4d8K6L3pkTRIqsAZBURWYVKyLP1OUdtz5JTV79G8K1XYr_xuKOefyk68VVoF3QYSSddKXJQ7wo0xVB7p5lSygSfkJ0ec0UnBJviBHAJebw-DOILY1Km8vUS12CPCMHVMCF3WqSvKQFjEqcVAIVqgwc2SN08Us2-xhbpDDQXk1Ik5HnPLid0_ftd3Dv9MR6RS8Axxfu9yf59cpkjMzMOemaHbC_mS_-AXLCrxayZP4yigJLPZ805vwAkk6LZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+disease-related+microbes+based+on+multi-scale+variational+graph+autoencoder+embedding+Wasserstein+distance&rft.jtitle=BMC+biology&rft.au=Zhu%2C+Huan&rft.au=Hao%2C+Hongxia&rft.au=Yu%2C+Liang&rft.date=2023-12-20&rft.pub=Springer+Nature+B.V&rft.eissn=1741-7007&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs12915-023-01796-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon