Computational methods of EEG signals analysis for Alzheimer’s disease classification
Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for A...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 13; H. 1; S. 8184 - 14 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
20.05.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients. |
|---|---|
| AbstractList | Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients.Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients. Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients. Abstract Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease (AD). AD is a progressive neurological illness that causes neuron cells degeneration, resulting in cognitive impairment. While there is no cure for AD, early diagnosis is critical to improving the quality of life of affected individuals. Here, we apply six computational time-series analysis methods (wavelet coherence, fractal dimension, quadratic entropy, wavelet energy, quantile graphs and visibility graphs) to EEG records from 160 AD patients and 24 healthy controls. Results from raw and wavelet-filtered (alpha, beta, theta and delta bands) EEG signals show that some of the time-series analysis methods tested here, such as wavelet coherence and quantile graphs, can robustly discriminate between AD patients from elderly healthy subjects. They represent a promising non-invasive and low-cost approach to the AD detection in elderly patients. |
| ArticleNumber | 8184 |
| Author | Campanharo, Andriana S. L. O. Ramos, Fernando M. Betting, Luiz E. Vicchietti, Mário L. |
| Author_xml | – sequence: 1 givenname: Mário L. surname: Vicchietti fullname: Vicchietti, Mário L. organization: Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University – sequence: 2 givenname: Fernando M. surname: Ramos fullname: Ramos, Fernando M. organization: National Institute for Space Research, Earth System Science Center – sequence: 3 givenname: Luiz E. surname: Betting fullname: Betting, Luiz E. organization: Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University – sequence: 4 givenname: Andriana S. L. O. surname: Campanharo fullname: Campanharo, Andriana S. L. O. email: andriana.campanharo@unesp.br organization: Department of Biodiversity and Biostatistics, Institute of Biosciences, São Paulo State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37210397$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ksFu1DAURSNUREvpD7BAkdiwCfg5dhyvUDUaSqVKbICt5djPMx4l8WBnKpUVv8Hv8SV4JqW0XdQLO3q-9-TZvi-LozGMWBSvgbwHUrcfEgMu24rQuqpp07CqfVacUMJ4RWtKj-59HxdnKW1IHpxKBvJFcVwLmiFSnBTfF2HY7iY9-TDqvhxwWgebyuDK5fKiTH6Vq6nUeb5JPpUuxPK8_7lGP2D88-t3Kq1PqBOWptcpeefNAfWqeO6yEc9u19Pi26fl18Xn6urLxeXi_KoynMFUUdm1khvgLbUdWM0ccmdsAxYEMEQw6JoWOAUGzgohbINCEGg5d_tafVpczlwb9EZtox90vFFBe3UohLhSOk7e9KiQMN1JS4TtaiaNkI11nSMUEWW-mTazPs6s7a4b0Bocp6j7B9CHO6Nfq1W4VkBASslIJry7JcTwY4dpUoNPBvtejxh2SdEWGtEAB5qlbx9JN2EX95d9UFFG6aGlN_dbuuvl3_tlAZ0FJoaUIro7CRC1z4mac6JyTtQhJ2pPbR-ZjJ8TkI_l-6et9WxN-T_jCuP_tp9w_QXRItJq |
| CitedBy_id | crossref_primary_10_1109_LSENS_2024_3457243 crossref_primary_10_3389_fnhum_2023_1333965 crossref_primary_10_1016_j_bspc_2024_107380 crossref_primary_10_1038_s41598_024_63180_y crossref_primary_10_1016_j_bspc_2025_107566 crossref_primary_10_1109_ACCESS_2024_3438081 crossref_primary_10_3390_s25092881 crossref_primary_10_62762_TETAI_2025_713474 crossref_primary_10_3389_fnagi_2024_1486481 crossref_primary_10_1016_j_brainresbull_2025_111281 crossref_primary_10_1007_s40031_025_01259_4 crossref_primary_10_1016_j_compbiomed_2025_110248 crossref_primary_10_1088_1741_2552_ad8e86 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1016_j_compbiomed_2024_108871 crossref_primary_10_1016_j_aei_2024_103086 crossref_primary_10_1016_j_dajour_2023_100336 crossref_primary_10_1177_09544119241228912 crossref_primary_10_3390_s24206721 crossref_primary_10_1140_epjs_s11734_024_01348_3 crossref_primary_10_1007_s11571_024_10198_7 crossref_primary_10_1016_j_compbiomed_2024_108951 crossref_primary_10_3389_fnins_2025_1607248 crossref_primary_10_1007_s42235_024_00636_x crossref_primary_10_1016_j_compbiomed_2025_111041 crossref_primary_10_3390_math12142204 crossref_primary_10_1016_j_bspc_2025_108601 crossref_primary_10_1016_j_bspc_2023_105751 crossref_primary_10_1038_s41514_025_00243_y crossref_primary_10_3389_fnins_2023_1268485 crossref_primary_10_3390_app15063015 crossref_primary_10_1038_s41598_025_06519_3 crossref_primary_10_3390_brainsci14050487 crossref_primary_10_1016_j_inffus_2025_102936 |
| Cites_doi | 10.1016/0013-4694(94)90033-7 10.1016/S0140-6736(20)30367-6 10.1371/journal.pone.0231169 10.1159/000507078 10.1016/j.physa.2015.09.094 10.1016/j.neuroimage.2018.10.003 10.1371/journal.pone.0023378 10.1038/s41598-019-46633-7 10.1111/j.1365-2796.2004.01388.x 10.1097/WAD.0b013e3181ed1160 10.1073/pnas.0709247105 10.1016/S0987-7053(01)00254-4 10.1371/journal.pone.0193607 10.1016/j.medengphy.2008.06.010 10.1037/0735-7044.110.6.1235 10.21608/mjeer.2019.64927 10.1142/3823 10.1016/j.clinph.2004.01.001 10.1177/155005940503600303 10.1159/000107183 10.1109/TBME.2019.2898871 10.1016/0167-8760(84)90014-X 10.1016/j.neunet.2019.12.006 10.4097/kjae.2017.70.1.22 10.1016/j.patrec.2020.03.009 10.1016/j.nic.2005.09.005 10.1016/S0013-4694(97)00129-6 10.1016/j.procs.2016.09.236 10.1152/ajpheart.00561.2010 10.1007/s10959-005-7541-3 10.1212/WNL.65.6_suppl_3.S10 10.1007/s00702-010-0450-3 10.1016/j.cmpb.2017.02.002 10.1016/j.neurobiolaging.2006.06.006 10.1007/s11571-018-9501-5 10.1007/978-981-13-0908-3 10.1097/NEN.0b013e318232a379 10.1063/1.4927835 10.2174/156720510792231720 10.1016/j.neunet.2020.06.018 10.1016/0010-4825(88)90041-8 10.1049/htl.2014.0106 10.1007/s11571-014-9325-x 10.1088/0967-3334/27/3/003 10.3389/fneur.2015.00025 10.1038/nn.4497 10.3390/e18010008 10.1201/b16046 10.2741/4587 10.1016/j.jocn.2018.11.027 10.2214/ajr.184.2.01840364 10.1016/j.neuroimage.2019.05.048 10.1007/s11063-018-9936-z 10.1016/j.clinph.2020.03.003 10.1111/psyp.12283 10.1007/s13246-015-0333-x 10.1007/s10916-008-9219-8 10.1016/j.jneumeth.2010.01.029 10.1016/0167-2789(88)90081-4 10.1016/j.jneumeth.2005.10.009 10.1109/CCSP.2005.4977207 10.1145/1543834.1543860 10.1155/2018/8915079 10.11113/jt.v72.3886 10.1152/ajpheart.2000.278.6.H2039 10.1137/1.9781611970104 10.1007/978-3-319-59147-6_9 10.1155/2014/349249 10.1109/IEMBS.2010.5627621 10.1007/978-3-030-20521-8_10 10.21203/rs.3.rs-2371230/v1 10.1109/EMBC.2015.7320104 10.1007/978-981-13-0908-3_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-32664-8 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_e04ab9d07db349c796dfbf02eee90528 PMC10199940 37210397 10_1038_s41598_023_32664_8 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88887.602913/2021-00 funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2018/25358-9 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: ; grantid: 2018/25358-9 – fundername: ; grantid: 88887.602913/2021-00 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-29b895c1582db1da4fe5fcd61d1714ee1cef68152141fd777d6e7701855f21413 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993082000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:52:02 EDT 2025 Tue Nov 04 02:07:33 EST 2025 Fri Sep 05 11:20:45 EDT 2025 Tue Oct 07 09:11:54 EDT 2025 Thu Apr 03 07:03:09 EDT 2025 Sat Nov 29 06:34:06 EST 2025 Tue Nov 18 21:57:10 EST 2025 Fri Feb 21 02:39:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-29b895c1582db1da4fe5fcd61d1714ee1cef68152141fd777d6e7701855f21413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2816242228?pq-origsite=%requestingapplication% |
| PMID | 37210397 |
| PQID | 2816242228 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e04ab9d07db349c796dfbf02eee90528 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10199940 proquest_miscellaneous_2816761512 proquest_journals_2816242228 pubmed_primary_37210397 crossref_primary_10_1038_s41598_023_32664_8 crossref_citationtrail_10_1038_s41598_023_32664_8 springer_journals_10_1038_s41598_023_32664_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-20 |
| PublicationDateYYYYMMDD | 2023-05-20 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Braak, Thal, Ghebremedhin, Del Tredici (CR8) 2011; 70 Sharma, Patel, Acharya (CR12) 2020; 133 Diks (CR57) 1999 Cohen (CR49) 2019; 199 Chandrasekhar, Dimri, Gadre (CR55) 2013 Lopes, Perani, Yaakub, Richardson, Goodfellow, Terry (CR27) 2019; 9 Gómez, Mediavilla, Hornero, Abásolo, Fernández (CR58) 2009; 31 CR36 Jeong, Kim, Song, Chung, Jeong (CR56) 2016; 18 Chavan, Kolte (CR50) 2011; 3 CR76 CR74 Van der Hiele (CR15) 2007; 28 CR71 Ieracitano, Mammone, Hussain, Morabito (CR10) 2020; 123 Nasrolahzadeh, Mohammadpoory, Haddadnia (CR73) 2019; 13 Locatelli, Cursi, Liberati, Franceschi, Comi (CR78) 1998; 106 Jackson, Bolger (CR20) 2014; 51 Martin, Velayudhan (CR7) 2020; 49 Campanharo, Ramos (CR39) 2016; 444 Pritchard, Duke, Coburn, Moore, Tucker, Jann, Hostetler (CR41) 1994; 91 Abásolo, Hornero, Espino, Alvarez, Poza (CR31) 2006; 27 Pham, Elfiqi, Knecht, Wersching, Baune, Berger (CR62) 2010; 188 Feldman, Woodward (CR9) 2005; 65 CR3 Im (CR25) 2018 Lake, Moorman (CR66) 2011; 300 Shoka, Dessouky, El-Sherbeny, El-Sayed (CR43) 2019; 28 CR46 CR45 Jeong (CR75) 2004; 115 CR44 CR42 Breakspear (CR24) 2017; 20 Yang, Bornot, Wong-Lin, Prasad (CR13) 2019; 66 Horvath, Szucs, Csukly, Sakovics, Stefanics, Kamondi (CR22) 2018; 23 Ahmadlou, Adeli, Adeli (CR52) 2010; 117 Pascual-Marqui, Michel, Lehmann (CR81) 1994; 18 Obuchowski (CR53) 2005; 184 CR19 Rosso, Martin, Figliola, Keller, Plastino (CR69) 2006; 153 CR18 CR17 Adeli, Ghosh-Dastidar, Dadmehr (CR26) 2005; 36 CR14 Campanharo, Sirer, Malmgren, Ramos, Amaral (CR70) 2011; 6 Katz (CR60) 1988; 18 Kim (CR54) 2017; 70 Grossi, Olivieri, Buscema (CR28) 2017; 142 Davatzikos (CR11) 2019; 197 Rao (CR61) 2005; 18 Petersen (CR5) 2004; 256 Husain, Garrett (CR16) 2005; 15 Song (CR48) 2017 Campanharo, Doescher, Ramos (CR30) 2020; 52 Simons, Abasolo, Escudero (CR63) 2015; 2 Helkala, Hänninen, Hallikainen, Könönen, Laakso, Hartikainen, Soininen, Partanen, Partanen, Vainio (CR79) 1996; 110 Lan, Mo, Chen, Liu, Deng (CR38) 2015; 25 Kang, Chen, Li, Li (CR32) 2019; 62 Sanei, Chambers (CR21) 2013 Rodrigues, Teixeira, Garrett, Alves, Freitas (CR1) 2016; 100 Rossini (CR6) 2020; 131 Shah, Zhang, Bais (CR29) 2020; 130 Neto, Allen, Aurlien, Nordby, Eichele (CR34) 2015; 6 Pritchard, Duke, Coburn (CR40) 1991; 2 CR68 Ahmadlou, Adeli, Adeli (CR80) 2011; 25 CR23 CR67 Wang, Wang, Yu, Wei, Yang, Deng (CR33) 2015; 9 CR65 CR64 Bennys, Rondouin, Vergnes, Touchon (CR77) 2001; 31 Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (CR2) 2018; 13 Pineda, Ramos, Betting, Campanharo (CR37) 2020; 15 Higuchi (CR59) 1988; 31 Livingston, Huntley, Sommerlad, Ames, Ballard, Banerjee, Brayne, Burns, Cohen-Mansfield, Cooper (CR4) 2020; 396 Canal (CR47) 2010; 34 Lacasa, Luque, Ballesteros, Luque, Nuno (CR72) 2008; 105 Dauwels, Vialatte, Cichocki (CR51) 2010; 7 Amin, Malik, Ahmad, Badruddin, Kamel, Hussain, Chooi (CR35) 2015; 38 MA Lopes (32664_CR27) 2019; 9 X Lan (32664_CR38) 2015; 25 32664_CR19 32664_CR18 H Song (32664_CR48) 2017 C Gómez (32664_CR58) 2009; 31 M Ahmadlou (32664_CR52) 2010; 117 A Horvath (32664_CR22) 2018; 23 E Martin (32664_CR7) 2020; 49 C Ieracitano (32664_CR10) 2020; 123 DE Lake (32664_CR66) 2011; 300 G Livingston (32664_CR4) 2020; 396 R Wang (32664_CR33) 2015; 9 32664_CR64 D-H Jeong (32664_CR56) 2016; 18 ASLO Campanharo (32664_CR39) 2016; 444 E Chandrasekhar (32664_CR55) 2013 32664_CR65 32664_CR68 32664_CR23 32664_CR67 L Lacasa (32664_CR72) 2008; 105 AS Chavan (32664_CR50) 2011; 3 S Yang (32664_CR13) 2019; 66 MR Canal (32664_CR47) 2010; 34 PM Rodrigues (32664_CR1) 2016; 100 RD Pascual-Marqui (32664_CR81) 1994; 18 H Braak (32664_CR8) 2011; 70 M Nasrolahzadeh (32664_CR73) 2019; 13 N Houmani (32664_CR2) 2018; 13 WS Pritchard (32664_CR40) 1991; 2 PM Rossini (32664_CR6) 2020; 131 32664_CR14 MJ Katz (32664_CR60) 1988; 18 32664_CR17 J Dauwels (32664_CR51) 2010; 7 E-L Helkala (32664_CR79) 1996; 110 M Rao (32664_CR61) 2005; 18 T Higuchi (32664_CR59) 1988; 31 NA Obuchowski (32664_CR53) 2005; 184 T Locatelli (32664_CR78) 1998; 106 AF Jackson (32664_CR20) 2014; 51 32664_CR3 M Breakspear (32664_CR24) 2017; 20 CH Im (32664_CR25) 2018 ASLO Campanharo (32664_CR70) 2011; 6 S Simons (32664_CR63) 2015; 2 32664_CR42 MM Husain (32664_CR16) 2005; 15 SAA Shah (32664_CR29) 2020; 130 ASLO Campanharo (32664_CR30) 2020; 52 MX Cohen (32664_CR49) 2019; 199 TK Kim (32664_CR54) 2017; 70 D Abásolo (32664_CR31) 2006; 27 O Rosso (32664_CR69) 2006; 153 M Ahmadlou (32664_CR80) 2011; 25 32664_CR44 32664_CR46 32664_CR45 TD Pham (32664_CR62) 2010; 188 K Van der Hiele (32664_CR15) 2007; 28 M Sharma (32664_CR12) 2020; 133 WS Pritchard (32664_CR41) 1994; 91 H Adeli (32664_CR26) 2005; 36 C Diks (32664_CR57) 1999 S Sanei (32664_CR21) 2013 K Bennys (32664_CR77) 2001; 31 AM Pineda (32664_CR37) 2020; 15 J Jeong (32664_CR75) 2004; 115 C Davatzikos (32664_CR11) 2019; 197 HU Amin (32664_CR35) 2015; 38 32664_CR74 J Kang (32664_CR32) 2019; 62 E Grossi (32664_CR28) 2017; 142 32664_CR71 H Feldman (32664_CR9) 2005; 65 RC Petersen (32664_CR5) 2004; 256 32664_CR36 E Neto (32664_CR34) 2015; 6 A Shoka (32664_CR43) 2019; 28 32664_CR76 |
| References_xml | – volume: 91 start-page: 118 issue: 2 year: 1994 end-page: 130 ident: CR41 article-title: EEG-based, neural-net predictive classification of Alzheimer’s disease versus control subjects is augmented by non-linear EEG measures publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90033-7 – ident: CR45 – volume: 396 start-page: 413 issue: 10248 year: 2020 end-page: 446 ident: CR4 article-title: Dementia prevention, intervention, and care: 2020 Report of the Lancet Commission publication-title: Lancet doi: 10.1016/S0140-6736(20)30367-6 – volume: 15 issue: 6 year: 2020 ident: CR37 article-title: Quantile graphs for EEG-based diagnosis of Alzheimer’s disease publication-title: PLoS ONE doi: 10.1371/journal.pone.0231169 – volume: 49 start-page: 146 issue: 2 year: 2020 end-page: 155 ident: CR7 article-title: Neuropsychiatric symptoms in mild cognitive impairment: A literature review publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000507078 – ident: CR68 – ident: CR74 – volume: 444 start-page: 43 year: 2016 end-page: 48 ident: CR39 article-title: Hurst exponent estimation of self-affine time series using quantile graphs publication-title: Physica A doi: 10.1016/j.physa.2015.09.094 – volume: 197 start-page: 652 year: 2019 ident: CR11 article-title: Machine learning in neuroimaging: Progress and challenges publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.003 – volume: 6 issue: 8 year: 2011 ident: CR70 article-title: Duality between time series and networks publication-title: PLoS ONE doi: 10.1371/journal.pone.0023378 – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 10 ident: CR27 article-title: Revealing epilepsy type using a computational analysis of interictal EEG publication-title: Sci. Rep. doi: 10.1038/s41598-019-46633-7 – volume: 256 start-page: 183 issue: 3 year: 2004 end-page: 194 ident: CR5 article-title: Mild cognitive impairment as a diagnostic entity publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – ident: CR42 – volume: 25 start-page: 85 issue: 1 year: 2011 end-page: 92 ident: CR80 article-title: Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer’s disease publication-title: Alzheimer Disease Assoc. Disorders doi: 10.1097/WAD.0b013e3181ed1160 – volume: 105 start-page: 4972 issue: 13 year: 2008 end-page: 4975 ident: CR72 article-title: From time series to complex networks: The visibility graph publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0709247105 – volume: 31 start-page: 153 issue: 3 year: 2001 end-page: 160 ident: CR77 article-title: Diagnostic value of quantitative eeg in Alzheimer’s disease publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. doi: 10.1016/S0987-7053(01)00254-4 – ident: CR46 – ident: CR71 – ident: CR19 – volume: 13 issue: 3 year: 2018 ident: CR2 article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework publication-title: PLoS ONE doi: 10.1371/journal.pone.0193607 – volume: 31 start-page: 306 issue: 3 year: 2009 end-page: 313 ident: CR58 article-title: Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.06.010 – year: 2013 ident: CR21 publication-title: EEG Signal Processing – volume: 110 start-page: 1235 issue: 6 year: 1996 ident: CR79 article-title: Slow-wave activity in the spectral analysis of the electroencephalogram and volumes of hippocampus in subgroups of Alzheimer’s disease patients publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.110.6.1235 – volume: 28 start-page: 292 issue: 1 year: 2019 end-page: 299 ident: CR43 article-title: Literature review on EEG preprocessing, feature extraction, and classifications techniques publication-title: Menoufia J. Electron. Eng. Res doi: 10.21608/mjeer.2019.64927 – ident: CR67 – year: 1999 ident: CR57 publication-title: Nonlinear Time Series Analysis: Methods and Applications doi: 10.1142/3823 – volume: 115 start-page: 1490 issue: 7 year: 2004 end-page: 1505 ident: CR75 article-title: EEG dynamics in patients with Alzheimer’s disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – volume: 36 start-page: 131 issue: 3 year: 2005 end-page: 140 ident: CR26 article-title: Alzheimer’s disease: Models of computation and analysis of EEGs publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940503600303 – volume: 2 start-page: 102 issue: 2 year: 1991 end-page: 105 ident: CR40 article-title: Altered EEG dynamical responsivity associated with normal aging and probable Alzheimer’s disease publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000107183 – volume: 66 start-page: 2924 issue: 10 year: 2019 end-page: 2935 ident: CR13 article-title: M/EEG-based bio-markers to predict the MCI and Alzheimer’s disease: A review from the ml perspective publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2898871 – ident: CR36 – volume: 18 start-page: 49 issue: 1 year: 1994 end-page: 65 ident: CR81 article-title: Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – volume: 123 start-page: 176 year: 2020 end-page: 190 ident: CR10 article-title: A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.006 – ident: CR64 – volume: 70 start-page: 22 issue: 1 year: 2017 ident: CR54 article-title: Understanding one-way ANOVA using conceptual figures publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2017.70.1.22 – volume: 133 start-page: 188 year: 2020 end-page: 194 ident: CR12 article-title: Automated detection of abnormal EEG signals using localized wavelet filter banks publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.03.009 – volume: 15 start-page: 767 issue: 4 year: 2005 end-page: 77 ident: CR16 article-title: Clinical diagnosis and management of Alzheimer’s disease publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.005 – ident: CR18 – volume: 106 start-page: 229 issue: 3 year: 1998 end-page: 237 ident: CR78 article-title: EEG coherence in Alzheimer’s disease publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00129-6 – volume: 100 start-page: 865 year: 2016 end-page: 871 ident: CR1 article-title: Alzheimer’s early prediction with electroencephalogram publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.236 – ident: CR14 – volume: 300 start-page: H319 issue: 1 year: 2011 end-page: H325 ident: CR66 article-title: Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices publication-title: Am. J. Physiol.-Heart Circ. Physiol. doi: 10.1152/ajpheart.00561.2010 – start-page: 596 year: 2017 ident: CR48 publication-title: Review of Time Series Analysis and Its Applications With R Examples, by Robert H. Shumway & David S. Stoffer – volume: 18 start-page: 967 issue: 4 year: 2005 end-page: 981 ident: CR61 article-title: More on a new concept of entropy and information publication-title: J. Theor. Probab. doi: 10.1007/s10959-005-7541-3 – volume: 65 start-page: S10 issue: 6 suppl 3 year: 2005 end-page: S17 ident: CR9 article-title: The staging and assessment of moderate to severe Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.65.6_suppl_3.S10 – volume: 117 start-page: 1099 issue: 9 year: 2010 end-page: 1109 ident: CR52 article-title: New diagnostic EEG markers of the Alzheimer’s disease using visibility graph publication-title: J. Neural Transm. doi: 10.1007/s00702-010-0450-3 – volume: 142 start-page: 73 year: 2017 end-page: 79 ident: CR28 article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.02.002 – volume: 28 start-page: 1322 issue: 9 year: 2007 end-page: 1329 ident: CR15 article-title: EEG and MRI correlates of mild cognitive impairment and Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.06.006 – volume: 13 start-page: 45 issue: 1 year: 2019 end-page: 52 ident: CR73 article-title: Analysis of heart rate signals during meditation using visibility graph complexity publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9501-5 – ident: CR23 – year: 2018 ident: CR25 publication-title: Computational EEG Analysis doi: 10.1007/978-981-13-0908-3 – volume: 70 start-page: 960 issue: 11 year: 2011 end-page: 969 ident: CR8 article-title: Stages of the pathologic process in Alzheimer’s disease: Age categories from 1 to 100 years publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e318232a379 – volume: 25 issue: 8 year: 2015 ident: CR38 article-title: Fast transformation from time series to visibility graphs publication-title: Chaos: Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4927835 – ident: CR44 – volume: 7 start-page: 487 issue: 6 year: 2010 end-page: 505 ident: CR51 article-title: Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510792231720 – volume: 130 start-page: 75 year: 2020 end-page: 84 ident: CR29 article-title: Dynamical system based compact deep hybrid network for classification of Parkinson’s disease related EEG signals publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.06.018 – volume: 18 start-page: 145 issue: 3 year: 1988 end-page: 156 ident: CR60 article-title: Fractals and the analysis of waveforms publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(88)90041-8 – ident: CR65 – volume: 2 start-page: 70 issue: 3 year: 2015 end-page: 73 ident: CR63 article-title: Classification of Alzheimer’s disease from quadratic sample entropy of electroencephalogram publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2014.0106 – volume: 9 start-page: 291 issue: 3 year: 2015 end-page: 304 ident: CR33 article-title: Power spectral density and coherence analysis of Alzheimer’s EEG publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-014-9325-x – ident: CR3 – volume: 27 start-page: 241 issue: 3 year: 2006 ident: CR31 article-title: Entropy analysis of the EEG background activity in Alzheimer’s disease patients publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/3/003 – volume: 6 start-page: 25 year: 2015 ident: CR34 article-title: EEG spectral features discriminate between Alzheimer’s and vascular dementia publication-title: Front. Neurol. doi: 10.3389/fneur.2015.00025 – volume: 20 start-page: 340 issue: 3 year: 2017 end-page: 352 ident: CR24 article-title: Dynamic models of large-scale brain activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – volume: 18 start-page: 8 issue: 1 year: 2016 ident: CR56 article-title: Wavelet energy and wavelet coherence as EEG biomarkers for the diagnosis of Parkinson’s disease-related dementia and Alzheimer’s disease publication-title: Entropy doi: 10.3390/e18010008 – ident: CR17 – year: 2013 ident: CR55 publication-title: Wavelets and Fractals in Earth System Sciences doi: 10.1201/b16046 – volume: 23 start-page: 183 year: 2018 end-page: 220 ident: CR22 article-title: EEG and ERP biomarkers of Alzheimer’s disease: A critical review publication-title: Front. Biosci. (Landmark edn.) doi: 10.2741/4587 – volume: 62 start-page: 199 year: 2019 end-page: 206 ident: CR32 article-title: EEG entropy analysis in autistic children publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2018.11.027 – volume: 184 start-page: 364 issue: 2 year: 2005 end-page: 372 ident: CR53 article-title: ROC analysis publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.184.2.01840364 – volume: 199 start-page: 81 year: 2019 end-page: 86 ident: CR49 article-title: A better way to define and describe Morlet wavelets for time-frequency analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.048 – volume: 52 start-page: 5 issue: 1 year: 2020 end-page: 20 ident: CR30 article-title: Application of quantile graphs to the automated analysis of EEG signals publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9936-z – volume: 3 start-page: 5 issue: 1 year: 2011 end-page: 10 ident: CR50 article-title: EEG signal preprocessing using Wavelet Transform publication-title: Int. J. Electron. Eng. – volume: 131 start-page: 1287 issue: 6 year: 2020 end-page: 1310 ident: CR6 article-title: Early diagnosis of Alzheimer’s disease: The role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.03.003 – volume: 51 start-page: 1061 issue: 11 year: 2014 end-page: 1071 ident: CR20 article-title: The neurophysiological bases of EEG and EEG measurement: A review for the rest of us publication-title: Psychophysiology doi: 10.1111/psyp.12283 – volume: 38 start-page: 139 issue: 1 year: 2015 end-page: 149 ident: CR35 article-title: Feature extraction and classification for EEG signals using Wavelet Transform and machine learning techniques publication-title: Austral. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0333-x – ident: CR76 – volume: 34 start-page: 91 issue: 1 year: 2010 end-page: 94 ident: CR47 article-title: Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9219-8 – volume: 188 start-page: 113 issue: 1 year: 2010 end-page: 126 ident: CR62 article-title: Structural simplexity of the brain publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.01.029 – volume: 31 start-page: 277 issue: 2 year: 1988 end-page: 283 ident: CR59 article-title: Approach to an irregular time series on the basis of the fractal theory publication-title: Physica D doi: 10.1016/0167-2789(88)90081-4 – volume: 153 start-page: 163 issue: 2 year: 2006 end-page: 182 ident: CR69 article-title: EEG analysis using wavelet-based information tools publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.10.009 – volume: 15 start-page: 767 issue: 4 year: 2005 ident: 32664_CR16 publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.005 – ident: 32664_CR68 doi: 10.1109/CCSP.2005.4977207 – ident: 32664_CR3 – volume: 110 start-page: 1235 issue: 6 year: 1996 ident: 32664_CR79 publication-title: Behav. Neurosci. doi: 10.1037/0735-7044.110.6.1235 – volume: 49 start-page: 146 issue: 2 year: 2020 ident: 32664_CR7 publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000507078 – ident: 32664_CR67 doi: 10.1145/1543834.1543860 – volume: 65 start-page: S10 issue: 6 suppl 3 year: 2005 ident: 32664_CR9 publication-title: Neurology doi: 10.1212/WNL.65.6_suppl_3.S10 – volume-title: Wavelets and Fractals in Earth System Sciences year: 2013 ident: 32664_CR55 doi: 10.1201/b16046 – ident: 32664_CR76 doi: 10.1155/2018/8915079 – ident: 32664_CR46 – volume: 184 start-page: 364 issue: 2 year: 2005 ident: 32664_CR53 publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.184.2.01840364 – ident: 32664_CR18 doi: 10.11113/jt.v72.3886 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 32664_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-019-46633-7 – volume-title: Nonlinear Time Series Analysis: Methods and Applications year: 1999 ident: 32664_CR57 doi: 10.1142/3823 – volume: 105 start-page: 4972 issue: 13 year: 2008 ident: 32664_CR72 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0709247105 – volume: 13 issue: 3 year: 2018 ident: 32664_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0193607 – volume: 28 start-page: 1322 issue: 9 year: 2007 ident: 32664_CR15 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2006.06.006 – volume: 31 start-page: 277 issue: 2 year: 1988 ident: 32664_CR59 publication-title: Physica D doi: 10.1016/0167-2789(88)90081-4 – volume-title: EEG Signal Processing year: 2013 ident: 32664_CR21 – volume: 6 issue: 8 year: 2011 ident: 32664_CR70 publication-title: PLoS ONE doi: 10.1371/journal.pone.0023378 – volume: 133 start-page: 188 year: 2020 ident: 32664_CR12 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2020.03.009 – volume: 18 start-page: 8 issue: 1 year: 2016 ident: 32664_CR56 publication-title: Entropy doi: 10.3390/e18010008 – volume: 18 start-page: 49 issue: 1 year: 1994 ident: 32664_CR81 publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – volume: 28 start-page: 292 issue: 1 year: 2019 ident: 32664_CR43 publication-title: Menoufia J. Electron. Eng. Res doi: 10.21608/mjeer.2019.64927 – volume: 153 start-page: 163 issue: 2 year: 2006 ident: 32664_CR69 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.10.009 – volume: 18 start-page: 967 issue: 4 year: 2005 ident: 32664_CR61 publication-title: J. Theor. Probab. doi: 10.1007/s10959-005-7541-3 – volume: 188 start-page: 113 issue: 1 year: 2010 ident: 32664_CR62 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.01.029 – volume: 396 start-page: 413 issue: 10248 year: 2020 ident: 32664_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(20)30367-6 – ident: 32664_CR65 doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 20 start-page: 340 issue: 3 year: 2017 ident: 32664_CR24 publication-title: Nat. Neurosci. doi: 10.1038/nn.4497 – ident: 32664_CR74 doi: 10.1137/1.9781611970104 – volume: 2 start-page: 70 issue: 3 year: 2015 ident: 32664_CR63 publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2014.0106 – ident: 32664_CR45 – volume-title: Computational EEG Analysis year: 2018 ident: 32664_CR25 doi: 10.1007/978-981-13-0908-3 – volume: 62 start-page: 199 year: 2019 ident: 32664_CR32 publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2018.11.027 – volume: 106 start-page: 229 issue: 3 year: 1998 ident: 32664_CR78 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(97)00129-6 – volume: 18 start-page: 145 issue: 3 year: 1988 ident: 32664_CR60 publication-title: Comput. Biol. Med. doi: 10.1016/0010-4825(88)90041-8 – volume: 142 start-page: 73 year: 2017 ident: 32664_CR28 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.02.002 – volume: 3 start-page: 5 issue: 1 year: 2011 ident: 32664_CR50 publication-title: Int. J. Electron. Eng. – volume: 23 start-page: 183 year: 2018 ident: 32664_CR22 publication-title: Front. Biosci. (Landmark edn.) doi: 10.2741/4587 – volume: 70 start-page: 960 issue: 11 year: 2011 ident: 32664_CR8 publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e318232a379 – volume: 444 start-page: 43 year: 2016 ident: 32664_CR39 publication-title: Physica A doi: 10.1016/j.physa.2015.09.094 – ident: 32664_CR23 doi: 10.1007/978-3-319-59147-6_9 – volume: 131 start-page: 1287 issue: 6 year: 2020 ident: 32664_CR6 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.03.003 – ident: 32664_CR17 doi: 10.1155/2014/349249 – volume: 199 start-page: 81 year: 2019 ident: 32664_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.048 – ident: 32664_CR64 – ident: 32664_CR14 doi: 10.1109/IEMBS.2010.5627621 – ident: 32664_CR71 doi: 10.1007/978-3-030-20521-8_10 – volume: 66 start-page: 2924 issue: 10 year: 2019 ident: 32664_CR13 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2898871 – volume: 38 start-page: 139 issue: 1 year: 2015 ident: 32664_CR35 publication-title: Austral. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0333-x – volume: 25 issue: 8 year: 2015 ident: 32664_CR38 publication-title: Chaos: Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4927835 – volume: 70 start-page: 22 issue: 1 year: 2017 ident: 32664_CR54 publication-title: Korean J. Anesthesiol. doi: 10.4097/kjae.2017.70.1.22 – volume: 123 start-page: 176 year: 2020 ident: 32664_CR10 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.006 – volume: 13 start-page: 45 issue: 1 year: 2019 ident: 32664_CR73 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-018-9501-5 – volume: 130 start-page: 75 year: 2020 ident: 32664_CR29 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.06.018 – volume: 36 start-page: 131 issue: 3 year: 2005 ident: 32664_CR26 publication-title: Clin. EEG Neurosci. doi: 10.1177/155005940503600303 – volume: 300 start-page: H319 issue: 1 year: 2011 ident: 32664_CR66 publication-title: Am. J. Physiol.-Heart Circ. Physiol. doi: 10.1152/ajpheart.00561.2010 – volume: 100 start-page: 865 year: 2016 ident: 32664_CR1 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.236 – volume: 6 start-page: 25 year: 2015 ident: 32664_CR34 publication-title: Front. Neurol. doi: 10.3389/fneur.2015.00025 – volume: 256 start-page: 183 issue: 3 year: 2004 ident: 32664_CR5 publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – volume: 15 issue: 6 year: 2020 ident: 32664_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0231169 – volume: 91 start-page: 118 issue: 2 year: 1994 ident: 32664_CR41 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90033-7 – volume: 51 start-page: 1061 issue: 11 year: 2014 ident: 32664_CR20 publication-title: Psychophysiology doi: 10.1111/psyp.12283 – volume: 52 start-page: 5 issue: 1 year: 2020 ident: 32664_CR30 publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9936-z – ident: 32664_CR42 doi: 10.21203/rs.3.rs-2371230/v1 – start-page: 596 volume-title: Review of Time Series Analysis and Its Applications With R Examples, by Robert H. Shumway & David S. Stoffer year: 2017 ident: 32664_CR48 – volume: 27 start-page: 241 issue: 3 year: 2006 ident: 32664_CR31 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/3/003 – volume: 117 start-page: 1099 issue: 9 year: 2010 ident: 32664_CR52 publication-title: J. Neural Transm. doi: 10.1007/s00702-010-0450-3 – volume: 197 start-page: 652 year: 2019 ident: 32664_CR11 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.003 – ident: 32664_CR36 doi: 10.1109/EMBC.2015.7320104 – volume: 25 start-page: 85 issue: 1 year: 2011 ident: 32664_CR80 publication-title: Alzheimer Disease Assoc. Disorders doi: 10.1097/WAD.0b013e3181ed1160 – volume: 115 start-page: 1490 issue: 7 year: 2004 ident: 32664_CR75 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.01.001 – volume: 31 start-page: 306 issue: 3 year: 2009 ident: 32664_CR58 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.06.010 – ident: 32664_CR44 doi: 10.1007/978-981-13-0908-3_2 – volume: 34 start-page: 91 issue: 1 year: 2010 ident: 32664_CR47 publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9219-8 – volume: 2 start-page: 102 issue: 2 year: 1991 ident: 32664_CR40 publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000107183 – ident: 32664_CR19 – volume: 9 start-page: 291 issue: 3 year: 2015 ident: 32664_CR33 publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-014-9325-x – volume: 31 start-page: 153 issue: 3 year: 2001 ident: 32664_CR77 publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. doi: 10.1016/S0987-7053(01)00254-4 – volume: 7 start-page: 487 issue: 6 year: 2010 ident: 32664_CR51 publication-title: Curr. Alzheimer Res. doi: 10.2174/156720510792231720 |
| SSID | ssj0000529419 |
| Score | 2.589662 |
| Snippet | Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease (AD). AD... Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer's disease (AD). AD... Abstract Computational analysis of electroencephalographic (EEG) signals have shown promising results in detecting brain disorders, such as Alzheimer’s disease... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8184 |
| SubjectTerms | 631/378/1689/1283 639/166/985 639/766/530/2801 Aged Algorithms Alzheimer Disease - diagnosis Alzheimer's disease Biomarkers Brain research Cognitive ability Cognitive Dysfunction - diagnosis Computational neuroscience Dementia EEG Electroencephalography Electroencephalography - methods Entropy Fourier transforms Humanities and Social Sciences Humans multidisciplinary Neurodegeneration Neurodegenerative diseases Quality of Life Science Science (multidisciplinary) Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiPIMFGQkbhA1duzYPrZoC6eKA6DerNgeqyuVLNpskeDE3-Dv8Us6trNLl-eFqx-RNZ7xfM6MvyHkWS_aKI2IaEhe1wJcrBPJet0KJ5UDBVr1udiEOjnRp6fmzZVSXyknrNADF8EdQCN6Z0KjgmuF8cp0IbrYcAAwjeT5mS-iniuXqcLqzY1gZnol07T6YERPlV6T8bZGxNKJWm95okzY_zuU-Wuy5E8R0-yIjm-RmxOCpIdl5XvkGgy3yfVSU_LzHfK-1GmY_vHRUiF6pItIZ7NXNKVroMLRfuIioYhZ6eH5lzOYf4Dl96_fRjqFbKhPuDolEuVP3SXvjmdvX76up-IJtZeCrWpunDbSM6l5cCz0IoKMPnQspJLnAMxD7HTy3oLFoJQKHSjVoPuWMbW198jOsBjgAaEsxBSRkRIPR-Gi1ogZQTnjO-YQLeiKsLUgrZ-YxVOBi3ObI9yttkX4FoVvs_Atznm-mfOx8Gr8dfRR2p_NyMSJnRtQU-ykKfZfmlKR_fXu2slQR8s1Sy9keOp-uulGE0txk36AxUUZoxLy4xW5X5Rhs5IWb9ANYrqK6C012Vrqds8wP8s03ngYIjoXTUVerDXqx7r-LIuH_0MWj8gNnkyhkXhM7pOd1fICHpNd_2k1H5dPsi1dAhSxIf0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Computational methods of EEG signals analysis for Alzheimer’s disease classification |
| URI | https://link.springer.com/article/10.1038/s41598-023-32664-8 https://www.ncbi.nlm.nih.gov/pubmed/37210397 https://www.proquest.com/docview/2816242228 https://www.proquest.com/docview/2816761512 https://pubmed.ncbi.nlm.nih.gov/PMC10199940 https://doaj.org/article/e04ab9d07db349c796dfbf02eee90528 |
| Volume | 13 |
| WOSCitedRecordID | wos000993082000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLkhceD8WyspI3CBqnDixc0It2gKHriIEaDlF8YuuVJKy2SLBib_B3-OXMON4Uy2PXrj4kDiRnXn4y4w9HyFPap66rOAODEnLiFvlIiyyHqVcZUJZYaWoPdmEmM_lYlGUIeDWhW2VG5_oHbVpNcbI9xLJ8ChDksjnp58jZI3C7Gqg0NghY6xUxkdkfDCbl2-GKAvmsTgrwmmZOJV7HaxYeKosSSNALjmP5NaK5Av3_w1t_rlp8rfMqV-QDq__71RukGsBitL9Xndukku2uUWu9OSUX2-T9z3hQwgW0p5quqOto7PZS4r7PkBzaR2KmlAAv3T_5NuxXX6yq5_ff3Q05H6oRoCOO5L8q-6Qd4ezty9eRYGFIdIZZ-soKZQsMs0ymRjFTM2dzZw2OTPInW4t09blEmEAZ84IIUxuhYgBB2QOr6V3yahpG3ufUGYcpnayDLwsV05KAJ9WqELnTAHskBPCNpKodChRjkwZJ5VPlaey6qVXgfQqL70Knnk6PHPaF-i4sPcBCnjoicW1_YV29bEKtlrZmNeqMLEwKuWFFkVunHJxYq0tQKHgJbsbuVbB4rvqXKgT8ni4DbaKCZi6se1Z30cghEwm5F6vTcNIUvgVjwEcTojc0rOtoW7faZbHvh44eFWA-TyekGcblTwf17-_xYOLp_GQXE3QSuIMPOkuGa1XZ_YRuay_rJfdakp2xEL4Vk6D0U19PAPao6TEVkA7Ll8flR9-AabtNsk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwolFjx4mdA0IFprRqGXEoaG4m3uhIZaZMpqBy4m_wJ_hR_BL8slXD0lsPXONFTvK9xX7P7wN4VPLUZwX3QZCMjLnTPsYi63HKdSa0E06KsiabEMOhHI2KN0vwo7sLg2mVnU6sFbWdGjwjX2OS4lUGxuSzg08xskZhdLWj0Ghgse2OvoQtW_V062X4v48Z2xjsvtiMW1aB2GSczmNWaFlkhmaSWU1tyb3LvLE5tcgF7hw1zucSzRqn3gohbO6ESIJdyzw-S8O8Z-Bs0OMCU8jESPRnOhg147Ro7-YkqVyrgn3EO2wsjYOflPNYLti_mibgb77tnymav8Vpa_O3cfl_-3BX4FLraJP1RjKuwpKbXIPzDfXm0XV419BZtEehpCHSrsjUk8HgFcGsliCXpGxLtpDg2pP1_a97bvzRzX5--16RNrJFDG4_MN-qnuoGvD2Vl7oJy5PpxN0GQq3HwFWWBRvCtZcyuNZO6MLkVAenSkZAuz-vTFuAHXlA9lWdCJBK1aBFBbSoGi0qjHnSjzloyo-c2Ps5AqrviaXD6wfT2QfVaiLlEl7qwibC6pQXRhS59donzDlXBACHSVY6HKlWn1XqGEQRPOybgybC8FI5cdPDpo9AB5lFcKtBb7-SVDDMORARyAVcLyx1sWUy3qurnQebETYxPIlgtROB43X9-1vcOfk1HsCFzd3XO2pna7h9Fy4ylNAkCzZjBZbns0N3D86Zz_NxNbtfiziB96ctGr8AYFiKoA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhQxEC2FsIgL-zIQwEhwgta03XbbfUAokBmIAqMcAOVm2hsZKcyE6QkonPgNfoXP4Utw9TLRsOSWA1fbbbm7Xy12lesBPCh5FkTBQxQkqxLuTUiwyHqScSOk8dIrWdZkE3I0Ujs7xfYK_OjuwmBaZacTa0XtphbPyPtMUbzKwJjqhzYtYntj-HT_U4IMUhhp7eg0Gohs-cMvcftWPdnciP_6IWPDwZvnL5OWYSCxgtN5wgqjCmGpUMwZ6koevAjW5dQhL7j31PqQKzRxnAYnpXS5lzKNNk4EbMvivKfgtORCoHS9ZtuL8x2MoHFatPd00kz1q2gr8T4by5LoM-U8UUu2sKYM-Juf-2e65m8x29oUDi_-zx_xElxoHXCy3kjMZVjxkytwtqHkPLwK7xqai_aIlDQE2xWZBjIYvCCY7RLllZRtKRcSXX6yvvd1148_-tnPb98r0ka8iMVtCeZh1VNdg7cn8lLXYXUynfibQKgLGNASItoWboJS0eX20hQ2pyY6W6oHtEOBtm1hduQH2dN1gkCmdIMcHZGja-To-MyjxTP7TVmSY0c_Q3AtRmJJ8bphOvugWw2lfcpLU7hUOpPxwsoid8GElHnviwjmOMlahynd6rlKHwGqB_cX3VFDYdipnPjpQTNGouPMenCjQfJiJZlkmIsge6CWML601OWeyXi3roIebUnc3PC0B487cTha17-_xa3jX-MenIsSoV9tjrZuw3mGwpqKaErWYHU-O_B34Iz9PB9Xs7u1tBN4f9KS8Qt3rZNt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods+of+EEG+signals+analysis+for+Alzheimer%E2%80%99s+disease+classification&rft.jtitle=Scientific+reports&rft.au=Vicchietti%2C+M%C3%A1rio+L.&rft.au=Ramos%2C+Fernando+M.&rft.au=Betting%2C+Luiz+E.&rft.au=Campanharo%2C+Andriana+S.+L.+O.&rft.date=2023-05-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-32664-8&rft.externalDocID=10_1038_s41598_023_32664_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |