An intelligent framework for skin cancer detection and classification using fusion of Squeeze-Excitation-DenseNet with Metaheuristic-driven ensemble deep learning models
Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete phys...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 15; H. 1; S. 7425 - 23 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
03.03.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient’s health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models’ hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques. |
|---|---|
| AbstractList | Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques. Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques. Abstract Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient’s health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models’ hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques. |
| ArticleNumber | 7425 |
| Author | Dorathi Jayaseeli, J. D. Patibandla, R. S. M. Lakshmi Briskilal, J Syed, Khasim Vaitheeshwaran, V. Fancy, C. Swain, Anil Kumar |
| Author_xml | – sequence: 1 givenname: J. D. surname: Dorathi Jayaseeli fullname: Dorathi Jayaseeli, J. D. organization: Department of Computing Technologies, SRM Institute of Science and Technology – sequence: 2 givenname: J surname: Briskilal fullname: Briskilal, J organization: Department of Computing Technologies, Faculty of Engineering and Technology, SRM Institute of Science and Technology – sequence: 3 givenname: C. surname: Fancy fullname: Fancy, C. organization: Department of Networking and Communications, SRM Institute of Science and Technology – sequence: 4 givenname: V. surname: Vaitheeshwaran fullname: Vaitheeshwaran, V. organization: Department of Computer Science and Engineering, Aditya University – sequence: 5 givenname: R. S. M. Lakshmi surname: Patibandla fullname: Patibandla, R. S. M. Lakshmi organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation – sequence: 6 givenname: Khasim surname: Syed fullname: Syed, Khasim email: profkhasim@gmail.com organization: School of Computer Science & Engineering, VIT - AP University – sequence: 7 givenname: Anil Kumar surname: Swain fullname: Swain, Anil Kumar organization: KIIT Deemed to be University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40033075$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhSNUREvpC7BAltiwCfg3iVeoagtUKrAA1pZjX894mtjFTlrgjXhLPDNtabtoNo7t7x4fX5_n1U6IAarqJcFvCWbdu8yJkF2NqaglpZLV5Em1RzEXNWWU7tz5360Ocl7h8gkqOZHPql2OMWO4FXvV38OAfJhgGPwCwoRc0iNcxXSOXEwon_uAjA4GErIwgZl8DEgHi8ygc_bOG71ZmrMPC-TKUCbRoW8_Z4A_UJ_8Mn7aIPUxhAxfYEJXflqizzDpJczJ58mb2iZ_CQGtibEfoJwFF2gAncJadowWhvyieur0kOHgetyvfnw4-X70qT77-vH06PCsNoKTqabQO5Cmx1KS1lgjHGe6dV1LrDaWQSct79veYdDaSCAtIy3BlguuwVrXsf3qdKtro16pi-RHnX6rqL3aLMS0UDoV0wMo4SjjTdsIiTVvcNNZajHvOw4W06YzRev9Vuti7kewpnQ46eGe6P2d4JdqES8VIV3bMEqKwptrhRRLT_OkRp9NeS4dIM5ZFfeMY9EKVtDXD9BVnFMovdpQpJWikYV6ddfSrZebSBSAbgGTYs4J3C1CsFpHT22jp0r01CZ6am2ze1B08-7lWn54vJRtS3M5Jywg_bf9SNU_7Wzx-w |
| CitedBy_id | crossref_primary_10_48084_etasr_11234 |
| Cites_doi | 10.54216/IJNS.250113 10.3390/buildings14113695 10.12785/amis/072L10 10.1016/j.imu.2019.100282 10.1109/ATSIP49331.2020.9231544 10.1016/j.jestch.2024.101818 10.3390/biomedinformatics4010035 10.1016/j.advengsoft.2022.103361 10.3390/app14219735 10.1038/s41598-025-89230-7 10.1002/jemt.24792 10.1007/s10278-024-01140-8 10.1155/2021/5895156 10.1016/j.neuroscience.2025.01.020 10.1016/j.rineng.2024.103692 10.3390/s22031134 10.1007/s00530-024-01583-7 10.1007/s44174-024-00264-3 10.3390/app13010152 10.1016/j.compbiomed.2024.108483 10.1016/j.compbiomed.2024.108099 10.1007/s00403-024-03484-1 10.1186/s12880-020-00534-8 10.3390/s21010252 10.34133/cbsystems.0102 10.3390/app13158927 10.3390/cancers17010137 10.1002/int.22844 10.1109/TMM.2024.3428349 10.4025/actascitechnol.v45i1.61531 10.1504/IJBRA.2025.144027 10.3390/cancers15072146 10.1038/s41598-024-61322-w 10.1371/journal.pone.0301275 10.54216/IJNS.250106 10.1038/s41598-024-67424-9 10.1109/ACCESS.2024.3498606 10.1038/s41598-024-74186-x 10.3390/app12052677 10.1016/j.patcog.2024.111182 10.1186/s12880-024-01356-8 10.54216/IJNS.230215 10.1016/j.bea.2022.100069 10.1109/TNNLS.2018.2838679 10.1007/s11042-025-20630-7 10.1007/s42979-024-03581-y 10.1007/s13042-024-02110-w 10.1007/s10462-020-09865-y 10.34133/cbsystems.0093 10.3390/s22186915 10.1007/s44174-024-00205-0 10.3389/fcvm.2024.1277123 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-92293-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 23 |
| ExternalDocumentID | oai_doaj_org_article_5f234676590a46068d2d04b84ed0268c PMC11876321 40033075 10_1038_s41598_025_92293_1 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PJZUB PPXIY PQGLB SNYQT CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-2ebfe9cb09917cdc5f43a7f871dacd3e89d4b7bf0eaac9e1731710d454aeddf83 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001437310100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:24:54 EST 2025 Tue Nov 04 02:04:55 EST 2025 Thu Oct 02 11:16:38 EDT 2025 Tue Oct 07 08:05:26 EDT 2025 Mon Jul 21 05:19:06 EDT 2025 Tue Nov 18 20:58:51 EST 2025 Sat Nov 29 08:16:54 EST 2025 Tue Mar 04 01:16:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Ensemble deep learning Feature extraction Gray Wolf optimization Image preprocessing Skin Cancer detection |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-2ebfe9cb09917cdc5f43a7f871dacd3e89d4b7bf0eaac9e1731710d454aeddf83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3173179569?pq-origsite=%requestingapplication% |
| PMID | 40033075 |
| PQID | 3173179569 |
| PQPubID | 2041939 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5f234676590a46068d2d04b84ed0268c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11876321 proquest_miscellaneous_3173405753 proquest_journals_3173179569 pubmed_primary_40033075 crossref_primary_10_1038_s41598_025_92293_1 crossref_citationtrail_10_1038_s41598_025_92293_1 springer_journals_10_1038_s41598_025_92293_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-03 |
| PublicationDateYYYYMMDD | 2025-03-03 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | 92293_CR40 92293_CR47 92293_CR46 92293_CR45 92293_CR42 92293_CR41 MF Jojoa Acosta (92293_CR3) 2021; 21 92293_CR9 92293_CR5 L Rey-Barroso (92293_CR4) 2021; 21 92293_CR6 M Abou Ali (92293_CR55) 2024; 4 92293_CR38 M Hosseinzadeh (92293_CR43) 2024; 19 JP Sainudeen (92293_CR34) 2025; 21 92293_CR51 92293_CR50 92293_CR15 92293_CR13 92293_CR12 92293_CR56 92293_CR11 92293_CR10 92293_CR54 92293_CR53 92293_CR52 N Fares (92293_CR48) 2024; 5 Z Wu (92293_CR39) 2024; 316 CY Yu (92293_CR44) 2013; 7 92293_CR25 92293_CR24 H Huang (92293_CR19) 2022; 37 92293_CR23 92293_CR22 A Adegun (92293_CR1) 2021; 54 92293_CR21 92293_CR20 92293_CR18 92293_CR17 92293_CR16 MA Khan (92293_CR28) 2025; 6 ZY Algamal (92293_CR8) 2024; 23 R Kaur (92293_CR7) 2022; 22 S Albawi (92293_CR14) 2023; 45 92293_CR37 92293_CR36 92293_CR35 92293_CR33 92293_CR32 92293_CR31 92293_CR30 A Majumdar (92293_CR49) 2018; 30 92293_CR29 92293_CR27 SUR Khan (92293_CR26) 2025; 31 MA Kadampur (92293_CR2) 2020; 18 |
| References_xml | – ident: 92293_CR22 – ident: 92293_CR10 doi: 10.54216/IJNS.250113 – ident: 92293_CR50 doi: 10.3390/buildings14113695 – volume: 7 start-page: 449 year: 2013 ident: 92293_CR44 publication-title: Appl. Math. Inform. Sci. doi: 10.12785/amis/072L10 – volume: 18 start-page: 100282 year: 2020 ident: 92293_CR2 publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2019.100282 – ident: 92293_CR9 doi: 10.1109/ATSIP49331.2020.9231544 – ident: 92293_CR11 doi: 10.1016/j.jestch.2024.101818 – volume: 4 start-page: 638 issue: 1 year: 2024 ident: 92293_CR55 publication-title: BioMedInformatics doi: 10.3390/biomedinformatics4010035 – ident: 92293_CR18 doi: 10.1016/j.advengsoft.2022.103361 – ident: 92293_CR47 doi: 10.3390/app14219735 – ident: 92293_CR32 doi: 10.1038/s41598-025-89230-7 – ident: 92293_CR38 doi: 10.1002/jemt.24792 – ident: 92293_CR25 doi: 10.1007/s10278-024-01140-8 – ident: 92293_CR6 doi: 10.1155/2021/5895156 – ident: 92293_CR51 – ident: 92293_CR24 doi: 10.1016/j.neuroscience.2025.01.020 – ident: 92293_CR20 doi: 10.1016/j.rineng.2024.103692 – volume: 22 start-page: 1134 year: 2022 ident: 92293_CR7 publication-title: Sensors doi: 10.3390/s22031134 – volume: 31 start-page: 1 issue: 1 year: 2025 ident: 92293_CR26 publication-title: Multimedia Syst. doi: 10.1007/s00530-024-01583-7 – ident: 92293_CR36 doi: 10.1007/s44174-024-00264-3 – ident: 92293_CR46 doi: 10.3390/app13010152 – ident: 92293_CR35 doi: 10.1016/j.compbiomed.2024.108483 – ident: 92293_CR37 doi: 10.1016/j.compbiomed.2024.108099 – volume: 316 start-page: 1 issue: 10 year: 2024 ident: 92293_CR39 publication-title: Arch. Dermatol. Res. doi: 10.1007/s00403-024-03484-1 – volume: 21 start-page: 1 year: 2021 ident: 92293_CR3 publication-title: BMC Med. Imaging doi: 10.1186/s12880-020-00534-8 – volume: 21 start-page: 252 year: 2021 ident: 92293_CR4 publication-title: Sensors doi: 10.3390/s21010252 – ident: 92293_CR21 doi: 10.34133/cbsystems.0102 – ident: 92293_CR16 doi: 10.3390/app13158927 – ident: 92293_CR40 doi: 10.3390/cancers17010137 – volume: 37 start-page: 6283 issue: 9 year: 2022 ident: 92293_CR19 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22844 – ident: 92293_CR29 doi: 10.1109/TMM.2024.3428349 – ident: 92293_CR56 – volume: 45 start-page: e61531 year: 2023 ident: 92293_CR14 publication-title: Acta Scientiarum Technol. doi: 10.4025/actascitechnol.v45i1.61531 – volume: 21 start-page: 72 issue: 1 year: 2025 ident: 92293_CR34 publication-title: Int. J. Bioinform. Res. Appl. doi: 10.1504/IJBRA.2025.144027 – ident: 92293_CR52 doi: 10.3390/cancers15072146 – volume: 5 start-page: e9473 issue: 2 year: 2024 ident: 92293_CR48 publication-title: Stud. Eng. Exact Sci. – ident: 92293_CR33 doi: 10.1038/s41598-024-61322-w – volume: 19 start-page: e0301275 issue: 5 year: 2024 ident: 92293_CR43 publication-title: Plos One doi: 10.1371/journal.pone.0301275 – ident: 92293_CR5 doi: 10.54216/IJNS.250106 – ident: 92293_CR13 doi: 10.1038/s41598-024-67424-9 – ident: 92293_CR45 doi: 10.1109/ACCESS.2024.3498606 – ident: 92293_CR31 doi: 10.1038/s41598-024-74186-x – ident: 92293_CR53 doi: 10.3390/app12052677 – ident: 92293_CR42 doi: 10.1016/j.patcog.2024.111182 – ident: 92293_CR17 doi: 10.1186/s12880-024-01356-8 – volume: 23 start-page: 186 issue: 2 year: 2024 ident: 92293_CR8 publication-title: Int. J. Neutrosophic Sci. doi: 10.54216/IJNS.230215 – ident: 92293_CR12 doi: 10.1016/j.bea.2022.100069 – volume: 30 start-page: 312 issue: 1 year: 2018 ident: 92293_CR49 publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2018.2838679 – ident: 92293_CR30 doi: 10.1007/s11042-025-20630-7 – volume: 6 start-page: 1 issue: 2 year: 2025 ident: 92293_CR28 publication-title: SN Comput. Sci. doi: 10.1007/s42979-024-03581-y – ident: 92293_CR41 doi: 10.1007/s13042-024-02110-w – volume: 54 start-page: 811 year: 2021 ident: 92293_CR1 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09865-y – ident: 92293_CR23 doi: 10.34133/cbsystems.0093 – ident: 92293_CR54 doi: 10.3390/s22186915 – ident: 92293_CR15 doi: 10.1007/s44174-024-00205-0 – ident: 92293_CR27 doi: 10.3389/fcvm.2024.1277123 |
| SSID | ssj0000529419 |
| Score | 2.4761047 |
| Snippet | Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major... Abstract Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7425 |
| SubjectTerms | 639/705/117 639/705/258 Algorithms Cancer Classification Convolutional Neural Networks Deep Learning Ensemble deep learning Feature extraction Gray Wolf optimization Humanities and Social Sciences Humans Image preprocessing Image Processing, Computer-Assisted - methods Long short-term memory multidisciplinary Science Science (multidisciplinary) Skin cancer Skin Cancer detection Skin diseases Skin lesions Skin Neoplasms - classification Skin Neoplasms - diagnosis Skin Neoplasms - diagnostic imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJuFgozEDawmsbOJjwVacYAVEg_1Zjn2uF1RstUmi4B_xL9kxk5Cl-eFa-Iotr-ZzIxn8g1jj0pKHWW6ERaNMQUoXtjGSkFJuXzutYbIePP-ZbVY1EdH-vW5Vl9UE5bogdPG7ZWhkKjM81JnVqG3XfvCZ6qpFXgMH2pHX9-s0ueCqcTqXWiV6-EvmUzWex1aKvqbrCiFLtDGiXzLEkXC_t95mb8WS_6UMY2G6PAquzJ4kHw_zfwauwDtdXYp9ZT8coN922_5cuLZ7HkYq684uqe8-7BsuSOk19xDH-uwWm5bzx250VQ3FKHiVA9_zMOGDtP4KvA3FPF-BXHw2Q2s3uI5RsCwgJ7TWS5_Bb09gU0ifhZ-TV9RTiM-NqeA74IzPnSoOOax_U53k707PHj77IUY-jEIV6q8FwU0AbRr0KnMK-ddGZS0VcCQy1vnJdTaq6ZqQgbWOgS5Qt8kz7wqlQXvQy1vsZ121cIdxiuLeu8yi1hS7hUarbwsVRVU5aFwesbyERszLot6ZpyamDSXtUl4GsTTRDxNPmOPp2fOElXHX0c_JcinkUSzHS-g8JlB-My_hG_GdkeBMYPud0bGhWPciat4ON1GraVUjG1htUljoqssZ-x2kq9pJor666EnN2P1luRtTXX7Trs8iczg1Dt-Lgtc3JNRSH_M6897cfd_7MU9drkg7aL6PLnLdvr1Bu6zi-5Tv-zWD6J6fgdb9j7w priority: 102 providerName: Directory of Open Access Journals |
| Title | An intelligent framework for skin cancer detection and classification using fusion of Squeeze-Excitation-DenseNet with Metaheuristic-driven ensemble deep learning models |
| URI | https://link.springer.com/article/10.1038/s41598-025-92293-1 https://www.ncbi.nlm.nih.gov/pubmed/40033075 https://www.proquest.com/docview/3173179569 https://www.proquest.com/docview/3173405753 https://pubmed.ncbi.nlm.nih.gov/PMC11876321 https://doaj.org/article/5f234676590a46068d2d04b84ed0268c |
| Volume | 15 |
| WOSCitedRecordID | wos001437310100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYChIv3McCozISb2AtiZ0mfkIbdAKJVhU3lafIsZ2uYqRdkiLgH_EvOce5TOWyF6TKD42r2snnc75zyTmEPIkwdOTLjClQxmigGKYyxRkG5YKRkdK6ijcf38TTaTKfy1nrcKvatMpOJjpBbVYafeSHoOfgA2xePl-fM-wahdHVtoXGDhkAswkwpWsSznofC0axRCDbd2V8nhxWoK_wnbIwYjIETceCLX3kyvb_jWv-mTL5W9zUqaOTm_-7kVvkRktE6VGDnNvkii3ukGtNa8rvd8nPo4Iu-3KdNc27JC4KLJdWn5cF1QiYkhpbu3SugqrCUI1sHNOP3BOnmFa_oPkGfXJ0ldN3aDj_sGz8TbfFwdlLMKTt1NYUXcJ0Ymt1ajdN_WhmShTGFGd8yc4s_Jdd07bRxYK6Lj7VPfLhZPz-xSvWtnVgOhJBzUKb5VbqDLhpEGujo1xwFedguRmlDbeJNCKLs9y3SmnACt6uwDciEsoakyd8j-wWq8LuExorEB_aV6FxIVybSWF4JOJcxMaGWnok6B5u2m0LW2-cpS72zpO0AUQKgEgdINLAI0_736ybih-Xzj5GzPQzsVq3-2JVLtL28KdRHnJQSKNI-kqAxZgYWLDIEmENmMCJ9shBB5W0FSFVeoETjzzuL8Phx4iOKuxq08xxjJt75H4D0H4lAtv0ASH0SLIF3a2lbl8plqeuwDi2oB_xEDb3rEP5xbr-fS8eXL6Nh-R6iAcPE_j4Admty419RK7qr_WyKodkJ57HbkyGZHA8ns7eDp2DZOjONI4xjIPZ68ns0y-9l1V7 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0CoFBBfej0ABI8GJWs3DaeIDQoW2atV2VYmCeguOPdmuKNllkwXKH3HhG5lxHtXy6K0HpJxiJxk7857xDGPPYgod-SoXGoUxGShW6FxHgoJywapVClzFm_e7yWCQHh6q_QX2szsLQ2mVHU90jNqODfnIV1DO4YXavHo1-SyoaxRFV7sWGg1a7MDJVzTZqpfb6_h_n4fh5sbBmy3RdhUQJpZBLULIC1AmR9UoSIw1cSEjnRRoOFhtbASpsjJP8sIHrQ2CSp8NfCtjqcHaIo3wvRfYRUmVxShVMNzvfToUNZOBas_m-FG6UqF8pDNsYSxUiJJVBHPyz7UJ-Jtu-2eK5m9xWif-Nq__bxt3g11rFW2-1lDGTbYA5S12uWm9eXKb_Vgr-agvR1rzoktS46jF8-rjqOSGCGLKLdQuXa3kurTckLVB6VUOozkdGxjyYkY-Rz4u-FtyDHwHsfHNtMXPxTqUFQyg5uTy5ntQ6yOYNfWxhZ2SsOE041N-DPgtmPC2kceQuy5F1R327lz26S5bLMcl3Gc80cgeja9D60LUkCtpo1gmhUwshEZ5LOiQKeuWRa1FjjOXWxClWYOAGSJg5hAwCzz2on9m0lQ0OXP2a8LRfiZVI3c3xtNh1jK3LC7CCAXuaqx8LdEiTi0CLPNUgkUTPzUeW-pQM2tZZJWd4qXHnvbDyNwoYqVLGM-aOc6iiDx2ryGIHhJJbQhR4fVYOkcqc6DOj5SjI1dAHY1qFKshLm65o6pTuP69Fw_OXsYTdmXrYG83290e7DxkV0MiekpWjJbYYj2dwSN2yXypR9X0seManH04b2r7BV7sr6I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKCogX7mOhgJHgCazs4e2uHxAqpBFR2ygSh9qnxWt704iyG7IboPwj_gK_jhnvUYWjb31AylPWScbOzHxzeYaQxyGmjlyRMglgjA6KZjKVAcOknLephTC248373Wg8jvf3xWSN_GzvwmBZZasTraLWhcIYeR9wDl5gzYt-1pRFTAbDF_PPDCdIYaa1HadRs8iOOf4K7lv5fDSA__qJ7w-33756zZoJA0yF3KuYb9LMCJWCmeRFSqsw44GMMnAitFQ6MLHQPI3SzDVSKiAbSfBczUMujdZZHMD3niPrYJJzv0fWJ6O9yUEX4cEcGvdEc1PHDeJ-CWiJN9r8kAkfcJZ5K2hohwb8zdL9s2Dzt6ytBcPhlf_5GK-Sy40JTrdqmblG1kx-nVyoh3Ie3yA_tnI66xqVVjRry9co2Pe0_DjLqUJRWVBtKlvIllOZa6rQD8HCK8vrFC8UTGm2xGgkLTL6BkMG3w3b_qaatuhsYPLSjE1FMRhO90wlD82y7pzN9AJhiOKKT-mRgd8yc9qM-JhSO7-ovEnenck53SK9vMjNHUIjCYpTudLXNnltUsF1EPIo45E2vhIO8VrGStpt4dCRo8RWHQRxUjNjAsyYWGZMPIc87T4zr3udnLr6JfJrtxL7lNs3isU0adReEmZ-AFC8GQpXcvCVYw0E8zTmRoPzHyuHbLRsmjTKs0xOeNQhj7rHoPYwlyVzUyzrNdbXCBxyuxaOjhKOAwrBFHZIvCI2K6SuPslnh7a1OrjbALg-bO5ZK2EndP37LO6evo2H5CIIWbI7Gu_cI5d8lH-sYgw2SK9aLM19cl59qWbl4kGjQij5cNbi9gvvh7nr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+framework+for+skin+cancer+detection+and+classification+using+fusion+of+Squeeze-Excitation-DenseNet+with+Metaheuristic-driven+ensemble+deep+learning+models&rft.jtitle=Scientific+reports&rft.date=2025-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=7425&rft_id=info:doi/10.1038%2Fs41598-025-92293-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |