Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics
The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is st...
Uloženo v:
| Vydáno v: | Nature communications Ročník 15; číslo 1; s. 4556 - 9 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.05.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP
2
S
6
via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm
2
, equal to a density of 31.4 Gbit/in
2
. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.
Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP
2
S
6
. |
|---|---|
| AbstractList | The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP
2
S
6
via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm
2
, equal to a density of 31.4 Gbit/in
2
. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Abstract The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics.Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP2S6. The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP S via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm , equal to a density of 31.4 Gbit/in . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP 2 S 6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm 2 , equal to a density of 31.4 Gbit/in 2 . Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP 2 S 6 . The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating potential material breakdown from a giant electric field at the nanoscale. One challenge of this approach is arbitrary implementation, which is strongly hindered by one-way switching capability. Here, utilizing the innate flexibility of van der Waals materials, we demonstrate that ferroelectric polarization and domain structures can be mechanically, reversibly, and arbitrarily switched in two-dimensional CuInP2S6 via the nano-tip imprinting technique. The bidirectional flexoelectric control is attributed to the extended tip-induced deformation in two-dimensional systems with innate flexibility at the atomic scale. By employing an elastic substrate, artificial ferroelectric nanodomains with lateral sizes as small as ~80 nm are noninvasively generated in an area of 1 μm2, equal to a density of 31.4 Gbit/in2. Our results highlight the potential applications of van der Waals ferroelectrics in data storage and flexoelectronics. Flexoelectric effect may offer a voltage-free method to control the polarization in 2D ferroelectrics, but its widespread application remains challenging. Here, the authors report an approach to arbitrarily switch the ferroelectricity in 2D CuInP2S6. |
| ArticleNumber | 4556 |
| Author | Zhang, Shijie Lai, Qinglin Fu, Zhaoming Zeng, Hualing Liu, Heng Fu, Jun |
| Author_xml | – sequence: 1 givenname: Heng surname: Liu fullname: Liu, Heng organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China – sequence: 2 givenname: Qinglin surname: Lai fullname: Lai, Qinglin organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China – sequence: 3 givenname: Jun orcidid: 0000-0002-1781-214X surname: Fu fullname: Fu, Jun organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China – sequence: 4 givenname: Shijie surname: Zhang fullname: Zhang, Shijie organization: College of Physics and Electronic Information, Yunnan Normal University, Yunnan Key Laboratory of Opto-Electronic Information Technology – sequence: 5 givenname: Zhaoming surname: Fu fullname: Fu, Zhaoming organization: College of Physics and Electronic Information, Yunnan Normal University, Yunnan Key Laboratory of Opto-Electronic Information Technology – sequence: 6 givenname: Hualing orcidid: 0000-0001-5869-9553 surname: Zeng fullname: Zeng, Hualing email: hlzeng@ustc.edu.cn organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei National Laboratory, University of Science and Technology of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38811549$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1LHTEUDUWp1voHuigD3XQzNV-TZFalSD8EoSCWbgohydw885iXvCbzHq2_vnmOWnVhNgn3nnNy7scrtBdTBITeEPyBYKZOCidcyBZT3nKletpev0CHFHPSEknZ3oP3ATouZYnrYT1RnL9EB0wpQjreH6JfF7CFXIIdofEj_EkwgptycM2QVibEBuIiRIAc4qIxUzNdQRNNTMWZyqj5rYnNALn5acxYGg8530uU12jf1ygc395H6MeXz5en39rz71_PTj-dt67jZGqpsNQaa7hyWALxyjCwg-jACtMT5sE6x8FSN3hOsaDOS8dFrbwXVsnBsSN0NusOySz1OoeVyX91MkHfBFJeaJOn4EbQwtQ-9CCwkJJ3tn5Kveo7aYeOcK9w1fo4a603dgWDgzhlMz4SfZyJ4Uov0lYTQpjoJakK728Vcvq9gTLpVSgOxtFESJuiWS2ho1JhWaHvnkCXaZNj7dUOVSfEO9pV1NuHlu693E2xAtQMcDmVksFrFyYzhbRzGEZNsN7tjJ53RtfO6Zud0deVSp9Q79SfJbGZVNa7vYD83_YzrH92oNWg |
| CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110442 crossref_primary_10_1002_adfm_202509227 crossref_primary_10_1063_5_0251656 crossref_primary_10_1038_s41535_025_00781_4 crossref_primary_10_1002_adfm_202421302 crossref_primary_10_1038_s41467_025_60602_x crossref_primary_10_1088_1361_6463_addad2 crossref_primary_10_1002_adfm_202410240 crossref_primary_10_1038_s41467_025_56233_x crossref_primary_10_1002_adma_202501160 crossref_primary_10_1002_adfm_202416311 crossref_primary_10_1038_s41467_024_55160_7 crossref_primary_10_1039_D4NR03569K crossref_primary_10_1038_s41467_024_53436_6 crossref_primary_10_1002_advs_202411391 crossref_primary_10_1002_smll_202503363 crossref_primary_10_1557_s43577_024_00834_2 crossref_primary_10_1021_acsami_5c04037 |
| Cites_doi | 10.1038/nature01501 10.1103/PhysRevLett.99.167601 10.1021/acs.nanolett.2c01066 10.1002/adma.202305766 10.3390/nano12152516 10.1021/nl501793a 10.1021/acsnano.5b05151 10.1063/1.3634052 10.1126/science.1080615 10.1126/science.aad8609 10.1016/S0081-1947(08)60154-X 10.1021/acsaelm.3c00973 10.1038/s41565-020-0700-y 10.1103/PhysRevB.77.033403 10.1038/s41586-018-0336-3 10.1103/PhysRevMaterials.3.024401 10.1038/s41563-020-0659-y 10.1038/ncomms15815 10.1063/5.0052495 10.1063/1.5068699 10.1038/nature19761 10.1103/PhysRevMaterials.5.L030801 10.1002/adom.202002146 10.1103/PhysRevB.108.L161406 10.1021/acs.nanolett.0c04023 10.1103/PhysRevApplied.13.064063 10.1021/acs.nanolett.2c00130 10.1038/s41563-019-0532-z 10.1126/sciadv.abq1232 10.1063/5.0096704 10.1021/acsami.1c18683 10.1021/acsnano.1c08970 10.1063/5.0067429 10.1038/s41467-021-20945-7 10.1103/PhysRevB.88.174106 10.1016/0925-8388(94)01416-7 10.1021/acs.nanolett.5b00491 10.1039/D0NR06872A 10.1063/1.1593830 10.1103/PhysRevLett.107.057602 10.1021/acs.nanolett.7b02198 10.1103/PhysRevB.56.10860 10.1126/science.aay7221 10.1021/acs.nanolett.1c03557 10.1063/5.0159315 10.1126/science.1218693 10.1063/1.4889892 10.1002/aenm.202001726 10.1063/5.0020212 10.1038/s41699-021-00220-5 10.1002/adma.201903795 10.1021/acsnano.0c01615 10.1002/adma.202302320 10.1038/s41467-018-07882-8 10.1002/adfm.202213561 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-024-48892-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_6a0009e6067745bba42f8957bd514f80 PMC11136971 38811549 10_1038_s41467_024_48892_z |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-26b2baba48c07e1f8a3ebd65eb6a913febcc4eb2cdf42062cf7c4602496b87dc3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235556100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 18:42:56 EDT 2025 Tue Nov 04 02:05:37 EST 2025 Sun Aug 24 03:16:58 EDT 2025 Tue Oct 07 07:20:30 EDT 2025 Wed Feb 19 02:06:08 EST 2025 Sat Nov 29 03:30:02 EST 2025 Tue Nov 18 22:35:35 EST 2025 Fri Feb 21 02:37:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-26b2baba48c07e1f8a3ebd65eb6a913febcc4eb2cdf42062cf7c4602496b87dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5869-9553 0000-0002-1781-214X |
| OpenAccessLink | https://www.proquest.com/docview/3061544525?pq-origsite=%requestingapplication% |
| PMID | 38811549 |
| PQID | 3061544525 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a0009e6067745bba42f8957bd514f80 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11136971 proquest_miscellaneous_3062527807 proquest_journals_3061544525 pubmed_primary_38811549 crossref_citationtrail_10_1038_s41467_024_48892_z crossref_primary_10_1038_s41467_024_48892_z springer_journals_10_1038_s41467_024_48892_z |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-29 |
| PublicationDateYYYYMMDD | 2024-05-29 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Gruverman (CR40) 2003; 83 Zhao, Rakheja, Zhu (CR8) 2021; 21 Lee (CR22) 2011; 107 Swain (CR30) 2018; 113 Wang (CR2) 2003; 299 Chang (CR4) 2016; 353 Stengel (CR34) 2013; 88 Wang (CR26) 2020; 15 Tedeschi (CR51) 2019; 31 CR33 Neumayer (CR50) 2019; 3 Jiang (CR29) 2022; 8 Zhang (CR12) 2021; 21 Shu (CR25) 2020; 19 Neumayer (CR46) 2022; 14 Fei (CR6) 2018; 560 Wang (CR9) 2019; 10 Neumayer (CR47) 2020; 10 Puebla (CR53) 2021; 5 Chen (CR16) 2022; 22 Xu (CR19) 2020; 12 Junquera, Ghosez (CR7) 2003; 422 Brehm (CR43) 2020; 19 Böscke, Müller, Bräuhaus, Schröder, Böttger (CR1) 2011; 99 Maisonneuve, Evain, Payen, Cajipe, Molinié (CR42) 1995; 218 Dong (CR36) 2019; 366 Belianinov (CR3) 2015; 15 Zubko, Catalan, Buckley, Welche, Scott (CR23) 2007; 99 Zhou (CR5) 2017; 17 O’Hara (CR45) 2022; 132 Codony, Arias, Suryanarayana (CR55) 2021; 5 Neumayer (CR44) 2022; 16 Lu (CR15) 2012; 336 Neumayer (CR56) 2020; 13 Li, Xiong, Huang, Chen, Zheng (CR39) 2021; 129 Huang (CR14) 2023; 5 Elangovan (CR35) 2020; 14 Liu (CR37) 2014; 14 Zhang (CR48) 2023; 108 Tao (CR52) 2015; 9 Huang (CR20) 2023; 35 Cui (CR54) 2023; 123 Lee (CR28) 2020; 8 Ming (CR11) 2022; 8 Narvaez, Vasquez-Sancho, Catalan (CR24) 2016; 538 Falin (CR38) 2017; 8 Känzig (CR10) 1957; 4 Kalinin, Meunier (CR27) 2008; 77 Guo (CR18) 2021; 9 Guo, Roth, Das, Dörr (CR31) 2014; 105 Guan (CR13) 2022; 22 CR21 Jia (CR49) 2022; 12 Maisonneuve, Cajipe, Simon, Von Der Muhll, Ravez (CR41) 1997; 56 Park (CR32) 2021; 8 Xu (CR17) 2021; 12 J Tao (48892_CR52) 2015; 9 J Guo (48892_CR18) 2021; 9 SM Neumayer (48892_CR46) 2022; 14 W Ming (48892_CR11) 2022; 8 T Jia (48892_CR49) 2022; 12 SM Park (48892_CR32) 2021; 8 M Stengel (48892_CR34) 2013; 88 Y Zhou (48892_CR5) 2017; 17 D-D Xu (48892_CR17) 2021; 12 TS Böscke (48892_CR1) 2011; 99 L Shu (48892_CR25) 2020; 19 G Dong (48892_CR36) 2019; 366 SM Neumayer (48892_CR50) 2019; 3 V Maisonneuve (48892_CR41) 1997; 56 JA Brehm (48892_CR43) 2020; 19 Z Zhao (48892_CR8) 2021; 21 X Wang (48892_CR9) 2019; 10 W Känzig (48892_CR10) 1957; 4 K Liu (48892_CR37) 2014; 14 J Wang (48892_CR2) 2003; 299 J Junquera (48892_CR7) 2003; 422 H Elangovan (48892_CR35) 2020; 14 Z Guan (48892_CR13) 2022; 22 Z Fei (48892_CR6) 2018; 560 V Maisonneuve (48892_CR42) 1995; 218 B Huang (48892_CR20) 2023; 35 D Tedeschi (48892_CR51) 2019; 31 48892_CR21 SM Neumayer (48892_CR44) 2022; 16 L Wang (48892_CR26) 2020; 15 C Chen (48892_CR16) 2022; 22 Z Jiang (48892_CR29) 2022; 8 A Belianinov (48892_CR3) 2015; 15 D Lee (48892_CR28) 2020; 8 SM Neumayer (48892_CR56) 2020; 13 Y Huang (48892_CR14) 2023; 5 48892_CR33 K Xu (48892_CR19) 2020; 12 SV Kalinin (48892_CR27) 2008; 77 S Puebla (48892_CR53) 2021; 5 EJ Guo (48892_CR31) 2014; 105 A O’Hara (48892_CR45) 2022; 132 J Li (48892_CR39) 2021; 129 H Lu (48892_CR15) 2012; 336 K Chang (48892_CR4) 2016; 353 P Zubko (48892_CR23) 2007; 99 A Falin (48892_CR38) 2017; 8 D Zhang (48892_CR12) 2021; 21 X Zhang (48892_CR48) 2023; 108 AB Swain (48892_CR30) 2018; 113 D Codony (48892_CR55) 2021; 5 J Narvaez (48892_CR24) 2016; 538 SM Neumayer (48892_CR47) 2020; 10 D Lee (48892_CR22) 2011; 107 A Gruverman (48892_CR40) 2003; 83 Y Cui (48892_CR54) 2023; 123 |
| References_xml | – volume: 422 start-page: 506 year: 2003 end-page: 509 ident: CR7 article-title: Critical thickness for ferroelectricity in perovskite ultrathin films publication-title: Nature doi: 10.1038/nature01501 – volume: 99 start-page: 167601 year: 2007 ident: CR23 article-title: Strain-gradient-induced polarization in SrTiO single crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.167601 – volume: 22 start-page: 4792 year: 2022 end-page: 4799 ident: CR13 article-title: Mechanical polarization switching in Hf Zr O thin film publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01066 – volume: 35 start-page: 2305766 year: 2023 ident: CR20 article-title: Mechanically gated transistor publication-title: Adv. Mater. doi: 10.1002/adma.202305766 – volume: 12 start-page: 2516 year: 2022 ident: CR49 article-title: Ferroelectricity and piezoelectricity in 2D van der Waals CuInP S ferroelectric tunnel junctions publication-title: Nanomaterials doi: 10.3390/nano12152516 – volume: 14 start-page: 5097 year: 2014 end-page: 5103 ident: CR37 article-title: Elastic properties of chemical-vapor-deposited monolayer MoS , WS , and their bilayer heterostructures publication-title: Nano Lett. doi: 10.1021/nl501793a – volume: 9 start-page: 11362 year: 2015 end-page: 11370 ident: CR52 article-title: Mechanical and electrical anisotropy of few-layer black phosphorus publication-title: ACS Nano doi: 10.1021/acsnano.5b05151 – volume: 99 start-page: 102903 year: 2011 ident: CR1 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 299 start-page: 1719 year: 2003 end-page: 1722 ident: CR2 article-title: Epitaxial BiFeO multiferroic thin film heterostructures publication-title: Science doi: 10.1126/science.1080615 – volume: 353 start-page: 274 year: 2016 end-page: 278 ident: CR4 article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe publication-title: Science doi: 10.1126/science.aad8609 – volume: 4 start-page: 1 year: 1957 end-page: 197 ident: CR10 article-title: Ferroelectrics and antiferroeletrics publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60154-X – volume: 5 start-page: 5625 year: 2023 end-page: 5632 ident: CR14 article-title: Cu migration and resultant tunable rectification in CuInP S publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00973 – volume: 15 start-page: 661 year: 2020 end-page: 667 ident: CR26 article-title: Flexoelectronics of centrosymmetric semiconductors publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0700-y – volume: 77 start-page: 033403 year: 2008 ident: CR27 article-title: Electronic flexoelectricity in low-dimensional systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.033403 – volume: 560 start-page: 336 year: 2018 end-page: 339 ident: CR6 article-title: Ferroelectric switching of a two-dimensional metal publication-title: Nature doi: 10.1038/s41586-018-0336-3 – ident: CR21 – volume: 3 start-page: 024401 year: 2019 ident: CR50 article-title: Giant negative electrostriction and dielectric tunability in a van der waals layered ferroelectric publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.024401 – volume: 19 start-page: 605 year: 2020 end-page: 609 ident: CR25 article-title: Photoflexoelectric effect in halide perovskites publication-title: Nat. Mater. doi: 10.1038/s41563-020-0659-y – volume: 8 year: 2017 ident: CR38 article-title: Mechanical properties of atomically thin boron nitride and the role of interlayer interactions publication-title: Nat. Commun. doi: 10.1038/ncomms15815 – volume: 129 start-page: 244105 year: 2021 ident: CR39 article-title: Phase-field study on the effect of substrate elasticity on tip-force-induced domain switching in ferroelectric thin films publication-title: J. Appl. Phys. doi: 10.1063/5.0052495 – volume: 113 start-page: 233902 year: 2018 ident: CR30 article-title: Self-polarization effect on large photovoltaic response in lead-free ferroelectric 0.5Ba(Zr Ti )O -0.5(Ba Ca )TiO epitaxial film publication-title: Appl. Phys. Lett. doi: 10.1063/1.5068699 – volume: 538 start-page: 219 year: 2016 end-page: 221 ident: CR24 article-title: Enhanced flexoelectric-like response in oxide semiconductors publication-title: Nature doi: 10.1038/nature19761 – volume: 8 start-page: 281 year: 2022 end-page: 287 ident: CR29 article-title: Flexoelectric-induced photovoltaic effects and tunable photocurrents in flexible LaFeO epitaxial heterostructures publication-title: J. Mater. – volume: 5 start-page: L030801 year: 2021 ident: CR55 article-title: Transversal flexoelectric coefficient for nanostructures at finite deformations from first principles publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.L030801 – volume: 9 start-page: 2002146 year: 2021 ident: CR18 article-title: Recent progress in optical control of ferroelectric polarization publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202002146 – volume: 108 year: 2023 ident: CR48 article-title: Origin of versatile polarization state in CuInP S publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.L161406 – volume: 21 start-page: 995 year: 2021 end-page: 1002 ident: CR12 article-title: Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP S publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04023 – volume: 13 start-page: 064063 year: 2020 ident: CR56 article-title: Alignment of polarization against an electric field in van der Waals ferroelectrics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064063 – volume: 22 start-page: 3275 year: 2022 end-page: 3282 ident: CR16 article-title: Large-scale domain engineering in two-dimensional ferroelectric CuInP S via giant flexoelectric effect publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00130 – volume: 19 start-page: 43 year: 2020 end-page: 48 ident: CR43 article-title: Tunable quadruple-well ferroelectric van der Waals crystals publication-title: Nat. Mater. doi: 10.1038/s41563-019-0532-z – volume: 8 start-page: eabq1232 year: 2022 ident: CR11 article-title: Flexoelectric engineering of van der Waals ferroelectric CuInP S publication-title: Sci. Adv. doi: 10.1126/sciadv.abq1232 – volume: 132 start-page: 114102 year: 2022 ident: CR45 article-title: Effects of thin metal contacts on few-layer van der Waals ferroelectric CuInP S publication-title: J. Appl. Phys. doi: 10.1063/5.0096704 – volume: 14 start-page: 3018 year: 2022 end-page: 3026 ident: CR46 article-title: Ionic control over ferroelectricity in 2D layered van der Waals capacitors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18683 – volume: 16 start-page: 2452 year: 2022 end-page: 2460 ident: CR44 article-title: Nanoscale control of polar surface phases in layered van der Waals CuInP S publication-title: ACS Nano doi: 10.1021/acsnano.1c08970 – volume: 8 start-page: 041327 year: 2021 ident: CR32 article-title: Flexoelectric control of physical properties by atomic force microscopy publication-title: Appl. Phys. Rev. doi: 10.1063/5.0067429 – volume: 12 year: 2021 ident: CR17 article-title: Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric publication-title: Nat. Commun. doi: 10.1038/s41467-021-20945-7 – ident: CR33 – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR9 article-title: Van der Waals negative capacitance transistors publication-title: Nat. Commun. – volume: 88 year: 2013 ident: CR34 article-title: Flexoelectricity from density-functional perturbation theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.174106 – volume: 218 start-page: 157 year: 1995 end-page: 164 ident: CR42 article-title: Room-temperature crystal structure of the layered phase Cu In P S publication-title: J. Alloy. Compd. doi: 10.1016/0925-8388(94)01416-7 – volume: 15 start-page: 3808 year: 2015 end-page: 3814 ident: CR3 article-title: CuInP S room temperature layered ferroelectric publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00491 – volume: 12 start-page: 23488 year: 2020 end-page: 23496 ident: CR19 article-title: Optical control of ferroelectric switching and multifunctional devices based on van der Waals ferroelectric semiconductors publication-title: Nanoscale doi: 10.1039/D0NR06872A – volume: 83 start-page: 728 year: 2003 end-page: 730 ident: CR40 article-title: Mechanical stress effect on imprint behavior of integrated ferroelectric capacitors publication-title: Appl. Phys. Lett. doi: 10.1063/1.1593830 – volume: 107 start-page: 057602 year: 2011 ident: CR22 article-title: Giant flexoelectric effect in ferroelectric epitaxial thin films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.057602 – volume: 17 start-page: 5508 year: 2017 end-page: 5513 ident: CR5 article-title: Out-of-plane piezoelectricity and ferroelectricity in layered α-In Se Nanoflakes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 56 start-page: 10860 year: 1997 end-page: 10868 ident: CR41 article-title: Ferrielectric ordering in lamellar CuInP S publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.10860 – volume: 366 start-page: 475 year: 2019 end-page: 479 ident: CR36 article-title: Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation publication-title: Science doi: 10.1126/science.aay7221 – volume: 21 start-page: 9318 year: 2021 end-page: 9324 ident: CR8 article-title: Nonvolatile reconfigurable 2D Schottky barrier transistors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03557 – volume: 123 start-page: 051905 year: 2023 ident: CR54 article-title: In-plane anisotropic mechanical properties of two-dimensional NbOI publication-title: Appl. Phys. Lett. doi: 10.1063/5.0159315 – volume: 336 start-page: 59 year: 2012 end-page: 61 ident: CR15 article-title: Mechanical writing of ferroelectric polarization publication-title: Science doi: 10.1126/science.1218693 – volume: 105 start-page: 012903 year: 2014 ident: CR31 article-title: Strain induced low mechanical switching force in ultrathin PbZr Ti O films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4889892 – volume: 10 start-page: 2001726 year: 2020 ident: CR47 article-title: The concept of negative capacitance in ionically conductive van der Waals ferroelectrics publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001726 – volume: 8 start-page: 090901 year: 2020 ident: CR28 article-title: Flexoelectricity in thin films and membranes of complex oxides publication-title: APL Mater. doi: 10.1063/5.0020212 – volume: 5 start-page: 1 year: 2021 end-page: 7 ident: CR53 article-title: In-plane anisotropic optical and mechanical properties of two-dimensional MoO publication-title: Npj 2D Mater. Appl. doi: 10.1038/s41699-021-00220-5 – volume: 31 start-page: 1903795 year: 2019 ident: CR51 article-title: Controlled micro/nanodome formation in proton-irradiated bulk transition-metal dichalcogenides publication-title: Adv. Mater. doi: 10.1002/adma.201903795 – volume: 14 start-page: 5053 year: 2020 end-page: 5060 ident: CR35 article-title: Giant superelastic piezoelectricity in flexible ferroelectric BaTiO membranes publication-title: ACS Nano doi: 10.1021/acsnano.0c01615 – volume: 99 start-page: 167601 year: 2007 ident: 48892_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.167601 – volume: 218 start-page: 157 year: 1995 ident: 48892_CR42 publication-title: J. Alloy. Compd. doi: 10.1016/0925-8388(94)01416-7 – volume: 22 start-page: 4792 year: 2022 ident: 48892_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01066 – volume: 8 start-page: 281 year: 2022 ident: 48892_CR29 publication-title: J. Mater. – volume: 12 year: 2021 ident: 48892_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-021-20945-7 – volume: 35 start-page: 2305766 year: 2023 ident: 48892_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.202305766 – volume: 14 start-page: 3018 year: 2022 ident: 48892_CR46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18683 – volume: 5 start-page: L030801 year: 2021 ident: 48892_CR55 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.L030801 – volume: 13 start-page: 064063 year: 2020 ident: 48892_CR56 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064063 – volume: 538 start-page: 219 year: 2016 ident: 48892_CR24 publication-title: Nature doi: 10.1038/nature19761 – volume: 99 start-page: 102903 year: 2011 ident: 48892_CR1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 422 start-page: 506 year: 2003 ident: 48892_CR7 publication-title: Nature doi: 10.1038/nature01501 – volume: 56 start-page: 10860 year: 1997 ident: 48892_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.10860 – volume: 21 start-page: 9318 year: 2021 ident: 48892_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03557 – ident: 48892_CR21 doi: 10.1002/adma.202302320 – volume: 14 start-page: 5097 year: 2014 ident: 48892_CR37 publication-title: Nano Lett. doi: 10.1021/nl501793a – volume: 113 start-page: 233902 year: 2018 ident: 48892_CR30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5068699 – volume: 10 start-page: 1 year: 2019 ident: 48892_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 5 start-page: 5625 year: 2023 ident: 48892_CR14 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00973 – volume: 9 start-page: 2002146 year: 2021 ident: 48892_CR18 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202002146 – volume: 105 start-page: 012903 year: 2014 ident: 48892_CR31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4889892 – volume: 8 year: 2017 ident: 48892_CR38 publication-title: Nat. Commun. doi: 10.1038/ncomms15815 – volume: 299 start-page: 1719 year: 2003 ident: 48892_CR2 publication-title: Science doi: 10.1126/science.1080615 – volume: 353 start-page: 274 year: 2016 ident: 48892_CR4 publication-title: Science doi: 10.1126/science.aad8609 – volume: 8 start-page: eabq1232 year: 2022 ident: 48892_CR11 publication-title: Sci. Adv. doi: 10.1126/sciadv.abq1232 – volume: 83 start-page: 728 year: 2003 ident: 48892_CR40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1593830 – volume: 14 start-page: 5053 year: 2020 ident: 48892_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.0c01615 – volume: 17 start-page: 5508 year: 2017 ident: 48892_CR5 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – ident: 48892_CR33 doi: 10.1002/adfm.202213561 – volume: 9 start-page: 11362 year: 2015 ident: 48892_CR52 publication-title: ACS Nano doi: 10.1021/acsnano.5b05151 – volume: 4 start-page: 1 year: 1957 ident: 48892_CR10 publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60154-X – volume: 123 start-page: 051905 year: 2023 ident: 48892_CR54 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0159315 – volume: 366 start-page: 475 year: 2019 ident: 48892_CR36 publication-title: Science doi: 10.1126/science.aay7221 – volume: 336 start-page: 59 year: 2012 ident: 48892_CR15 publication-title: Science doi: 10.1126/science.1218693 – volume: 19 start-page: 43 year: 2020 ident: 48892_CR43 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0532-z – volume: 5 start-page: 1 year: 2021 ident: 48892_CR53 publication-title: Npj 2D Mater. Appl. doi: 10.1038/s41699-021-00220-5 – volume: 19 start-page: 605 year: 2020 ident: 48892_CR25 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0659-y – volume: 132 start-page: 114102 year: 2022 ident: 48892_CR45 publication-title: J. Appl. Phys. doi: 10.1063/5.0096704 – volume: 129 start-page: 244105 year: 2021 ident: 48892_CR39 publication-title: J. Appl. Phys. doi: 10.1063/5.0052495 – volume: 10 start-page: 2001726 year: 2020 ident: 48892_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001726 – volume: 12 start-page: 2516 year: 2022 ident: 48892_CR49 publication-title: Nanomaterials doi: 10.3390/nano12152516 – volume: 77 start-page: 033403 year: 2008 ident: 48892_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.033403 – volume: 22 start-page: 3275 year: 2022 ident: 48892_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00130 – volume: 3 start-page: 024401 year: 2019 ident: 48892_CR50 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.024401 – volume: 88 year: 2013 ident: 48892_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.174106 – volume: 31 start-page: 1903795 year: 2019 ident: 48892_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201903795 – volume: 107 start-page: 057602 year: 2011 ident: 48892_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.057602 – volume: 560 start-page: 336 year: 2018 ident: 48892_CR6 publication-title: Nature doi: 10.1038/s41586-018-0336-3 – volume: 16 start-page: 2452 year: 2022 ident: 48892_CR44 publication-title: ACS Nano doi: 10.1021/acsnano.1c08970 – volume: 12 start-page: 23488 year: 2020 ident: 48892_CR19 publication-title: Nanoscale doi: 10.1039/D0NR06872A – volume: 21 start-page: 995 year: 2021 ident: 48892_CR12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04023 – volume: 8 start-page: 090901 year: 2020 ident: 48892_CR28 publication-title: APL Mater. doi: 10.1063/5.0020212 – volume: 15 start-page: 661 year: 2020 ident: 48892_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0700-y – volume: 15 start-page: 3808 year: 2015 ident: 48892_CR3 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00491 – volume: 8 start-page: 041327 year: 2021 ident: 48892_CR32 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0067429 – volume: 108 year: 2023 ident: 48892_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.L161406 |
| SSID | ssj0000391844 |
| Score | 2.546216 |
| Snippet | The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics, eliminating... Abstract The universal flexoelectric effect in solids provides a mechanical pathway for controlling electric polarization in ultrathin ferroelectrics,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4556 |
| SubjectTerms | 639/301/119/996 639/766/119/996 Control methods Data storage Electric fields Electric polarization Ferroelectric materials Ferroelectricity Ferroelectrics Flexibility Humanities and Social Sciences multidisciplinary Polarization Science Science (multidisciplinary) Substrates |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFA4yKLgR31ZHieBOw6RpmsdSxcHVIKI4CyHkiReurbR3ZGZ-vSdpb2euz43bJi2H88j5Dif9DkLPfOaVYloQgPaCQCRGYqn3pLay9VD4BGFDGTYhj47U8bF-d2nUV74TNtEDT4o7EDbDgCgy0xlvnbOcJaVb6QKk-qRKtQ6o51IxVc7gRkPpwue_ZGijDkZezgRISQR8VjNyvpOJCmH_71Dmr5clf-qYlkR0eBPdmBEkfjlJfgtdid1tdG2aKXl2B31-H8tNC7eOOK3jaT8Null5HPqvdtXheMFAiO0GAwDEne36EYwVMawDtMYhDviTBc_EKQ7D8onxLvp4-ObD67dkHqFAfMvrDWHCMWdBacpTGeukbBNdEG10wuq6SdF5z6G49iFxRgXzSXouMo2gcEoG39xDe13fxQcIZ3I40D2VCSCUoMlq7lUbvE-UBjg2K1Rv1Wn8zC-ex1ysTelzN8pMJjDwdVNMYM4r9Hx559vErvHX3a-ylZadmRm7PAB_MbO_mH_5S4X2tzY2c7iOpsnAjucWb4WeLssQaLl7YrvYn5Q9rGVSUVmh-5NLLJI0SmVaI10hteMsO6LurnSrL4XMu85DdbSsK_Ri61cXcv1ZFw__hy4eoessBwRtCdP7aG8znMTH6Kr_vlmNw5MSUT8A-sojEA priority: 102 providerName: Directory of Open Access Journals |
| Title | Reversible flexoelectric domain engineering at the nanoscale in van der Waals ferroelectrics |
| URI | https://link.springer.com/article/10.1038/s41467-024-48892-z https://www.ncbi.nlm.nih.gov/pubmed/38811549 https://www.proquest.com/docview/3061544525 https://www.proquest.com/docview/3062527807 https://pubmed.ncbi.nlm.nih.gov/PMC11136971 https://doaj.org/article/6a0009e6067745bba42f8957bd514f80 |
| Volume | 15 |
| WOSCitedRecordID | wos001235556100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BEhmJG1h1HMd2ToiiVnBgFVUgFoQUOY4NKy1JSbYI-uuxnWxWy6MXLjlknMjOPDyemXwD8ER7XCmac-xce46dJhqsiNY4USLT7uBTc1WHZhNiNpPzeV6MAbd-LKtc28RgqOtW-xj5Qer3XuazcM9Pv2HfNcpnV8cWGjuw51ESvGIW2ccpxuLRzyVj478yJJUHPQuWwW1M2EluTvH51n4UYPv_5mv-WTL5W940bEfH1_93ITfg2uiIoheD5NyES6a5BVeG1pQ_b8OnExMKNqqlQXZpfrRDv5yFRnX7VS0aZDZAhkitkPMjUaOatnc8N8jRnYeOatOh98oJOLKm66ZX9Hfg3fHR25ev8NiJAeuMJStMeUUrVSkmNREmsVKlpqp5Ziqu8iS1ptKauTO6ri2jhFNthWbcoxHySopap3dht2kbcx-Qx5hj1BJhnSfGiVU50zKrtbaE1M76RpCs-VHqEabcd8tYliFdnspy4GHp3l4GHpbnETydnjkdQDouHH3o2TyN9ADb4UbbfS5HfS258t6n4R5gj2WVWzq1Ms9EVTsP00oSwf6au-Wo9X25YW0Ejyey01efhFGNac_CGJpRIYmI4N4gU9NMUik9OlIegdyStq2pblOaxZeACZ743jy5SCJ4thbMzbz-_S0eXLyMh3CVel0hGab5PuyuujPzCC7r76tF38WwI-YiXGUMe4dHs-IkDjGN2FfQFnFQRkcpXr8pPvwCFdI5MQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBQQb3o9AASPBCqw6jmM7C4R4Va1aKoSKmAVScBwbRhqSkkyB9qP4RmznMRoe3XXBNnYsOz73-jq-Pgfggfa8UjTj2IX2HDtLNFgRrXGsRKrdxqfkqgxiE2J3V04m2ZsV-DnchfFplYNPDI66rLX_R76e-LWX-VO4p_tfsVeN8qerg4RGB4ttc_jdbdnaJ1sv3fw-pHTj1d6LTdyrCmCdsniOKS9ooQrFpCbCxFaqxBQlT03BVRYn1hRaM7ff1KVllHCqrdCMe2Y9XkhR6sS1ewpOOz8ufAqZmIjxn45nW5eM9XdzSCLXWxY8kXsbO0vJKD5aWv-CTMDfYts_UzR_O6cNy9_Gxf_tw12CC32gjZ51lnEZVkx1Bc520puHV-HDWxMSUoqZQXZmftSdHtBUo7L-oqYVMguiRqTmyMXJqFJV3TpMG-TK3Q4ElaZB75UzYGRN04xNtNfg3YkM7TqsVnVlbgLyHHqMWiKsizQ5sSpjWqal1paQ0q0uEcTD_Oe6p2H3aiCzPKQDJDLvMJO71vOAmfwogkfjO_sdCcmxtZ97WI01PYF4eFA3n_LeH-Vc-ejacE8gyNLCDZ1amaWiKF0EbSWJYG1AU957tTZfQCmC-2Ox80f-kElVpj4IdWhKhSQighsdhseeJFJ69qcsArmE7qWuLpdU08-B8zz22kOZiCN4PBjCol___ha3jh_GPTi3ufd6J9_Z2t2-Deept1OSYpqtweq8OTB34Iz-Np-2zd1g6Ag-nrSB_ALYcZJk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgcx3GcA0JAGVEVjUYIRFUhBcdLO9KQlGQKtD-NX4ftLKNh6a0HrrFj2cn3Pb8Xv3wP4JF0ulIkY6F17VlomahDgaUMI5Em0gY-ignli02kkwnf2cmma_Cz_xfGpVX2NtEbalVJ9418FLu9l7pTuJHp0iKmm-PnB19DV0HKnbT25TRaiGzro-82fGuebW3ad_2YkPHr96_ehF2FgVAmNFqEhBWkEIWgXOJUR4aLWBeKJbpgIotiowspqY09pTKUYEakSSVlTmWPFTxVMrbjnoGzqY0xXeA3TXaH7ztOeZ1T2v2ng2M-aqi3Svbu0LImI-Hxyl7oSwb8zc_9M13ztzNbvxWOL__PD_EKXOoccPSiZcxVWNPlNTjfluQ8ug6f3mmfqFLMNTJz_aNq6wTNJFLVFzErkV4KOCKxQNZ_RqUoq8ZiXSPbbiMTpHSNPgpLbGR0XQ9DNDfgw6ks7Sasl1WpbwNy2nqUGJwa64EybERGJU-UlAZjZXedAKIeC7ns5NldlZB57tMEYp63-Mnt6LnHT34cwJPhnoNWnOTE3i8dxIaeTljcX6jqvbyzUzkTzuvWzAkL0qSwSyeGZ0laKOtZG44D2OiRlXfWrsmXsArg4dBs7ZQ7fBKlrg59H5KQlOM0gFstnoeZxJw7VagsAL6C9JWprraUs32vhR65mkRZGgXwtCfFcl7_fhZ3Tl7GA7hgeZG_3Zps34WLxFEWJyHJNmB9UR_qe3BOflvMmvq-5zyCz6fNj1-QcJtX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reversible+flexoelectric+domain+engineering+at+the+nanoscale+in+van+der+Waals+ferroelectrics&rft.jtitle=Nature+communications&rft.au=Liu%2C+Heng&rft.au=Lai%2C+Qinglin&rft.au=Fu%2C+Jun&rft.au=Zhang%2C+Shijie&rft.date=2024-05-29&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=4556&rft_id=info:doi/10.1038%2Fs41467-024-48892-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |