Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics

The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 15; H. 1; S. 4556 - 9
Hauptverfasser: Liu, Heng, Lai, Qinglin, Fu, Jun, Zhang, Shijie, Fu, Zhaoming, Zeng, Hualing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 29.05.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP 2 S 6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm 2 , equal to a density of 31.4 Gbit/in 2 . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP 2 S 6 .
AbstractList The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP 2 S 6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm 2 , equal to a density of 31.4 Gbit/in 2 . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP 2 S 6 .
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP S via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm , equal to a density of 31.4 Gbit/in . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP2S6.
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP 2 S 6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm 2 , equal to a density of 31.4 Gbit/in 2 . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP2S6.
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.
Abstract The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.
ArticleNumber 4556
Author Zhang, Shijie
Lai, Qinglin
Fu, Zhaoming
Zeng, Hualing
Liu, Heng
Fu, Jun
Author_xml – sequence: 1
  givenname: Heng
  surname: Liu
  fullname: Liu, Heng
  organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China
– sequence: 2
  givenname: Qinglin
  surname: Lai
  fullname: Lai, Qinglin
  organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-1781-214X
  surname: Fu
  fullname: Fu, Jun
  organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China
– sequence: 4
  givenname: Shijie
  surname: Zhang
  fullname: Zhang, Shijie
  organization: College of Physics and Electronic Information, Yunnan Normal University, Yunnan Key Laboratory of Opto-Electronic Information Technology
– sequence: 5
  givenname: Zhaoming
  surname: Fu
  fullname: Fu, Zhaoming
  organization: College of Physics and Electronic Information, Yunnan Normal University, Yunnan Key Laboratory of Opto-Electronic Information Technology
– sequence: 6
  givenname: Hualing
  orcidid: 0000-0001-5869-9553
  surname: Zeng
  fullname: Zeng, Hualing
  email: hlzeng@ustc.edu.cn
  organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38811549$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1LHTEUDUWp1voHuigD3XQzNV-TZFalSD8EoSCWbgohydw885iXvCbzHq2_vnmOWnVhNgn3nnNy7scrtBdTBITeEPyBYKZOCidcyBZT3nKletpev0CHFHPSEknZ3oP3ATouZYnrYT1RnL9EB0wpQjreH6JfF7CFXIIdofEj_EkwgptycM2QVibEBuIiRIAc4qIxUzNdQRNNTMWZyqj5rYnNALn5acxYGg8530uU12jf1ygc395H6MeXz5en39rz71_PTj-dt67jZGqpsNQaa7hyWALxyjCwg-jACtMT5sE6x8FSN3hOsaDOS8dFrbwXVsnBsSN0NusOySz1OoeVyX91MkHfBFJeaJOn4EbQwtQ-9CCwkJJ3tn5Kveo7aYeOcK9w1fo4a603dgWDgzhlMz4SfZyJ4Uov0lYTQpjoJakK728Vcvq9gTLpVSgOxtFESJuiWS2ho1JhWaHvnkCXaZNj7dUOVSfEO9pV1NuHlu693E2xAtQMcDmVksFrFyYzhbRzGEZNsN7tjJ53RtfO6Zud0deVSp9Q79SfJbGZVNa7vYD83_YzrH92oNWg
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110442
crossref_primary_10_1002_adfm_202509227
crossref_primary_10_1063_5_0251656
crossref_primary_10_1038_s41535_025_00781_4
crossref_primary_10_1002_adfm_202421302
crossref_primary_10_1038_s41467_025_60602_x
crossref_primary_10_1088_1361_6463_addad2
crossref_primary_10_1002_adfm_202410240
crossref_primary_10_1038_s41467_025_56233_x
crossref_primary_10_1002_adma_202501160
crossref_primary_10_1002_adfm_202416311
crossref_primary_10_1038_s41467_024_55160_7
crossref_primary_10_1039_D4NR03569K
crossref_primary_10_1038_s41467_024_53436_6
crossref_primary_10_1002_advs_202411391
crossref_primary_10_1002_smll_202503363
crossref_primary_10_1557_s43577_024_00834_2
crossref_primary_10_1021_acsami_5c04037
Cites_doi 10.1038/nature01501
10.1103/PhysRevLett.99.167601
10.1021/acs.nanolett.2c01066
10.1002/adma.202305766
10.3390/nano12152516
10.1021/nl501793a
10.1021/acsnano.5b05151
10.1063/1.3634052
10.1126/science.1080615
10.1126/science.aad8609
10.1016/S0081-1947(08)60154-X
10.1021/acsaelm.3c00973
10.1038/s41565-020-0700-y
10.1103/PhysRevB.77.033403
10.1038/s41586-018-0336-3
10.1103/PhysRevMaterials.3.024401
10.1038/s41563-020-0659-y
10.1038/ncomms15815
10.1063/5.0052495
10.1063/1.5068699
10.1038/nature19761
10.1103/PhysRevMaterials.5.L030801
10.1002/adom.202002146
10.1103/PhysRevB.108.L161406
10.1021/acs.nanolett.0c04023
10.1103/PhysRevApplied.13.064063
10.1021/acs.nanolett.2c00130
10.1038/s41563-019-0532-z
10.1126/sciadv.abq1232
10.1063/5.0096704
10.1021/acsami.1c18683
10.1021/acsnano.1c08970
10.1063/5.0067429
10.1038/s41467-021-20945-7
10.1103/PhysRevB.88.174106
10.1016/0925-8388(94)01416-7
10.1021/acs.nanolett.5b00491
10.1039/D0NR06872A
10.1063/1.1593830
10.1103/PhysRevLett.107.057602
10.1021/acs.nanolett.7b02198
10.1103/PhysRevB.56.10860
10.1126/science.aay7221
10.1021/acs.nanolett.1c03557
10.1063/5.0159315
10.1126/science.1218693
10.1063/1.4889892
10.1002/aenm.202001726
10.1063/5.0020212
10.1038/s41699-021-00220-5
10.1002/adma.201903795
10.1021/acsnano.0c01615
10.1002/adma.202302320
10.1038/s41467-018-07882-8
10.1002/adfm.202213561
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-48892-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_6a0009e6067745bba42f8957bd514f80
PMC11136971
38811549
10_1038_s41467_024_48892_z
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-26b2baba48c07e1f8a3ebd65eb6a913febcc4eb2cdf42062cf7c4602496b87dc3
IEDL.DBID P5Z
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235556100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 18:42:56 EDT 2025
Tue Nov 04 02:05:37 EST 2025
Sun Aug 24 03:16:58 EDT 2025
Tue Oct 07 07:20:30 EDT 2025
Wed Feb 19 02:06:08 EST 2025
Sat Nov 29 03:30:02 EST 2025
Tue Nov 18 22:35:35 EST 2025
Fri Feb 21 02:37:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-26b2baba48c07e1f8a3ebd65eb6a913febcc4eb2cdf42062cf7c4602496b87dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5869-9553
0000-0002-1781-214X
OpenAccessLink https://www.proquest.com/docview/3061544525?pq-origsite=%requestingapplication%
PMID 38811549
PQID 3061544525
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_6a0009e6067745bba42f8957bd514f80
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11136971
proquest_miscellaneous_3062527807
proquest_journals_3061544525
pubmed_primary_38811549
crossref_citationtrail_10_1038_s41467_024_48892_z
crossref_primary_10_1038_s41467_024_48892_z
springer_journals_10_1038_s41467_024_48892_z
PublicationCentury 2000
PublicationDate 2024-05-29
PublicationDateYYYYMMDD 2024-05-29
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Gruverman (CR40) 2003; 83
Zhao, Rakheja, Zhu (CR8) 2021; 21
Lee (CR22) 2011; 107
Swain (CR30) 2018; 113
Wang (CR2) 2003; 299
Chang (CR4) 2016; 353
Stengel (CR34) 2013; 88
Wang (CR26) 2020; 15
Tedeschi (CR51) 2019; 31
CR33
Neumayer (CR50) 2019; 3
Jiang (CR29) 2022; 8
Zhang (CR12) 2021; 21
Shu (CR25) 2020; 19
Neumayer (CR46) 2022; 14
Fei (CR6) 2018; 560
Wang (CR9) 2019; 10
Neumayer (CR47) 2020; 10
Puebla (CR53) 2021; 5
Chen (CR16) 2022; 22
Xu (CR19) 2020; 12
Junquera, Ghosez (CR7) 2003; 422
Brehm (CR43) 2020; 19
Böscke, Müller, Bräuhaus, Schröder, Böttger (CR1) 2011; 99
Maisonneuve, Evain, Payen, Cajipe, Molinié (CR42) 1995; 218
Dong (CR36) 2019; 366
Belianinov (CR3) 2015; 15
Zubko, Catalan, Buckley, Welche, Scott (CR23) 2007; 99
Zhou (CR5) 2017; 17
O’Hara (CR45) 2022; 132
Codony, Arias, Suryanarayana (CR55) 2021; 5
Neumayer (CR44) 2022; 16
Lu (CR15) 2012; 336
Neumayer (CR56) 2020; 13
Li, Xiong, Huang, Chen, Zheng (CR39) 2021; 129
Huang (CR14) 2023; 5
Elangovan (CR35) 2020; 14
Liu (CR37) 2014; 14
Zhang (CR48) 2023; 108
Tao (CR52) 2015; 9
Huang (CR20) 2023; 35
Cui (CR54) 2023; 123
Lee (CR28) 2020; 8
Ming (CR11) 2022; 8
Narvaez, Vasquez-Sancho, Catalan (CR24) 2016; 538
Falin (CR38) 2017; 8
Känzig (CR10) 1957; 4
Kalinin, Meunier (CR27) 2008; 77
Guo (CR18) 2021; 9
Guo, Roth, Das, Dörr (CR31) 2014; 105
Guan (CR13) 2022; 22
CR21
Jia (CR49) 2022; 12
Maisonneuve, Cajipe, Simon, Von Der Muhll, Ravez (CR41) 1997; 56
Park (CR32) 2021; 8
Xu (CR17) 2021; 12
J Tao (48892_CR52) 2015; 9
J Guo (48892_CR18) 2021; 9
SM Neumayer (48892_CR46) 2022; 14
W Ming (48892_CR11) 2022; 8
T Jia (48892_CR49) 2022; 12
SM Park (48892_CR32) 2021; 8
M Stengel (48892_CR34) 2013; 88
Y Zhou (48892_CR5) 2017; 17
D-D Xu (48892_CR17) 2021; 12
TS Böscke (48892_CR1) 2011; 99
L Shu (48892_CR25) 2020; 19
G Dong (48892_CR36) 2019; 366
SM Neumayer (48892_CR50) 2019; 3
V Maisonneuve (48892_CR41) 1997; 56
JA Brehm (48892_CR43) 2020; 19
Z Zhao (48892_CR8) 2021; 21
X Wang (48892_CR9) 2019; 10
W Känzig (48892_CR10) 1957; 4
K Liu (48892_CR37) 2014; 14
J Wang (48892_CR2) 2003; 299
J Junquera (48892_CR7) 2003; 422
H Elangovan (48892_CR35) 2020; 14
Z Guan (48892_CR13) 2022; 22
Z Fei (48892_CR6) 2018; 560
V Maisonneuve (48892_CR42) 1995; 218
B Huang (48892_CR20) 2023; 35
D Tedeschi (48892_CR51) 2019; 31
48892_CR21
SM Neumayer (48892_CR44) 2022; 16
L Wang (48892_CR26) 2020; 15
C Chen (48892_CR16) 2022; 22
Z Jiang (48892_CR29) 2022; 8
A Belianinov (48892_CR3) 2015; 15
D Lee (48892_CR28) 2020; 8
SM Neumayer (48892_CR56) 2020; 13
Y Huang (48892_CR14) 2023; 5
48892_CR33
K Xu (48892_CR19) 2020; 12
SV Kalinin (48892_CR27) 2008; 77
S Puebla (48892_CR53) 2021; 5
EJ Guo (48892_CR31) 2014; 105
A O’Hara (48892_CR45) 2022; 132
J Li (48892_CR39) 2021; 129
H Lu (48892_CR15) 2012; 336
K Chang (48892_CR4) 2016; 353
P Zubko (48892_CR23) 2007; 99
A Falin (48892_CR38) 2017; 8
D Zhang (48892_CR12) 2021; 21
X Zhang (48892_CR48) 2023; 108
AB Swain (48892_CR30) 2018; 113
D Codony (48892_CR55) 2021; 5
J Narvaez (48892_CR24) 2016; 538
SM Neumayer (48892_CR47) 2020; 10
D Lee (48892_CR22) 2011; 107
A Gruverman (48892_CR40) 2003; 83
Y Cui (48892_CR54) 2023; 123
References_xml – volume: 422
  start-page: 506
  year: 2003
  end-page: 509
  ident: CR7
  article-title: Critical thickness for ferroelectricity in perovskite ultrathin films
  publication-title: Nature
  doi: 10.1038/nature01501
– volume: 99
  start-page: 167601
  year: 2007
  ident: CR23
  article-title: Strain-gradient-induced polarization in SrTiO single crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.167601
– volume: 22
  start-page: 4792
  year: 2022
  end-page: 4799
  ident: CR13
  article-title: Mechanical polarization switching in Hf Zr O thin film
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01066
– volume: 35
  start-page: 2305766
  year: 2023
  ident: CR20
  article-title: Mechanically gated transistor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305766
– volume: 12
  start-page: 2516
  year: 2022
  ident: CR49
  article-title: Ferroelectricity and piezoelectricity in 2D van der Waals CuInP S ferroelectric tunnel junctions
  publication-title: Nanomaterials
  doi: 10.3390/nano12152516
– volume: 14
  start-page: 5097
  year: 2014
  end-page: 5103
  ident: CR37
  article-title: Elastic properties of chemical-vapor-deposited monolayer MoS , WS , and their bilayer heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl501793a
– volume: 9
  start-page: 11362
  year: 2015
  end-page: 11370
  ident: CR52
  article-title: Mechanical and electrical anisotropy of few-layer black phosphorus
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05151
– volume: 99
  start-page: 102903
  year: 2011
  ident: CR1
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 299
  start-page: 1719
  year: 2003
  end-page: 1722
  ident: CR2
  article-title: Epitaxial BiFeO multiferroic thin film heterostructures
  publication-title: Science
  doi: 10.1126/science.1080615
– volume: 353
  start-page: 274
  year: 2016
  end-page: 278
  ident: CR4
  article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 4
  start-page: 1
  year: 1957
  end-page: 197
  ident: CR10
  article-title: Ferroelectrics and antiferroeletrics
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60154-X
– volume: 5
  start-page: 5625
  year: 2023
  end-page: 5632
  ident: CR14
  article-title: Cu migration and resultant tunable rectification in CuInP S
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00973
– volume: 15
  start-page: 661
  year: 2020
  end-page: 667
  ident: CR26
  article-title: Flexoelectronics of centrosymmetric semiconductors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0700-y
– volume: 77
  start-page: 033403
  year: 2008
  ident: CR27
  article-title: Electronic flexoelectricity in low-dimensional systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.033403
– volume: 560
  start-page: 336
  year: 2018
  end-page: 339
  ident: CR6
  article-title: Ferroelectric switching of a two-dimensional metal
  publication-title: Nature
  doi: 10.1038/s41586-018-0336-3
– ident: CR21
– volume: 3
  start-page: 024401
  year: 2019
  ident: CR50
  article-title: Giant negative electrostriction and dielectric tunability in a van der waals layered ferroelectric
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.024401
– volume: 19
  start-page: 605
  year: 2020
  end-page: 609
  ident: CR25
  article-title: Photoflexoelectric effect in halide perovskites
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0659-y
– volume: 8
  year: 2017
  ident: CR38
  article-title: Mechanical properties of atomically thin boron nitride and the role of interlayer interactions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15815
– volume: 129
  start-page: 244105
  year: 2021
  ident: CR39
  article-title: Phase-field study on the effect of substrate elasticity on tip-force-induced domain switching in ferroelectric thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0052495
– volume: 113
  start-page: 233902
  year: 2018
  ident: CR30
  article-title: Self-polarization effect on large photovoltaic response in lead-free ferroelectric 0.5Ba(Zr Ti )O -0.5(Ba Ca )TiO epitaxial film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5068699
– volume: 538
  start-page: 219
  year: 2016
  end-page: 221
  ident: CR24
  article-title: Enhanced flexoelectric-like response in oxide semiconductors
  publication-title: Nature
  doi: 10.1038/nature19761
– volume: 8
  start-page: 281
  year: 2022
  end-page: 287
  ident: CR29
  article-title: Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO epitaxial heterostructures
  publication-title: J. Mater.
– volume: 5
  start-page: L030801
  year: 2021
  ident: CR55
  article-title: Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.L030801
– volume: 9
  start-page: 2002146
  year: 2021
  ident: CR18
  article-title: Recent progress in optical control of ferroelectric polarization
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002146
– volume: 108
  year: 2023
  ident: CR48
  article-title: Origin of versatile polarization state in CuInP S
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.L161406
– volume: 21
  start-page: 995
  year: 2021
  end-page: 1002
  ident: CR12
  article-title: Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP S
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04023
– volume: 13
  start-page: 064063
  year: 2020
  ident: CR56
  article-title: Alignment of polarization against an electric field in van der Waals ferroelectrics
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.064063
– volume: 22
  start-page: 3275
  year: 2022
  end-page: 3282
  ident: CR16
  article-title: Large-scale domain engineering in two-dimensional ferroelectric CuInP S via giant flexoelectric effect
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00130
– volume: 19
  start-page: 43
  year: 2020
  end-page: 48
  ident: CR43
  article-title: Tunable quadruple-well ferroelectric van der Waals crystals
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0532-z
– volume: 8
  start-page: eabq1232
  year: 2022
  ident: CR11
  article-title: Flexoelectric engineering of van der Waals ferroelectric CuInP S
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abq1232
– volume: 132
  start-page: 114102
  year: 2022
  ident: CR45
  article-title: Effects of thin metal contacts on few-layer van der Waals ferroelectric CuInP S
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0096704
– volume: 14
  start-page: 3018
  year: 2022
  end-page: 3026
  ident: CR46
  article-title: Ionic control over ferroelectricity in 2D layered van der Waals capacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18683
– volume: 16
  start-page: 2452
  year: 2022
  end-page: 2460
  ident: CR44
  article-title: Nanoscale control of polar surface phases in layered van der Waals CuInP S
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08970
– volume: 8
  start-page: 041327
  year: 2021
  ident: CR32
  article-title: Flexoelectric control of physical properties by atomic force microscopy
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0067429
– volume: 12
  year: 2021
  ident: CR17
  article-title: Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20945-7
– ident: CR33
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR9
  article-title: Van der Waals negative capacitance transistors
  publication-title: Nat. Commun.
– volume: 88
  year: 2013
  ident: CR34
  article-title: Flexoelectricity from density-functional perturbation theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.174106
– volume: 218
  start-page: 157
  year: 1995
  end-page: 164
  ident: CR42
  article-title: Room-temperature crystal structure of the layered phase Cu In P S
  publication-title: J. Alloy. Compd.
  doi: 10.1016/0925-8388(94)01416-7
– volume: 15
  start-page: 3808
  year: 2015
  end-page: 3814
  ident: CR3
  article-title: CuInP S room temperature layered ferroelectric
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00491
– volume: 12
  start-page: 23488
  year: 2020
  end-page: 23496
  ident: CR19
  article-title: Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors
  publication-title: Nanoscale
  doi: 10.1039/D0NR06872A
– volume: 83
  start-page: 728
  year: 2003
  end-page: 730
  ident: CR40
  article-title: Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1593830
– volume: 107
  start-page: 057602
  year: 2011
  ident: CR22
  article-title: Giant flexoelectric effect in ferroelectric epitaxial thin films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.057602
– volume: 17
  start-page: 5508
  year: 2017
  end-page: 5513
  ident: CR5
  article-title: Out-of-plane piezoelectricity and ferroelectricity in layered α-In Se Nanoflakes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 56
  start-page: 10860
  year: 1997
  end-page: 10868
  ident: CR41
  article-title: Ferrielectric ordering in lamellar CuInP S
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.10860
– volume: 366
  start-page: 475
  year: 2019
  end-page: 479
  ident: CR36
  article-title: Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation
  publication-title: Science
  doi: 10.1126/science.aay7221
– volume: 21
  start-page: 9318
  year: 2021
  end-page: 9324
  ident: CR8
  article-title: Nonvolatile reconfigurable 2D Schottky barrier transistors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03557
– volume: 123
  start-page: 051905
  year: 2023
  ident: CR54
  article-title: In-plane anisotropic mechanical properties of two-dimensional NbOI
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0159315
– volume: 336
  start-page: 59
  year: 2012
  end-page: 61
  ident: CR15
  article-title: Mechanical writing of ferroelectric polarization
  publication-title: Science
  doi: 10.1126/science.1218693
– volume: 105
  start-page: 012903
  year: 2014
  ident: CR31
  article-title: Strain induced low mechanical switching force in ultrathin PbZr Ti O films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4889892
– volume: 10
  start-page: 2001726
  year: 2020
  ident: CR47
  article-title: The concept of negative capacitance in ionically conductive van der Waals ferroelectrics
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001726
– volume: 8
  start-page: 090901
  year: 2020
  ident: CR28
  article-title: Flexoelectricity in thin films and membranes of complex oxides
  publication-title: APL Mater.
  doi: 10.1063/5.0020212
– volume: 5
  start-page: 1
  year: 2021
  end-page: 7
  ident: CR53
  article-title: In-plane anisotropic optical and mechanical properties of two-dimensional MoO
  publication-title: Npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00220-5
– volume: 31
  start-page: 1903795
  year: 2019
  ident: CR51
  article-title: Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903795
– volume: 14
  start-page: 5053
  year: 2020
  end-page: 5060
  ident: CR35
  article-title: Giant superelastic piezoelectricity in flexible ferroelectric BaTiO membranes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01615
– volume: 99
  start-page: 167601
  year: 2007
  ident: 48892_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.167601
– volume: 218
  start-page: 157
  year: 1995
  ident: 48892_CR42
  publication-title: J. Alloy. Compd.
  doi: 10.1016/0925-8388(94)01416-7
– volume: 22
  start-page: 4792
  year: 2022
  ident: 48892_CR13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01066
– volume: 8
  start-page: 281
  year: 2022
  ident: 48892_CR29
  publication-title: J. Mater.
– volume: 12
  year: 2021
  ident: 48892_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-20945-7
– volume: 35
  start-page: 2305766
  year: 2023
  ident: 48892_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305766
– volume: 14
  start-page: 3018
  year: 2022
  ident: 48892_CR46
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18683
– volume: 5
  start-page: L030801
  year: 2021
  ident: 48892_CR55
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.L030801
– volume: 13
  start-page: 064063
  year: 2020
  ident: 48892_CR56
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.064063
– volume: 538
  start-page: 219
  year: 2016
  ident: 48892_CR24
  publication-title: Nature
  doi: 10.1038/nature19761
– volume: 99
  start-page: 102903
  year: 2011
  ident: 48892_CR1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 422
  start-page: 506
  year: 2003
  ident: 48892_CR7
  publication-title: Nature
  doi: 10.1038/nature01501
– volume: 56
  start-page: 10860
  year: 1997
  ident: 48892_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.10860
– volume: 21
  start-page: 9318
  year: 2021
  ident: 48892_CR8
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03557
– ident: 48892_CR21
  doi: 10.1002/adma.202302320
– volume: 14
  start-page: 5097
  year: 2014
  ident: 48892_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl501793a
– volume: 113
  start-page: 233902
  year: 2018
  ident: 48892_CR30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5068699
– volume: 10
  start-page: 1
  year: 2019
  ident: 48892_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 5
  start-page: 5625
  year: 2023
  ident: 48892_CR14
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00973
– volume: 9
  start-page: 2002146
  year: 2021
  ident: 48892_CR18
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202002146
– volume: 105
  start-page: 012903
  year: 2014
  ident: 48892_CR31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4889892
– volume: 8
  year: 2017
  ident: 48892_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15815
– volume: 299
  start-page: 1719
  year: 2003
  ident: 48892_CR2
  publication-title: Science
  doi: 10.1126/science.1080615
– volume: 353
  start-page: 274
  year: 2016
  ident: 48892_CR4
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 8
  start-page: eabq1232
  year: 2022
  ident: 48892_CR11
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abq1232
– volume: 83
  start-page: 728
  year: 2003
  ident: 48892_CR40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1593830
– volume: 14
  start-page: 5053
  year: 2020
  ident: 48892_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01615
– volume: 17
  start-page: 5508
  year: 2017
  ident: 48892_CR5
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– ident: 48892_CR33
  doi: 10.1002/adfm.202213561
– volume: 9
  start-page: 11362
  year: 2015
  ident: 48892_CR52
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05151
– volume: 4
  start-page: 1
  year: 1957
  ident: 48892_CR10
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60154-X
– volume: 123
  start-page: 051905
  year: 2023
  ident: 48892_CR54
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0159315
– volume: 366
  start-page: 475
  year: 2019
  ident: 48892_CR36
  publication-title: Science
  doi: 10.1126/science.aay7221
– volume: 336
  start-page: 59
  year: 2012
  ident: 48892_CR15
  publication-title: Science
  doi: 10.1126/science.1218693
– volume: 19
  start-page: 43
  year: 2020
  ident: 48892_CR43
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0532-z
– volume: 5
  start-page: 1
  year: 2021
  ident: 48892_CR53
  publication-title: Npj 2D Mater. Appl.
  doi: 10.1038/s41699-021-00220-5
– volume: 19
  start-page: 605
  year: 2020
  ident: 48892_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0659-y
– volume: 132
  start-page: 114102
  year: 2022
  ident: 48892_CR45
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0096704
– volume: 129
  start-page: 244105
  year: 2021
  ident: 48892_CR39
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0052495
– volume: 10
  start-page: 2001726
  year: 2020
  ident: 48892_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001726
– volume: 12
  start-page: 2516
  year: 2022
  ident: 48892_CR49
  publication-title: Nanomaterials
  doi: 10.3390/nano12152516
– volume: 77
  start-page: 033403
  year: 2008
  ident: 48892_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.033403
– volume: 22
  start-page: 3275
  year: 2022
  ident: 48892_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00130
– volume: 3
  start-page: 024401
  year: 2019
  ident: 48892_CR50
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.024401
– volume: 88
  year: 2013
  ident: 48892_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.174106
– volume: 31
  start-page: 1903795
  year: 2019
  ident: 48892_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903795
– volume: 107
  start-page: 057602
  year: 2011
  ident: 48892_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.057602
– volume: 560
  start-page: 336
  year: 2018
  ident: 48892_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0336-3
– volume: 16
  start-page: 2452
  year: 2022
  ident: 48892_CR44
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c08970
– volume: 12
  start-page: 23488
  year: 2020
  ident: 48892_CR19
  publication-title: Nanoscale
  doi: 10.1039/D0NR06872A
– volume: 21
  start-page: 995
  year: 2021
  ident: 48892_CR12
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04023
– volume: 8
  start-page: 090901
  year: 2020
  ident: 48892_CR28
  publication-title: APL Mater.
  doi: 10.1063/5.0020212
– volume: 15
  start-page: 661
  year: 2020
  ident: 48892_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0700-y
– volume: 15
  start-page: 3808
  year: 2015
  ident: 48892_CR3
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00491
– volume: 8
  start-page: 041327
  year: 2021
  ident: 48892_CR32
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0067429
– volume: 108
  year: 2023
  ident: 48892_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.L161406
SSID ssj0000391844
Score 2.5452275
Snippet The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating...
Abstract The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4556
SubjectTerms 639/301/119/996
639/766/119/996
Control methods
Data storage
Electric fields
Electric polarization
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Flexibility
Humanities and Social Sciences
multidisciplinary
Polarization
Science
Science (multidisciplinary)
Substrates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kUfBFvFtdJYJvWra5NE0eVVx8kEXEyz4IIUkTPHBspT0rur_eSdrT3eP1xdcmLcPMN5kZJv0G4JEWtPK1lmWtEqk2RqRSRcFK6j2vW9eINpP6vH_VHB2p42P9-tyor3QnbKIHnhR3IG1KA4JMTGeids4KFpWuG9diqI8qV-uY9ZwrpvIZzDWWLmL-S6bi6mAU-UzAkFQiZjUrT3ciUSbs_12W-etlyZ86pjkQHV6FK3MGSZ5Okl-DC6G7DpemmZLfb8DHNyHftHDrQOI6fOunQTcrT9r-s111JJwxEBK7IZgAks52_YjGCgTXMbUmbRjIB4vIJDEMw_KJ8Sa8O3zx9vnLch6hUPpa0E3JpGPOotKUr5pAo7I8OFR_cNJqymNw3gssrn2LBqok87HxQiYaQelU03p-C_a6vgt3gPhQ2VoGTBDQhaOilnFrZWQ0VFHYGAugW3UaP_OLpzEXa5P73FyZyQQGv26yCcxpAY-Xd75M7Bp_3f0sWWnZmZix8wPEi5nxYv6FlwL2tzY2s7uOhqfETqQWbwEPl2V0tNQ9sV3oT_IeVrNGVU0BtydILJJwpRKtkS5A7YBlR9TdlW71KZN50zRURze0gCdbXJ3J9Wdd3P0furgHl1lyiKoumd6Hvc1wEu7DRf91sxqHB9mjfgCbhiNP
  priority: 102
  providerName: Directory of Open Access Journals
Title Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics
URI https://link.springer.com/article/10.1038/s41467-024-48892-z
https://www.ncbi.nlm.nih.gov/pubmed/38811549
https://www.proquest.com/docview/3061544525
https://www.proquest.com/docview/3062527807
https://pubmed.ncbi.nlm.nih.gov/PMC11136971
https://doaj.org/article/6a0009e6067745bba42f8957bd514f80
Volume 15
WOSCitedRecordID wos001235556100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFqReeD8CZWUkbhA1duzYOSGKWoEEq6jisSCkyHZsWGmblGSLoL8e28lmtTx64ZJD7Fh2vhnPZMb5BuBxTnGiWZ7FTHhSbWeRYmEpibHWKasUp1Ug9Xn_mk-nYjbLiyHg1g3HKld7Ytioq0b7GPl-6m0v9Vm4Z6ffYl81ymdXhxIaW7DjWRK8Yhbs0xhj8ezngtLhX5kkFfsdDTuDM0yxk9ycxOcb9ijQ9v_N1_zzyORvedNgjo6u_e9CrsPVwRFFz3vJuQGXTH0TrvSlKX_egs_HJhzYUAuD7ML8aPp6OXONquZEzmtk1kSGSC6R8yNRLeumc5gb5Nqdh44q06IP0gk4sqZtxyG62_Du6PDti5fxUIkh1oziZUwyRZRUkgqdcIOtkKlRDkWjMpnj1BqlNXXf6LpyOCcZ0ZZrmnk2wkwJXun0DmzXTW3uAdImkSwzzs9wO4EVWJJUyswSbBJLpbUR4BUepR5oyn21jEUZ0uWpKHsMSzd6GTAszyN4Mj5z2pN0XNj7wMM89vQE2-FG034pB30tM-m9T5N5gj3KlFs6sSJnXFXOw7QiiWBvhW45aH1XrqGN4NHY7PTVJ2FkbZqz0IcwwkXCI7jby9Q4k1QIz46URyA2pG1jqpst9fxr4ATHvjZPznEET1eCuZ7Xv9_F_YuX8QB2ideVhMUk34PtZXtmHsJl_X0579oJbPEZD1cxgZ2Dw2lxPAkxjYk_QVtMgjK6luLVm-LjL5W1OXA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3oVAASPBCaImjhM7B4R4Va26rBAqdA9IxnZsWGlJSrIF2h_Fb8R2Hqvl0VsPXGPHGtvfjMf2-BuABzmJI5XmWZgyR6ptV6SQGYLDWKkkLSQlhSf1eT-i4zGbTPI3K_Czfwvjwip7m-gNdVEpd0a-mbi1l7hbuKcHX0OXNcrdrvYpNFpY7Oqj73bL1jzZeWnn9yHGW6_2XmyHXVaBUKUknoc4k1gKKQhTEdWxYSLR0kqkZSbyODFaKkXsflMVVuYow8pQRTLHrJdJRguV2HbPwFlrx6kLIaMTOpzpOLZ1Rkj3NidK2GZDvCWyf4dWU3IcHi-tfz5NwN982z9DNH-7p_XL39al_23gLsPFztFGz1rNuAIrurwK59vUm0fX4MNb7QNS5EwjM9M_qjYf0FShovoipiXSC6JGJObI-smoFGXVWExrZMvtDgQVukb7wiowMrquhyaa6_DuVLq2DqtlVeqbgJSORJpp60dZS2dYLHAiRGZwrCNDhDEBxP38c9XRsLtsIDPuwwESxlvMcNs695jhxwE8Gv45aElITqz93MFqqOkIxP2Hqv7EO3vEM-G8a505AkGSStt1bFieUllYD9qwKICNHk28s2oNX0ApgPtDsbVH7pJJlLo69HVwiimLaAA3WgwPkiSMOfanPAC2hO4lUZdLyulnz3keu9xDOY0DeNwrwkKuf4_FrZO7cQ_Wtvdej_hoZ7x7Gy5gp6dRGuJ8A1bn9aG-A-fUt_m0qe96RUfw8bQV5BcA3JKj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VcogX7iNQwEjwBNEmjpM4DwgBZUXVarVCHFWFFGzHhpWWpCRboP1p_DrGzrFajr71gdf40Dj5ZjwTj78BeJCxMFBxlvgxt6TauCP53DDqh0pFcSFTVjhSn3c76WTCd3ez6Rr87O_C2LTK3iY6Q11Uyv4jH0V272X2FG5kurSI6eb46f5X31aQsietfTmNFiLb-vA7hm_Nk61N_NYPKR2_fPPild9VGPBVzMKFTxNJpZCCcRWkOjRcRFqidFomIgsjo6VSDGNPVaD8QUKVSRVLLMteInlaqAjnPQWnU4wxbeA3jfeG_zuWeZ0z1t3TCSI-apizSjjaR63JqH-0she6kgF_83P_TNf87czWbYXji__zS7wEFzoHnDxrNeYyrOnyCpxtS3IeXoUPr7VLVJFzTcxc_6jaOkEzRYrqi5iVRC8JHIlYEPSfSSnKqkGsa4LtGJmQQtfkvUDFJkbX9TBFcw3ensjSrsN6WZX6JhClAxEnGv0rtICGh4JGQiSGhjowTBjjQdhjIVcdPbutEjLPXZpAxPMWPznOnjv85EcePBrG7LfkJMf2fm4hNvS0xOLuQVV_yjs7lSfCet06scSCLJa4dGp4FqeyQM_a8MCDjR5ZeWftmnwJKw_uD81op-zhkyh1deD60JimPEg9uNHieZAk4tyyQmUe8BWkr4i62lLOPjsu9NDWJMrS0IPHvVIs5fr3u7h1_DLuwTnUi3xna7J9G85Tq7JB7NNsA9YX9YG-A2fUt8Wsqe86nSfw8aT14xetTZuW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+flexoelectric+domain+engineering+at+the+nanoscale+in+van+der+Waals+ferroelectrics&rft.jtitle=Nature+communications&rft.au=Liu%2C+Heng&rft.au=Lai%2C+Qinglin&rft.au=Fu%2C+Jun&rft.au=Zhang%2C+Shijie&rft.date=2024-05-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=4556&rft_id=info:doi/10.1038%2Fs41467-024-48892-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon