An intelligent framework for skin cancer detection and classification using fusion of Squeeze-Excitation-DenseNet with Metaheuristic-driven ensemble deep learning models

Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 15; H. 1; S. 7425 - 23
Hauptverfasser: Dorathi Jayaseeli, J. D., Briskilal, J, Fancy, C., Vaitheeshwaran, V., Patibandla, R. S. M. Lakshmi, Syed, Khasim, Swain, Anil Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 03.03.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient’s health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models’ hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.
AbstractList Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.
Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient's health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models' hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.
Abstract Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient’s health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models’ hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.
ArticleNumber 7425
Author Dorathi Jayaseeli, J. D.
Patibandla, R. S. M. Lakshmi
Briskilal, J
Syed, Khasim
Vaitheeshwaran, V.
Fancy, C.
Swain, Anil Kumar
Author_xml – sequence: 1
  givenname: J. D.
  surname: Dorathi Jayaseeli
  fullname: Dorathi Jayaseeli, J. D.
  organization: Department of Computing Technologies, SRM Institute of Science and Technology
– sequence: 2
  givenname: J
  surname: Briskilal
  fullname: Briskilal, J
  organization: Department of Computing Technologies, Faculty of Engineering and Technology, SRM Institute of Science and Technology
– sequence: 3
  givenname: C.
  surname: Fancy
  fullname: Fancy, C.
  organization: Department of Networking and Communications, SRM Institute of Science and Technology
– sequence: 4
  givenname: V.
  surname: Vaitheeshwaran
  fullname: Vaitheeshwaran, V.
  organization: Department of Computer Science and Engineering, Aditya University
– sequence: 5
  givenname: R. S. M. Lakshmi
  surname: Patibandla
  fullname: Patibandla, R. S. M. Lakshmi
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
– sequence: 6
  givenname: Khasim
  surname: Syed
  fullname: Syed, Khasim
  email: profkhasim@gmail.com
  organization: School of Computer Science & Engineering, VIT - AP University
– sequence: 7
  givenname: Anil Kumar
  surname: Swain
  fullname: Swain, Anil Kumar
  organization: KIIT Deemed to be University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40033075$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAltiwCfg3iVeoagtUKrAA1pZjX894mtjFTlrgjXhLPDNtabtoNo7t7x4fX5_n1U6IAarqJcFvCWbdu8yJkF2NqaglpZLV5Em1RzEXNWWU7tz5360Ocl7h8gkqOZHPql2OMWO4FXvV38OAfJhgGPwCwoRc0iNcxXSOXEwon_uAjA4GErIwgZl8DEgHi8ygc_bOG71ZmrMPC-TKUCbRoW8_Z4A_UJ_8Mn7aIPUxhAxfYEJXflqizzDpJczJ58mb2iZ_CQGtibEfoJwFF2gAncJadowWhvyieur0kOHgetyvfnw4-X70qT77-vH06PCsNoKTqabQO5Cmx1KS1lgjHGe6dV1LrDaWQSct79veYdDaSCAtIy3BlguuwVrXsf3qdKtro16pi-RHnX6rqL3aLMS0UDoV0wMo4SjjTdsIiTVvcNNZajHvOw4W06YzRev9Vuti7kewpnQ46eGe6P2d4JdqES8VIV3bMEqKwptrhRRLT_OkRp9NeS4dIM5ZFfeMY9EKVtDXD9BVnFMovdpQpJWikYV6ddfSrZebSBSAbgGTYs4J3C1CsFpHT22jp0r01CZ6am2ze1B08-7lWn54vJRtS3M5Jywg_bf9SNU_7Wzx-w
CitedBy_id crossref_primary_10_48084_etasr_11234
Cites_doi 10.54216/IJNS.250113
10.3390/buildings14113695
10.12785/amis/072L10
10.1016/j.imu.2019.100282
10.1109/ATSIP49331.2020.9231544
10.1016/j.jestch.2024.101818
10.3390/biomedinformatics4010035
10.1016/j.advengsoft.2022.103361
10.3390/app14219735
10.1038/s41598-025-89230-7
10.1002/jemt.24792
10.1007/s10278-024-01140-8
10.1155/2021/5895156
10.1016/j.neuroscience.2025.01.020
10.1016/j.rineng.2024.103692
10.3390/s22031134
10.1007/s00530-024-01583-7
10.1007/s44174-024-00264-3
10.3390/app13010152
10.1016/j.compbiomed.2024.108483
10.1016/j.compbiomed.2024.108099
10.1007/s00403-024-03484-1
10.1186/s12880-020-00534-8
10.3390/s21010252
10.34133/cbsystems.0102
10.3390/app13158927
10.3390/cancers17010137
10.1002/int.22844
10.1109/TMM.2024.3428349
10.4025/actascitechnol.v45i1.61531
10.1504/IJBRA.2025.144027
10.3390/cancers15072146
10.1038/s41598-024-61322-w
10.1371/journal.pone.0301275
10.54216/IJNS.250106
10.1038/s41598-024-67424-9
10.1109/ACCESS.2024.3498606
10.1038/s41598-024-74186-x
10.3390/app12052677
10.1016/j.patcog.2024.111182
10.1186/s12880-024-01356-8
10.54216/IJNS.230215
10.1016/j.bea.2022.100069
10.1109/TNNLS.2018.2838679
10.1007/s11042-025-20630-7
10.1007/s42979-024-03581-y
10.1007/s13042-024-02110-w
10.1007/s10462-020-09865-y
10.34133/cbsystems.0093
10.3390/s22186915
10.1007/s44174-024-00205-0
10.3389/fcvm.2024.1277123
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-92293-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_5f234676590a46068d2d04b84ed0268c
PMC11876321
40033075
10_1038_s41598_025_92293_1
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-2ebfe9cb09917cdc5f43a7f871dacd3e89d4b7bf0eaac9e1731710d454aeddf83
IEDL.DBID M2P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001437310100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:24:54 EST 2025
Tue Nov 04 02:04:55 EST 2025
Thu Oct 02 11:16:38 EDT 2025
Tue Oct 07 08:05:26 EDT 2025
Mon Jul 21 05:19:06 EDT 2025
Tue Nov 18 20:58:51 EST 2025
Sat Nov 29 08:16:54 EST 2025
Tue Mar 04 01:16:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ensemble deep learning
Feature extraction
Gray Wolf optimization
Image preprocessing
Skin Cancer detection
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-2ebfe9cb09917cdc5f43a7f871dacd3e89d4b7bf0eaac9e1731710d454aeddf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3173179569?pq-origsite=%requestingapplication%
PMID 40033075
PQID 3173179569
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_5f234676590a46068d2d04b84ed0268c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11876321
proquest_miscellaneous_3173405753
proquest_journals_3173179569
pubmed_primary_40033075
crossref_primary_10_1038_s41598_025_92293_1
crossref_citationtrail_10_1038_s41598_025_92293_1
springer_journals_10_1038_s41598_025_92293_1
PublicationCentury 2000
PublicationDate 2025-03-03
PublicationDateYYYYMMDD 2025-03-03
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 92293_CR40
92293_CR47
92293_CR46
92293_CR45
92293_CR42
92293_CR41
MF Jojoa Acosta (92293_CR3) 2021; 21
92293_CR9
92293_CR5
L Rey-Barroso (92293_CR4) 2021; 21
92293_CR6
M Abou Ali (92293_CR55) 2024; 4
92293_CR38
M Hosseinzadeh (92293_CR43) 2024; 19
JP Sainudeen (92293_CR34) 2025; 21
92293_CR51
92293_CR50
92293_CR15
92293_CR13
92293_CR12
92293_CR56
92293_CR11
92293_CR10
92293_CR54
92293_CR53
92293_CR52
N Fares (92293_CR48) 2024; 5
Z Wu (92293_CR39) 2024; 316
CY Yu (92293_CR44) 2013; 7
92293_CR25
92293_CR24
H Huang (92293_CR19) 2022; 37
92293_CR23
92293_CR22
A Adegun (92293_CR1) 2021; 54
92293_CR21
92293_CR20
92293_CR18
92293_CR17
92293_CR16
MA Khan (92293_CR28) 2025; 6
ZY Algamal (92293_CR8) 2024; 23
R Kaur (92293_CR7) 2022; 22
S Albawi (92293_CR14) 2023; 45
92293_CR37
92293_CR36
92293_CR35
92293_CR33
92293_CR32
92293_CR31
92293_CR30
A Majumdar (92293_CR49) 2018; 30
92293_CR29
92293_CR27
SUR Khan (92293_CR26) 2025; 31
MA Kadampur (92293_CR2) 2020; 18
References_xml – ident: 92293_CR22
– ident: 92293_CR10
  doi: 10.54216/IJNS.250113
– ident: 92293_CR50
  doi: 10.3390/buildings14113695
– volume: 7
  start-page: 449
  year: 2013
  ident: 92293_CR44
  publication-title: Appl. Math. Inform. Sci.
  doi: 10.12785/amis/072L10
– volume: 18
  start-page: 100282
  year: 2020
  ident: 92293_CR2
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2019.100282
– ident: 92293_CR9
  doi: 10.1109/ATSIP49331.2020.9231544
– ident: 92293_CR11
  doi: 10.1016/j.jestch.2024.101818
– volume: 4
  start-page: 638
  issue: 1
  year: 2024
  ident: 92293_CR55
  publication-title: BioMedInformatics
  doi: 10.3390/biomedinformatics4010035
– ident: 92293_CR18
  doi: 10.1016/j.advengsoft.2022.103361
– ident: 92293_CR47
  doi: 10.3390/app14219735
– ident: 92293_CR32
  doi: 10.1038/s41598-025-89230-7
– ident: 92293_CR38
  doi: 10.1002/jemt.24792
– ident: 92293_CR25
  doi: 10.1007/s10278-024-01140-8
– ident: 92293_CR6
  doi: 10.1155/2021/5895156
– ident: 92293_CR51
– ident: 92293_CR24
  doi: 10.1016/j.neuroscience.2025.01.020
– ident: 92293_CR20
  doi: 10.1016/j.rineng.2024.103692
– volume: 22
  start-page: 1134
  year: 2022
  ident: 92293_CR7
  publication-title: Sensors
  doi: 10.3390/s22031134
– volume: 31
  start-page: 1
  issue: 1
  year: 2025
  ident: 92293_CR26
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-024-01583-7
– ident: 92293_CR36
  doi: 10.1007/s44174-024-00264-3
– ident: 92293_CR46
  doi: 10.3390/app13010152
– ident: 92293_CR35
  doi: 10.1016/j.compbiomed.2024.108483
– ident: 92293_CR37
  doi: 10.1016/j.compbiomed.2024.108099
– volume: 316
  start-page: 1
  issue: 10
  year: 2024
  ident: 92293_CR39
  publication-title: Arch. Dermatol. Res.
  doi: 10.1007/s00403-024-03484-1
– volume: 21
  start-page: 1
  year: 2021
  ident: 92293_CR3
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-020-00534-8
– volume: 21
  start-page: 252
  year: 2021
  ident: 92293_CR4
  publication-title: Sensors
  doi: 10.3390/s21010252
– ident: 92293_CR21
  doi: 10.34133/cbsystems.0102
– ident: 92293_CR16
  doi: 10.3390/app13158927
– ident: 92293_CR40
  doi: 10.3390/cancers17010137
– volume: 37
  start-page: 6283
  issue: 9
  year: 2022
  ident: 92293_CR19
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22844
– ident: 92293_CR29
  doi: 10.1109/TMM.2024.3428349
– ident: 92293_CR56
– volume: 45
  start-page: e61531
  year: 2023
  ident: 92293_CR14
  publication-title: Acta Scientiarum Technol.
  doi: 10.4025/actascitechnol.v45i1.61531
– volume: 21
  start-page: 72
  issue: 1
  year: 2025
  ident: 92293_CR34
  publication-title: Int. J. Bioinform. Res. Appl.
  doi: 10.1504/IJBRA.2025.144027
– ident: 92293_CR52
  doi: 10.3390/cancers15072146
– volume: 5
  start-page: e9473
  issue: 2
  year: 2024
  ident: 92293_CR48
  publication-title: Stud. Eng. Exact Sci.
– ident: 92293_CR33
  doi: 10.1038/s41598-024-61322-w
– volume: 19
  start-page: e0301275
  issue: 5
  year: 2024
  ident: 92293_CR43
  publication-title: Plos One
  doi: 10.1371/journal.pone.0301275
– ident: 92293_CR5
  doi: 10.54216/IJNS.250106
– ident: 92293_CR13
  doi: 10.1038/s41598-024-67424-9
– ident: 92293_CR45
  doi: 10.1109/ACCESS.2024.3498606
– ident: 92293_CR31
  doi: 10.1038/s41598-024-74186-x
– ident: 92293_CR53
  doi: 10.3390/app12052677
– ident: 92293_CR42
  doi: 10.1016/j.patcog.2024.111182
– ident: 92293_CR17
  doi: 10.1186/s12880-024-01356-8
– volume: 23
  start-page: 186
  issue: 2
  year: 2024
  ident: 92293_CR8
  publication-title: Int. J. Neutrosophic Sci.
  doi: 10.54216/IJNS.230215
– ident: 92293_CR12
  doi: 10.1016/j.bea.2022.100069
– volume: 30
  start-page: 312
  issue: 1
  year: 2018
  ident: 92293_CR49
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2838679
– ident: 92293_CR30
  doi: 10.1007/s11042-025-20630-7
– volume: 6
  start-page: 1
  issue: 2
  year: 2025
  ident: 92293_CR28
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-024-03581-y
– ident: 92293_CR41
  doi: 10.1007/s13042-024-02110-w
– volume: 54
  start-page: 811
  year: 2021
  ident: 92293_CR1
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09865-y
– ident: 92293_CR23
  doi: 10.34133/cbsystems.0093
– ident: 92293_CR54
  doi: 10.3390/s22186915
– ident: 92293_CR15
  doi: 10.1007/s44174-024-00205-0
– ident: 92293_CR27
  doi: 10.3389/fcvm.2024.1277123
SSID ssj0000529419
Score 2.4761047
Snippet Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major...
Abstract Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7425
SubjectTerms 639/705/117
639/705/258
Algorithms
Cancer
Classification
Convolutional Neural Networks
Deep Learning
Ensemble deep learning
Feature extraction
Gray Wolf optimization
Humanities and Social Sciences
Humans
Image preprocessing
Image Processing, Computer-Assisted - methods
Long short-term memory
multidisciplinary
Science
Science (multidisciplinary)
Skin cancer
Skin Cancer detection
Skin diseases
Skin lesions
Skin Neoplasms - classification
Skin Neoplasms - diagnosis
Skin Neoplasms - diagnostic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJuFgozEDawmsbOJjwVacYAVEg_1Zjn2uF1RstUmi4B_xL9kxk5Cl-eFa-Iotr-ZzIxn8g1jj0pKHWW6ERaNMQUoXtjGSkFJuXzutYbIePP-ZbVY1EdH-vW5Vl9UE5bogdPG7ZWhkKjM81JnVqG3XfvCZ6qpFXgMH2pHX9-s0ueCqcTqXWiV6-EvmUzWex1aKvqbrCiFLtDGiXzLEkXC_t95mb8WS_6UMY2G6PAquzJ4kHw_zfwauwDtdXYp9ZT8coN922_5cuLZ7HkYq684uqe8-7BsuSOk19xDH-uwWm5bzx250VQ3FKHiVA9_zMOGDtP4KvA3FPF-BXHw2Q2s3uI5RsCwgJ7TWS5_Bb09gU0ifhZ-TV9RTiM-NqeA74IzPnSoOOax_U53k707PHj77IUY-jEIV6q8FwU0AbRr0KnMK-ddGZS0VcCQy1vnJdTaq6ZqQgbWOgS5Qt8kz7wqlQXvQy1vsZ121cIdxiuLeu8yi1hS7hUarbwsVRVU5aFwesbyERszLot6ZpyamDSXtUl4GsTTRDxNPmOPp2fOElXHX0c_JcinkUSzHS-g8JlB-My_hG_GdkeBMYPud0bGhWPciat4ON1GraVUjG1htUljoqssZ-x2kq9pJor666EnN2P1luRtTXX7Trs8iczg1Dt-Lgtc3JNRSH_M6897cfd_7MU9drkg7aL6PLnLdvr1Bu6zi-5Tv-zWD6J6fgdb9j7w
  priority: 102
  providerName: Directory of Open Access Journals
Title An intelligent framework for skin cancer detection and classification using fusion of Squeeze-Excitation-DenseNet with Metaheuristic-driven ensemble deep learning models
URI https://link.springer.com/article/10.1038/s41598-025-92293-1
https://www.ncbi.nlm.nih.gov/pubmed/40033075
https://www.proquest.com/docview/3173179569
https://www.proquest.com/docview/3173405753
https://pubmed.ncbi.nlm.nih.gov/PMC11876321
https://doaj.org/article/5f234676590a46068d2d04b84ed0268c
Volume 15
WOSCitedRecordID wos001437310100032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYChIv3McCozISb2AtiZ0mfkIbdAKJVhU3lafIsZ2uYqRdkiLgH_EvOce5TOWyF6TKD42r2snnc75zyTmEPIkwdOTLjClQxmigGKYyxRkG5YKRkdK6ijcf38TTaTKfy1nrcKvatMpOJjpBbVYafeSHoOfgA2xePl-fM-wahdHVtoXGDhkAswkwpWsSznofC0axRCDbd2V8nhxWoK_wnbIwYjIETceCLX3kyvb_jWv-mTL5W9zUqaOTm_-7kVvkRktE6VGDnNvkii3ukGtNa8rvd8nPo4Iu-3KdNc27JC4KLJdWn5cF1QiYkhpbu3SugqrCUI1sHNOP3BOnmFa_oPkGfXJ0ldN3aDj_sGz8TbfFwdlLMKTt1NYUXcJ0Ymt1ajdN_WhmShTGFGd8yc4s_Jdd07bRxYK6Lj7VPfLhZPz-xSvWtnVgOhJBzUKb5VbqDLhpEGujo1xwFedguRmlDbeJNCKLs9y3SmnACt6uwDciEsoakyd8j-wWq8LuExorEB_aV6FxIVybSWF4JOJcxMaGWnok6B5u2m0LW2-cpS72zpO0AUQKgEgdINLAI0_736ybih-Xzj5GzPQzsVq3-2JVLtL28KdRHnJQSKNI-kqAxZgYWLDIEmENmMCJ9shBB5W0FSFVeoETjzzuL8Phx4iOKuxq08xxjJt75H4D0H4lAtv0ASH0SLIF3a2lbl8plqeuwDi2oB_xEDb3rEP5xbr-fS8eXL6Nh-R6iAcPE_j4Admty419RK7qr_WyKodkJ57HbkyGZHA8ns7eDp2DZOjONI4xjIPZ68ns0y-9l1V7
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0CoFBBfej0ABI8GJWs3DaeIDQoW2atV2VYmCeguOPdmuKNllkwXKH3HhG5lxHtXy6K0HpJxiJxk7857xDGPPYgod-SoXGoUxGShW6FxHgoJywapVClzFm_e7yWCQHh6q_QX2szsLQ2mVHU90jNqODfnIV1DO4YXavHo1-SyoaxRFV7sWGg1a7MDJVzTZqpfb6_h_n4fh5sbBmy3RdhUQJpZBLULIC1AmR9UoSIw1cSEjnRRoOFhtbASpsjJP8sIHrQ2CSp8NfCtjqcHaIo3wvRfYRUmVxShVMNzvfToUNZOBas_m-FG6UqF8pDNsYSxUiJJVBHPyz7UJ-Jtu-2eK5m9xWif-Nq__bxt3g11rFW2-1lDGTbYA5S12uWm9eXKb_Vgr-agvR1rzoktS46jF8-rjqOSGCGLKLdQuXa3kurTckLVB6VUOozkdGxjyYkY-Rz4u-FtyDHwHsfHNtMXPxTqUFQyg5uTy5ntQ6yOYNfWxhZ2SsOE041N-DPgtmPC2kceQuy5F1R327lz26S5bLMcl3Gc80cgeja9D60LUkCtpo1gmhUwshEZ5LOiQKeuWRa1FjjOXWxClWYOAGSJg5hAwCzz2on9m0lQ0OXP2a8LRfiZVI3c3xtNh1jK3LC7CCAXuaqx8LdEiTi0CLPNUgkUTPzUeW-pQM2tZZJWd4qXHnvbDyNwoYqVLGM-aOc6iiDx2ryGIHhJJbQhR4fVYOkcqc6DOj5SjI1dAHY1qFKshLm65o6pTuP69Fw_OXsYTdmXrYG83290e7DxkV0MiekpWjJbYYj2dwSN2yXypR9X0seManH04b2r7BV7sr6I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxELZKCogX7mOhgJHgCazs4e2uHxAqpBFR2ygSh9qnxWt704iyG7IboPwj_gK_jhnvUYWjb31AylPWScbOzHxzeYaQxyGmjlyRMglgjA6KZjKVAcOknLephTC248373Wg8jvf3xWSN_GzvwmBZZasTraLWhcIYeR9wDl5gzYt-1pRFTAbDF_PPDCdIYaa1HadRs8iOOf4K7lv5fDSA__qJ7w-33756zZoJA0yF3KuYb9LMCJWCmeRFSqsw44GMMnAitFQ6MLHQPI3SzDVSKiAbSfBczUMujdZZHMD3niPrYJJzv0fWJ6O9yUEX4cEcGvdEc1PHDeJ-CWiJN9r8kAkfcJZ5K2hohwb8zdL9s2Dzt6ytBcPhlf_5GK-Sy40JTrdqmblG1kx-nVyoh3Ie3yA_tnI66xqVVjRry9co2Pe0_DjLqUJRWVBtKlvIllOZa6rQD8HCK8vrFC8UTGm2xGgkLTL6BkMG3w3b_qaatuhsYPLSjE1FMRhO90wlD82y7pzN9AJhiOKKT-mRgd8yc9qM-JhSO7-ovEnenck53SK9vMjNHUIjCYpTudLXNnltUsF1EPIo45E2vhIO8VrGStpt4dCRo8RWHQRxUjNjAsyYWGZMPIc87T4zr3udnLr6JfJrtxL7lNs3isU0adReEmZ-AFC8GQpXcvCVYw0E8zTmRoPzHyuHbLRsmjTKs0xOeNQhj7rHoPYwlyVzUyzrNdbXCBxyuxaOjhKOAwrBFHZIvCI2K6SuPslnh7a1OrjbALg-bO5ZK2EndP37LO6evo2H5CIIWbI7Gu_cI5d8lH-sYgw2SK9aLM19cl59qWbl4kGjQij5cNbi9gvvh7nr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+framework+for+skin+cancer+detection+and+classification+using+fusion+of+Squeeze-Excitation-DenseNet+with+Metaheuristic-driven+ensemble+deep+learning+models&rft.jtitle=Scientific+reports&rft.date=2025-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=7425&rft_id=info:doi/10.1038%2Fs41598-025-92293-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon