Latent generative landscapes as maps of functional diversity in protein sequence space
Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and gener...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 14; H. 1; S. 2222 - 15 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
19.04.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins,
β
-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design.
In this work, the authors study protein families’ VAE latent manifolds and coevolutionary Hamiltonians. These Latent Generative Landscapes predict phylogenetic groupings, fitness & functional properties for several systems with clear protein engineering/design potential. |
|---|---|
| AbstractList | Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins,
β
-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design.Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β -lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. In this work, the authors study protein families’ VAE latent manifolds and coevolutionary Hamiltonians. These Latent Generative Landscapes predict phylogenetic groupings, fitness & functional properties for several systems with clear protein engineering/design potential. Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. Abstract Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and generate de novo sequences which preserve statistical properties of protein composition. While previous studies focus on clustering and generative features, here, we evaluate the underlying latent manifold in which sequence information is embedded. To investigate properties of the latent manifold, we utilize direct coupling analysis and a Potts Hamiltonian model to construct a latent generative landscape. We showcase how this landscape captures phylogenetic groupings, functional and fitness properties of several systems including Globins, β-lactamases, ion channels, and transcription factors. We provide support on how the landscape helps us understand the effects of sequence variability observed in experimental data and provides insights on directed and natural protein evolution. We propose that combining generative properties and functional predictive power of variational autoencoders and coevolutionary analysis could be beneficial in applications for protein engineering and design. In this work, the authors study protein families’ VAE latent manifolds and coevolutionary Hamiltonians. These Latent Generative Landscapes predict phylogenetic groupings, fitness & functional properties for several systems with clear protein engineering/design potential. |
| ArticleNumber | 2222 |
| Author | Martin, Jonathan Morcos, Faruck Ziegler, Cheyenne Sinner, Claude |
| Author_xml | – sequence: 1 givenname: Cheyenne orcidid: 0000-0002-6379-3162 surname: Ziegler fullname: Ziegler, Cheyenne organization: Department of Biological Sciences, University of Texas at Dallas – sequence: 2 givenname: Jonathan orcidid: 0000-0003-0946-3864 surname: Martin fullname: Martin, Jonathan organization: Department of Biological Sciences, University of Texas at Dallas – sequence: 3 givenname: Claude surname: Sinner fullname: Sinner, Claude organization: Department of Biological Sciences, University of Texas at Dallas – sequence: 4 givenname: Faruck orcidid: 0000-0001-6208-1561 surname: Morcos fullname: Morcos, Faruck email: faruckm@utdallas.edu organization: Department of Biological Sciences, University of Texas at Dallas, Department of Bioengineering, University of Texas at Dallas, Center for Systems Biology, University of Texas at Dallas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37076519$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vFSEUJabG1to_4MJM4sbNKAwwMCtjGj-avMSNuiUMXJ68zIMRmCbtr5fXqbXtomwgcM7h3nPuS3QUYgCEXhP8nmAqP2RGWC9a3NGWioHL9voZOukwIy0RHT26dz5GZznvcF10IJKxF-iYCix6ToYT9GujC4TSbCFA0sVfQjPpYLPRM-RG52av59xE17glmOJj0FNjKyplX64aH5o5xQJ1z_BngWCgybM28Ao9d3rKcHa7n6KfXz7_OP_Wbr5_vTj_tGkNZ6S0HRuMNFySbnRW205KYqkjnWN86A1oydlAtQUsOMOO9-DEaN1IubM9sb2kp-hi1bVR79Sc_F6nKxW1VzcXMW2VTsWbCVRfezdOGNFDVSViNFWtE5xLS43lomp9XLXmZdyDNdWWpKcHog9fgv-ttvFSEUwIFXSoCu9uFVKsbuSi9j4bmKqjEJesOlkj6GtcB-jbR9BdXFJ1d0URgrlgFfXmfkl3tfzLrwK6FWBSzDmBu4MQrA5zotY5UXVO1M2cqOtKko9Ixhd9CLe25aenqXSl5vpP2EL6X_YTrL_41tM4 |
| CitedBy_id | crossref_primary_10_1371_journal_pcbi_1012887 crossref_primary_10_1063_4_0000271 crossref_primary_10_1073_pnas_2311807121 crossref_primary_10_1021_acs_jctc_4c01774 crossref_primary_10_1021_acscentsci_5c00708 crossref_primary_10_1371_journal_pone_0307312 crossref_primary_10_1021_acs_biochem_5c00165 crossref_primary_10_1146_annurev_phyto_121823_081033 crossref_primary_10_1073_pnas_2308895121 |
| Cites_doi | 10.1073/pnas.1205918109 10.1038/s41586-020-2292-y 10.1109/MCSE.2007.55 10.1371/journal.pcbi.1008736 10.1016/j.celrep.2017.11.083 10.1126/science.aav9334 10.1146/annurev.biochem.74.082803.133029 10.1128/AAC.01076-18 10.1186/s13054-016-1320-7 10.1093/nar/gkaa1100 10.1093/bioinformatics/btr638 10.1038/s41467-021-25851-6 10.1093/molbev/msv211 10.1021/acssynbio.2c00033 10.1126/science.aba3304 10.1038/s41592-018-0138-4 10.1038/s41589-018-0006-7 10.1039/D0SC06061E 10.1038/srep13652 10.1073/pnas.1323734111 10.1093/nar/gkz954 10.1021/acsomega.0c00442 10.1073/pnas.1606762113 10.1111/j.1469-0691.2007.01857.x 10.1371/journal.pcbi.1006767 10.7554/eLife.39397 10.1021/acs.jcim.7b00028 10.1186/1471-2105-13-S4-S14 10.1038/s41586-021-03819-2 10.1016/j.jmb.2019.04.002 10.1038/nbt1209 10.1038/s41589-018-0168-3 10.1093/nar/gky350 10.1038/s41467-018-04729-0 10.1038/s41587-020-00777-4 10.1038/s41467-021-26529-9 10.1038/s41586-020-2169-0 10.1371/journal.pone.0028766 10.1186/s13068-021-01973-3 10.1093/molbev/msy007 10.1093/molbev/msab293 10.1073/pnas.2113118119 10.1073/pnas.2005013117 10.1093/bioinformatics/btaa614 10.1038/75556 10.3389/fmolb.2018.00016 10.1093/bioinformatics/btp536 10.7554/eLife.03430 10.3389/fmolb.2021.781635 10.7554/eLife.79854 10.1093/molbev/msw188 10.1016/j.cell.2011.06.035 10.1093/bioinformatics/btaa293 10.1021/ja7109053 10.1016/j.sbi.2004.01.009 10.1103/PhysRevE.87.012707 10.1073/pnas.1607570113 10.1371/journal.pone.0175796 10.1073/pnas.1111471108 10.1038/s41586-021-04043-8 10.1126/science.abj8754 10.1093/nar/gkz280 10.1093/bioinformatics/bty862 10.1093/molbev/msab321 10.1093/molbev/msz256 10.1111/nyas.12988 10.1371/journal.pcbi.1004889 10.1093/nar/gkab358 10.1093/nar/gkt1223 10.1016/j.sbi.2016.11.004 10.1186/s12859-022-04628-8 10.1038/s41598-018-34533-1 10.1038/s41467-021-25756-4 10.1093/nar/gkw1065 10.1093/bioinformatics/btac020 10.1038/s41467-022-29443-w 10.1093/molbev/msp077 10.1073/pnas.1913071117 10.1371/journal.pcbi.1002195 10.1038/nature05910 10.3389/fmicb.2016.01374 10.5281/zenodo.7779323 10.5061/dryad.51c59zwbn 10.1038/s41467-019-13633-0 10.48550/arXiv.1603.04467 10.3390/electronics10222792 10.1561/9781680836233 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-023-37958-z |
| DatabaseName | SpringerOpen CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_6184cf7c76e54917bcef727558d3cd57 PMC10113739 37076519 10_1038_s41467_023_37958_z |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: R35GM133631 funderid: https://doi.org/10.13039/100000002 – fundername: National Science Foundation (NSF) grantid: MCB-1943442 funderid: https://doi.org/10.13039/100000001 – fundername: NIH HHS grantid: R35GM133631 – fundername: NIGMS NIH HHS grantid: R35 GM133631 – fundername: ; grantid: MCB-1943442 – fundername: ; grantid: R35GM133631 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-249c8c5812bfdad2881d3f12f4596cea85493ade07540f56ef7bdfb35fd61d683 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988360100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 04:33:05 EST 2025 Tue Nov 04 02:06:37 EST 2025 Fri Sep 05 09:00:38 EDT 2025 Tue Oct 07 07:35:27 EDT 2025 Wed Feb 19 02:23:30 EST 2025 Tue Nov 18 22:26:27 EST 2025 Sat Nov 29 02:11:45 EST 2025 Fri Feb 21 02:38:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-249c8c5812bfdad2881d3f12f4596cea85493ade07540f56ef7bdfb35fd61d683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6379-3162 0000-0001-6208-1561 0000-0003-0946-3864 |
| OpenAccessLink | https://www.proquest.com/docview/2803110574?pq-origsite=%requestingapplication% |
| PMID | 37076519 |
| PQID | 2803110574 |
| PQPubID | 546298 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6184cf7c76e54917bcef727558d3cd57 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10113739 proquest_miscellaneous_2803963799 proquest_journals_2803110574 pubmed_primary_37076519 crossref_primary_10_1038_s41467_023_37958_z crossref_citationtrail_10_1038_s41467_023_37958_z springer_journals_10_1038_s41467_023_37958_z |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-19 |
| PublicationDateYYYYMMDD | 2023-04-19 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | dos Santos, Morcos, Jana, Andricopulo, Onuchic (CR11) 2015; 5 Du (CR30) 2017; 57 Detlefsen, Hauberg, Boomsma (CR59) 2022; 13 Falda (CR81) 2012; 13 Stiffler (CR67) 2020; 10 Quignot (CR14) 2021; 49 CR38 CR37 Brandes, Ofer, Peleg, Rappoport, Linial (CR46) 2022; 38 Baek (CR9) 2021; 373 CR36 Fantini, Lisi, De Los Rios, Cattaneo, Pastore (CR68) 2020; 37 Tutol (CR24) 2021; 12 CR32 Palzkill (CR62) 2018; 5 Trinquier, Uguzzoni, Pagnani, Zamponi, Weigt (CR90) 2021; 12 Bush (CR61) 2018; 62 Price, Dehal, Arkin (CR91) 2009; 26 Liakopoulos, Mevius, Ceccarelli (CR63) 2016; 7 Eddy (CR49) 2011; 7 Bisardi, Rodriguez-Rivas, Zamponi, Weigt (CR54) 2022; 39 Rodriguez-Rivas, Croce, Muscat, Weigt (CR22) 2022; 119 Cantalapiedra, Hernández-Plaza, Letunic, Bork, Huerta-Cepas (CR82) 2021; 38 Frazer (CR21) 2021; 599 AlQuraishi (CR29) 2019; 8 Hopf (CR6) 2019; 35 Ashburner (CR93) 2000; 25 Nissen (CR44) 2021; 39 Yin (CR71) 2019; 363 Zhou (CR17) 2018; 9 Grønbech (CR43) 2020; 36 Tang, Fazelinia, Cirino (CR77) 2008; 130 Hawkins-Hooker (CR40) 2021; 17 Cheng (CR52) 2016; 33 Bitbol, Dwyer, Colwell, Wingreen (CR18) 2016; 113 Jones, Buchan, Cozzetto, Pontil (CR10) 2011; 28 Tsan-Yuk Lam (CR84) 2020; 583 Riesselman, Ingraham, Marks (CR33) 2018; 15 Orengo, Thornton (CR2) 2005; 74 Figliuzzi, Barrat-Charlaix, Weigt (CR89) 2018; 35 Ovchinnikov, Kamisetty, Baker (CR5) 2014; 2014 Marks (CR8) 2011; 6 Matos-Cruz (CR69) 2017; 21 Karmi (CR12) 2017; 12 Bateman (CR96) 2021; 49 Smith (CR58) 2020; 36 Pillai (CR83) 2020; 581 Tooke (CR60) 2019; 431 Hopf (CR13) 2014; 3 de la Paz, Nartey, Yuvaraj, Morcos (CR27) 2020; 117 Jacquin, Gilson, Shakhnovich, Cocco, Monasson (CR51) 2016; 12 Greener, Moffat, Jones (CR34) 2018; 8 Collins, Leadbetter, Arnold (CR76) 2006; 24 Bennett (CR65) 2007; 63 Tian (CR42) 2021; 8 Onuchic, Wolynes (CR1) 2004; 14 Russ (CR26) 2020; 369 Facco, Pagnani, Russo, Laio (CR86) 2019; 15 CR79 Sinner, Ziegler, Jung, Jiang, Morcos (CR16) 2021; 23 Dean, Walper (CR39) 2020; 5 Wright (CR56) 1932; 1 McGee (CR55) 2021; 12 Finn (CR48) 2013; 42 Jumper (CR28) 2021; 596 Karam, Chastre, Wilcox, Vincent (CR66) 2016; 20 CR88 Hong, Lee, Ko (CR45) 2022; 23 Sułkowska, Rawdon, Millett, Onuchic, Stasiak (CR7) 2012; 109 Mettananda, Gibbons, Higgs (CR57) 2016; 1368 Tubiana, Cocco, Monasson (CR31) 2019; 8 Dimas, Jiang, de la Paz, Morcos, Chan (CR20) 2019; 47 Hunter (CR92) 2007; 9 Ekeberg, Lövkvist, Lan, Weigt, Aurell (CR4) 2013; 87 Binns (CR94) 2009; 25 Radhakrishnan, Belkin, Uhler (CR87) 2020; 117 CR97 Bautista (CR70) 2007; 448 CR95 Repecka (CR47) 2021; 3 Meyer, Segall-Shapiro, Glassey, Zhang, Voigt (CR74) 2018; 15 Sgarbossa, Lupo, Bitbol (CR35) 2023; 12 Levy, Haldane, Flynn (CR50) 2017; 43 Ellefson, Ledbetter, Ellington (CR75) 2018; 14 Törönen, Medlar, Holm (CR80) 2018; 46 Jiang, Dimas, Chan, Morcos (CR23) 2021; 12 Hatcher (CR85) 2017; 45 Morcos (CR3) 2011; 108 Dai, Wang, Aston, Hua, Wipf (CR41) 2018; 19 Livermore (CR64) 2008; 14 Chi (CR25) 2022; 11 Gueudré, Baldassi, Zamparo, Weigt, Pagnani (CR19) 2016; 113 Figliuzzi, Jacquier, Schug, Tenaillon, Weigt (CR53) 2015; 33 Kao, Yu, Ua, Ho (CR72) 2021; 14 Cheng, Morcos, Levine, Onuchic (CR15) 2014; 111 Poelwijk, De Vos, Tans (CR73) 2011; 146 Snoek (CR78) 2020; 48 H Tian (37958_CR42) 2021; 8 A-F Bitbol (37958_CR18) 2016; 113 RP Dimas (37958_CR20) 2019; 47 MA Stiffler (37958_CR67) 2020; 10 J Jumper (37958_CR28) 2021; 596 M Figliuzzi (37958_CR89) 2018; 35 TA Hopf (37958_CR13) 2014; 3 X Du (37958_CR30) 2017; 57 D Sgarbossa (37958_CR35) 2023; 12 KM Bennett (37958_CR65) 2007; 63 J Tubiana (37958_CR31) 2019; 8 DM Bautista (37958_CR70) 2007; 448 JG Greener (37958_CR34) 2018; 8 S Ovchinnikov (37958_CR5) 2014; 2014 E Facco (37958_CR86) 2019; 15 AJ Riesselman (37958_CR33) 2018; 15 C Sinner (37958_CR16) 2021; 23 CH Collins (37958_CR76) 2006; 24 JD Hunter (37958_CR92) 2007; 9 T Snoek (37958_CR78) 2020; 48 JN Nissen (37958_CR44) 2021; 39 37958_CR36 37958_CR37 37958_CR38 B Dai (37958_CR41) 2018; 19 37958_CR32 A Hawkins-Hooker (37958_CR40) 2021; 17 AS Pillai (37958_CR83) 2020; 581 SN Dean (37958_CR39) 2020; 5 D Binns (37958_CR94) 2009; 25 Y Hong (37958_CR45) 2022; 23 M Ekeberg (37958_CR4) 2013; 87 P Törönen (37958_CR80) 2018; 46 Q Zhou (37958_CR17) 2018; 9 T Gueudré (37958_CR19) 2016; 113 RR Cheng (37958_CR15) 2014; 111 S Wright (37958_CR56) 1932; 1 N Brandes (37958_CR46) 2022; 38 DM Livermore (37958_CR64) 2008; 14 C Quignot (37958_CR14) 2021; 49 J Rodriguez-Rivas (37958_CR22) 2022; 119 M Ashburner (37958_CR93) 2000; 25 MN Price (37958_CR91) 2009; 26 CL Tooke (37958_CR60) 2019; 431 M-R Kao (37958_CR72) 2021; 14 M Baek (37958_CR9) 2021; 373 RM Levy (37958_CR50) 2017; 43 M Bisardi (37958_CR54) 2022; 39 J Trinquier (37958_CR90) 2021; 12 M Falda (37958_CR81) 2012; 13 RR Cheng (37958_CR52) 2016; 33 H Chi (37958_CR25) 2022; 11 SR Eddy (37958_CR49) 2011; 7 G Karam (37958_CR66) 2016; 20 JN Onuchic (37958_CR1) 2004; 14 MR Smith (37958_CR58) 2020; 36 CH Grønbech (37958_CR43) 2020; 36 TA Hopf (37958_CR6) 2019; 35 Y Yin (37958_CR71) 2019; 363 SY Tang (37958_CR77) 2008; 130 F Morcos (37958_CR3) 2011; 108 DS Marks (37958_CR8) 2011; 6 EL Hatcher (37958_CR85) 2017; 45 RD Finn (37958_CR48) 2013; 42 FJ Poelwijk (37958_CR73) 2011; 146 37958_CR79 JW Ellefson (37958_CR75) 2018; 14 NS Detlefsen (37958_CR59) 2022; 13 T Tsan-Yuk Lam (37958_CR84) 2020; 583 CP Cantalapiedra (37958_CR82) 2021; 38 A Bateman (37958_CR96) 2021; 49 J Frazer (37958_CR21) 2021; 599 AJ Meyer (37958_CR74) 2018; 15 WP Russ (37958_CR26) 2020; 369 V Matos-Cruz (37958_CR69) 2017; 21 XL Jiang (37958_CR23) 2021; 12 JA de la Paz (37958_CR27) 2020; 117 RN dos Santos (37958_CR11) 2015; 5 JI Sułkowska (37958_CR7) 2012; 109 37958_CR88 O Karmi (37958_CR12) 2017; 12 K Bush (37958_CR61) 2018; 62 H Jacquin (37958_CR51) 2016; 12 S Mettananda (37958_CR57) 2016; 1368 F McGee (37958_CR55) 2021; 12 M Fantini (37958_CR68) 2020; 37 CA Orengo (37958_CR2) 2005; 74 JN Tutol (37958_CR24) 2021; 12 M Figliuzzi (37958_CR53) 2015; 33 M AlQuraishi (37958_CR29) 2019; 8 T Palzkill (37958_CR62) 2018; 5 D Repecka (37958_CR47) 2021; 3 37958_CR97 DT Jones (37958_CR10) 2011; 28 A Liakopoulos (37958_CR63) 2016; 7 A Radhakrishnan (37958_CR87) 2020; 117 37958_CR95 |
| References_xml | – volume: 109 start-page: E1715 year: 2012 end-page: E1723 ident: CR7 article-title: Conservation of complex knotting and slipknotting patterns in proteins publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1205918109 – ident: CR97 – volume: 581 start-page: 480 year: 2020 end-page: 485 ident: CR83 article-title: Origin of complexity in haemoglobin evolution publication-title: Nature doi: 10.1038/s41586-020-2292-y – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: CR92 article-title: Matplotlib: a 2d graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 17 start-page: e1008736 year: 2021 ident: CR40 article-title: Generating functional protein variants with variational autoencoders publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1008736 – volume: 21 start-page: 3329 year: 2017 end-page: 3337 ident: CR69 article-title: Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.083 – volume: 363 start-page: 3 year: 2019 ident: CR71 article-title: Structural basis of cooling agent and lipid sensing by the cold-activated trpm8 channel publication-title: Science doi: 10.1126/science.aav9334 – volume: 74 start-page: 867 year: 2005 end-page: 900 ident: CR2 article-title: Protein families and their evolution-a structural perspective publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133029 – volume: 62 start-page: 10 year: 2018 ident: CR61 article-title: Past and present perspectives on -lactamases publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01076-18 – volume: 20 start-page: 1 year: 2016 end-page: 9 ident: CR66 article-title: Antibiotic strategies in the era of multidrug resistance publication-title: Crit. Care doi: 10.1186/s13054-016-1320-7 – volume: 49 start-page: D480 year: 2021 end-page: D489 ident: CR96 article-title: Uniprot: the universal protein knowledgebase in 2021 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1100 – volume: 28 start-page: 184 year: 2011 end-page: 190 ident: CR10 article-title: PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr638 – volume: 12 start-page: 1 year: 2021 end-page: 8 ident: CR23 article-title: Coevolutionary methods enable robust design of modular repressors by reestablishing intra-protein interactions publication-title: Nat. Commun. doi: 10.1038/s41467-021-25851-6 – volume: 1 start-page: 356 year: 1932 end-page: 366 ident: CR56 article-title: The roles of mutation, inbreeding, crossbreeding, and selection in evolution publication-title: Proc. Sixth Int. Congr. Genet., – volume: 2014 start-page: 5 year: 2014 ident: CR5 article-title: Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information publication-title: eLife – volume: 33 start-page: 268 year: 2015 end-page: 280 ident: CR53 article-title: Coevolutionary landscape inference and the context-dependence of mutations in Beta-Lactamase TEM-1 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msv211 – volume: 11 start-page: 1627 year: 2022 end-page: 1638 ident: CR25 article-title: Coupling a live cell directed evolution assay with coevolutionary landscapes to engineer an improved fluorescent rhodopsin chloride sensor publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.2c00033 – ident: CR88 – volume: 369 start-page: 440 year: 2020 end-page: 445 ident: CR26 article-title: An evolution-based model for designing chorismate mutase enzymes publication-title: Science doi: 10.1126/science.aba3304 – volume: 15 start-page: 816 year: 2018 end-page: 822 ident: CR33 article-title: Deep generative models of genetic variation capture the effects of mutations publication-title: Nat. Methods doi: 10.1038/s41592-018-0138-4 – volume: 14 start-page: 361 year: 2018 end-page: 367 ident: CR75 article-title: Directed evolution of a synthetic phylogeny of programmable trp repressors publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0006-7 – volume: 12 start-page: 5655 year: 2021 end-page: 5663 ident: CR24 article-title: A single point mutation converts a proton-pumping rhodopsin into a red-shifted, turn-on fluorescent sensor for chloride publication-title: Chem. Sci. doi: 10.1039/D0SC06061E – ident: CR36 – volume: 5 year: 2015 ident: CR11 article-title: Dimeric interactions and complex formation using direct coevolutionary couplings publication-title: Sci. Rep. doi: 10.1038/srep13652 – volume: 111 start-page: 2 year: 2014 ident: CR15 article-title: Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1323734111 – volume: 48 start-page: e3 year: 2020 end-page: e3 ident: CR78 article-title: Evolution-guided engineering of small-molecule biosensors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz954 – volume: 5 start-page: 20746 year: 2020 end-page: 20754 ident: CR39 article-title: Variational autoencoder for generation of antimicrobial peptides publication-title: ACS Omega doi: 10.1021/acsomega.0c00442 – volume: 113 start-page: 12180 year: 2016 end-page: 12185 ident: CR18 article-title: Inferring interaction partners from protein sequences publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1606762113 – volume: 14 start-page: 3 year: 2008 end-page: 10 ident: CR64 article-title: Defining an extended-spectrum -lactamase publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2007.01857.x – volume: 15 start-page: e1006767 year: 2019 ident: CR86 article-title: The intrinsic dimension of protein sequence evolution publication-title: PLoS Computat. Biol. doi: 10.1371/journal.pcbi.1006767 – volume: 8 start-page: 3 year: 2019 ident: CR31 article-title: Learning protein constitutive motifs from sequence data publication-title: eLife doi: 10.7554/eLife.39397 – volume: 57 start-page: 1499 year: 2017 end-page: 1510 ident: CR30 article-title: Deepppi: Boosting prediction of protein-protein interactions with deep neural networks publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00028 – volume: 13 start-page: 1 year: 2012 end-page: 9 ident: CR81 article-title: Argot2: A large scale function prediction tool relying on semantic similarity of weighted gene ontology terms publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-S4-S14 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: CR28 article-title: Highly accurate protein structure prediction with alphafold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 431 start-page: 3472 year: 2019 end-page: 3500 ident: CR60 article-title: -lactamases and -lactamase inhibitors in the 21st century publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.04.002 – volume: 24 start-page: 708 year: 2006 end-page: 712 ident: CR76 article-title: Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator luxr publication-title: Nat. Biotechnol. doi: 10.1038/nbt1209 – volume: 15 start-page: 196 year: 2018 end-page: 204 ident: CR74 article-title: Escherichia coli “marionette” strains with 12 highly optimized small-molecule sensors publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0168-3 – volume: 46 start-page: W84 year: 2018 end-page: W88 ident: CR80 article-title: PANNZER2: a rapid functional annotation web server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky350 – volume: 9 year: 2018 ident: CR17 article-title: Global pairwise rna interaction landscapes reveal core features of protein recognition publication-title: Nat. Commun. doi: 10.1038/s41467-018-04729-0 – volume: 39 start-page: 555 year: 2021 end-page: 560 ident: CR44 article-title: Improved metagenome binning and assembly using deep variational autoencoders publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00777-4 – ident: CR38 – volume: 12 year: 2021 ident: CR55 article-title: The generative capacity of probabilistic protein sequence models publication-title: Nat. Commun. doi: 10.1038/s41467-021-26529-9 – volume: 583 start-page: 282 year: 2020 end-page: 285 ident: CR84 article-title: Identifying sars-cov-2-related coronaviruses in malayan pangolins publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 6 start-page: 1 year: 2011 end-page: 20 ident: CR8 article-title: Protein 3d structure computed from evolutionary sequence variation publication-title: PLoS One doi: 10.1371/journal.pone.0028766 – volume: 14 year: 2021 ident: CR72 article-title: Improvements of the productivity and saccharification efficiency of the cellulolytic -glucosidase d2-bgl in pichia pastoris via directed evolution publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01973-3 – volume: 35 start-page: 1018 year: 2018 end-page: 1027 ident: CR89 article-title: How pairwise coevolutionary models capture the collective residue variability in proteins? publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msy007 – volume: 19 start-page: 1573 year: 2018 end-page: 1614 ident: CR41 article-title: Connections with robust pca and the role of emergent sparsity in variational autoencoder models publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 5825 year: 2021 end-page: 5829 ident: CR82 article-title: eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msab293 – volume: 119 start-page: e2113118119 year: 2022 ident: CR22 article-title: Epistatic models predict mutable sites in sars-cov-2 proteins and epitopes publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2113118119 – volume: 117 start-page: 27162 year: 2020 end-page: 27170 ident: CR87 article-title: Overparameterized neural networks implement associative memory publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2005013117 – volume: 36 start-page: 5007 year: 2020 end-page: 5013 ident: CR58 article-title: Information theoretic generalized Robinson-Foulds metrics for comparing phylogenetic trees publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa614 – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: CR93 article-title: Gene ontology: tool for the unification of biology publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 5 start-page: 16 year: 2018 ident: CR62 article-title: Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of tem, ctx-m, and kpc -lactamases publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2018.00016 – volume: 25 start-page: 3045 year: 2009 end-page: 3046 ident: CR94 article-title: QuickGO: a web-based tool for Gene Ontology searching publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp536 – volume: 3 start-page: e03430 year: 2014 ident: CR13 article-title: Sequence co-evolution gives 3d contacts and structures of protein complexes publication-title: elife doi: 10.7554/eLife.03430 – volume: 8 start-page: 781635 year: 2021 end-page: 781635 ident: CR42 article-title: Explore protein conformational space with variational autoencoder publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.781635 – volume: 12 start-page: e79854 year: 2023 ident: CR35 article-title: Generative power of a protein language model trained on multiple sequence alignments publication-title: eLife doi: 10.7554/eLife.79854 – volume: 33 start-page: 3054 year: 2016 end-page: 3064 ident: CR52 article-title: Connecting the sequence-space of bacterial signaling proteins to phenotypes using coevolutionary landscapes publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msw188 – volume: 146 start-page: 462 year: 2011 end-page: 470 ident: CR73 article-title: Tradeoffs and optimality in the evolution of gene regulation publication-title: Cell doi: 10.1016/j.cell.2011.06.035 – volume: 36 start-page: 4415 year: 2020 end-page: 4422 ident: CR43 article-title: scvae: variational auto-encoders for single-cell gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa293 – volume: 130 start-page: 5267 year: 2008 end-page: 5271 ident: CR77 article-title: Arac regulatory protein mutants with altered effector specificity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7109053 – volume: 14 start-page: 70 year: 2004 end-page: 75 ident: CR1 article-title: Theory of protein folding publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2004.01.009 – volume: 87 start-page: 012707 year: 2013 ident: CR4 article-title: Improved contact prediction in proteins: Using pseudolikelihoods to infer potts models publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.012707 – volume: 113 start-page: 12186 year: 2016 end-page: 12191 ident: CR19 article-title: Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1607570113 – volume: 12 start-page: 1 year: 2017 end-page: 18 ident: CR12 article-title: Interactions between mitoneet and naf-1 in cells publication-title: PLoS One doi: 10.1371/journal.pone.0175796 – volume: 108 start-page: 12 year: 2011 ident: CR3 article-title: Direct-coupling analysis of residue coevolution captures native contacts across many protein families publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1111471108 – volume: 599 start-page: 91 year: 2021 end-page: 95 ident: CR21 article-title: Disease variant prediction with deep generative models of evolutionary data publication-title: Nature doi: 10.1038/s41586-021-04043-8 – volume: 373 start-page: 871 year: 2021 end-page: 876 ident: CR9 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 – volume: 10 start-page: 15–24.e5 year: 2020 ident: CR67 article-title: Protein structure from experimental evolution publication-title: Cell Syst. – volume: 47 start-page: 5449 year: 2019 end-page: 5463 ident: CR20 article-title: Engineering repressors with coevolutionary cues facilitates toggle switches with a master reset publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz280 – ident: CR32 – volume: 35 start-page: 1582 year: 2019 end-page: 1584 ident: CR6 article-title: The evcouplings python framework for coevolutionary sequence analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty862 – volume: 39 start-page: 1 year: 2022 ident: CR54 article-title: Modeling sequence-space exploration and emergence of epistatic signals in protein evolution publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msab321 – volume: 37 start-page: 1179 year: 2020 end-page: 1192 ident: CR68 article-title: Protein structural information and evolutionary landscape by in vitro evolution publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msz256 – volume: 1368 start-page: 16 year: 2016 end-page: 24 ident: CR57 article-title: Understanding a-globin gene regulation and implications for the treatment of b-thalassemia publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12988 – ident: CR95 – volume: 12 start-page: e1004889 year: 2016 ident: CR51 article-title: Benchmarking inverse statistical approaches for protein structure and design with exactly solvable models publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004889 – volume: 8 start-page: 292–301.e3 year: 2019 ident: CR29 article-title: End-to-end differentiable learning of protein structure publication-title: Cell Syst. – ident: CR37 – volume: 3 start-page: 324 year: 2021 end-page: 333 ident: CR47 article-title: Expanding functional protein sequence spaces using generative adversarial networks publication-title: Nat. Mach. Intell. 2021 3:4 – volume: 63 start-page: 307 year: 2007 end-page: 311 ident: CR65 article-title: Implementation of antibiotic rotation protocol improves antibiotic susceptibility profile in a surgical intensive care unit publication-title: J. Trauma - Inj., Infect. Crit. Care – volume: 49 start-page: W277 year: 2021 end-page: W284 ident: CR14 article-title: Interevdock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab358 – volume: 42 start-page: D222 year: 2013 end-page: D230 ident: CR48 article-title: Pfam: the protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 43 start-page: 55 year: 2017 end-page: 62 ident: CR50 article-title: Potts hamiltonian models of protein co-variation, free energy landscapes, and evolutionary fitness publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.11.004 – ident: CR79 – volume: 23 start-page: 1 year: 2022 end-page: 11 ident: CR45 article-title: A-prot: protein structure modeling using msa transformer publication-title: BMC Bioinforma. doi: 10.1186/s12859-022-04628-8 – volume: 8 start-page: 1 year: 2018 end-page: 12 ident: CR34 article-title: Design of metalloproteins and novel protein folds using variational autoencoders publication-title: Sci. Rep. doi: 10.1038/s41598-018-34533-1 – volume: 12 year: 2021 ident: CR90 article-title: Efficient generative modeling of protein sequences using simple autoregressive models publication-title: Nat. Commun. doi: 10.1038/s41467-021-25756-4 – volume: 45 start-page: D482 year: 2017 end-page: D490 ident: CR85 article-title: Virus variation resource - improved response to emergent viral outbreaks publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1065 – volume: 38 start-page: 2102 year: 2022 end-page: 2110 ident: CR46 article-title: Proteinbert: a universal deep-learning model of protein sequence and function publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac020 – volume: 23 start-page: 1 year: 2021 end-page: 19 ident: CR16 article-title: Elihksir web server: Evolutionary links inferred for histidine kinase sensors interacting with response regulators publication-title: Entropy (Basel, Switz.) – volume: 13 start-page: 1 year: 2022 end-page: 12 ident: CR59 article-title: Learning meaningful representations of protein sequences publication-title: Nat. Commun. doi: 10.1038/s41467-022-29443-w – volume: 26 start-page: 1641 year: 2009 end-page: 1650 ident: CR91 article-title: Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msp077 – volume: 117 start-page: 5873 year: 2020 end-page: 5882 ident: CR27 article-title: Epistatic contributions promote the unification of incompatible models of neutral molecular evolution publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1913071117 – volume: 7 start-page: 1 year: 2011 end-page: 16 ident: CR49 article-title: Accelerated profile hmm searches publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002195 – volume: 448 start-page: 204 year: 2007 end-page: 208 ident: CR70 article-title: The menthol receptor trpm8 is the principal detector of environmental cold publication-title: Nature doi: 10.1038/nature05910 – volume: 7 start-page: 1374 year: 2016 ident: CR63 article-title: A review of shv extended-spectrum -lactamases: neglected yet ubiquitous publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01374 – volume: 10 start-page: 15–24.e5 year: 2020 ident: 37958_CR67 publication-title: Cell Syst. – volume: 74 start-page: 867 year: 2005 ident: 37958_CR2 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133029 – volume: 12 start-page: 1 year: 2021 ident: 37958_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25851-6 – volume: 3 start-page: 324 year: 2021 ident: 37958_CR47 publication-title: Nat. Mach. Intell. 2021 3:4 – volume: 25 start-page: 3045 year: 2009 ident: 37958_CR94 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp536 – volume: 119 start-page: e2113118119 year: 2022 ident: 37958_CR22 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2113118119 – volume: 17 start-page: e1008736 year: 2021 ident: 37958_CR40 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1008736 – ident: 37958_CR97 doi: 10.5281/zenodo.7779323 – volume: 39 start-page: 555 year: 2021 ident: 37958_CR44 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-00777-4 – volume: 5 year: 2015 ident: 37958_CR11 publication-title: Sci. Rep. doi: 10.1038/srep13652 – volume: 113 start-page: 12180 year: 2016 ident: 37958_CR18 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1606762113 – volume: 117 start-page: 5873 year: 2020 ident: 37958_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1913071117 – volume: 146 start-page: 462 year: 2011 ident: 37958_CR73 publication-title: Cell doi: 10.1016/j.cell.2011.06.035 – volume: 36 start-page: 5007 year: 2020 ident: 37958_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa614 – volume: 6 start-page: 1 year: 2011 ident: 37958_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0028766 – volume: 21 start-page: 3329 year: 2017 ident: 37958_CR69 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.083 – volume: 1 start-page: 356 year: 1932 ident: 37958_CR56 publication-title: Proc. Sixth Int. Congr. Genet., – ident: 37958_CR79 – volume: 35 start-page: 1582 year: 2019 ident: 37958_CR6 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty862 – volume: 14 year: 2021 ident: 37958_CR72 publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-021-01973-3 – volume: 12 start-page: e1004889 year: 2016 ident: 37958_CR51 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1004889 – volume: 43 start-page: 55 year: 2017 ident: 37958_CR50 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.11.004 – volume: 48 start-page: e3 year: 2020 ident: 37958_CR78 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz954 – volume: 19 start-page: 1573 year: 2018 ident: 37958_CR41 publication-title: J. Mach. Learn. Res. – volume: 12 year: 2021 ident: 37958_CR90 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25756-4 – volume: 62 start-page: 10 year: 2018 ident: 37958_CR61 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01076-18 – volume: 109 start-page: E1715 year: 2012 ident: 37958_CR7 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1205918109 – ident: 37958_CR95 doi: 10.5061/dryad.51c59zwbn – volume: 448 start-page: 204 year: 2007 ident: 37958_CR70 publication-title: Nature doi: 10.1038/nature05910 – volume: 24 start-page: 708 year: 2006 ident: 37958_CR76 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1209 – volume: 431 start-page: 3472 year: 2019 ident: 37958_CR60 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.04.002 – volume: 369 start-page: 440 year: 2020 ident: 37958_CR26 publication-title: Science doi: 10.1126/science.aba3304 – volume: 596 start-page: 583 year: 2021 ident: 37958_CR28 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 14 start-page: 3 year: 2008 ident: 37958_CR64 publication-title: Clin. Microbiol. Infect. doi: 10.1111/j.1469-0691.2007.01857.x – volume: 36 start-page: 4415 year: 2020 ident: 37958_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa293 – volume: 583 start-page: 282 year: 2020 ident: 37958_CR84 publication-title: Nature doi: 10.1038/s41586-020-2169-0 – volume: 14 start-page: 70 year: 2004 ident: 37958_CR1 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2004.01.009 – ident: 37958_CR36 – ident: 37958_CR32 doi: 10.1038/s41467-019-13633-0 – volume: 11 start-page: 1627 year: 2022 ident: 37958_CR25 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.2c00033 – volume: 3 start-page: e03430 year: 2014 ident: 37958_CR13 publication-title: elife doi: 10.7554/eLife.03430 – volume: 12 start-page: e79854 year: 2023 ident: 37958_CR35 publication-title: eLife doi: 10.7554/eLife.79854 – volume: 33 start-page: 3054 year: 2016 ident: 37958_CR52 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msw188 – volume: 5 start-page: 16 year: 2018 ident: 37958_CR62 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2018.00016 – volume: 130 start-page: 5267 year: 2008 ident: 37958_CR77 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja7109053 – volume: 5 start-page: 20746 year: 2020 ident: 37958_CR39 publication-title: ACS Omega doi: 10.1021/acsomega.0c00442 – volume: 111 start-page: 2 year: 2014 ident: 37958_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1323734111 – volume: 363 start-page: 3 year: 2019 ident: 37958_CR71 publication-title: Science doi: 10.1126/science.aav9334 – volume: 2014 start-page: 5 year: 2014 ident: 37958_CR5 publication-title: eLife – volume: 38 start-page: 5825 year: 2021 ident: 37958_CR82 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msab293 – volume: 8 start-page: 781635 year: 2021 ident: 37958_CR42 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.781635 – volume: 7 start-page: 1 year: 2011 ident: 37958_CR49 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002195 – ident: 37958_CR88 doi: 10.48550/arXiv.1603.04467 – volume: 15 start-page: 196 year: 2018 ident: 37958_CR74 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0168-3 – volume: 9 year: 2018 ident: 37958_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04729-0 – volume: 49 start-page: D480 year: 2021 ident: 37958_CR96 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1100 – volume: 37 start-page: 1179 year: 2020 ident: 37958_CR68 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msz256 – volume: 38 start-page: 2102 year: 2022 ident: 37958_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac020 – volume: 1368 start-page: 16 year: 2016 ident: 37958_CR57 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12988 – volume: 28 start-page: 184 year: 2011 ident: 37958_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr638 – ident: 37958_CR38 doi: 10.3390/electronics10222792 – volume: 42 start-page: D222 year: 2013 ident: 37958_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1223 – volume: 7 start-page: 1374 year: 2016 ident: 37958_CR63 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01374 – volume: 39 start-page: 1 year: 2022 ident: 37958_CR54 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msab321 – volume: 33 start-page: 268 year: 2015 ident: 37958_CR53 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msv211 – volume: 45 start-page: D482 year: 2017 ident: 37958_CR85 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1065 – volume: 12 year: 2021 ident: 37958_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26529-9 – volume: 20 start-page: 1 year: 2016 ident: 37958_CR66 publication-title: Crit. Care doi: 10.1186/s13054-016-1320-7 – volume: 25 start-page: 25 year: 2000 ident: 37958_CR93 publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 108 start-page: 12 year: 2011 ident: 37958_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1111471108 – volume: 8 start-page: 292–301.e3 year: 2019 ident: 37958_CR29 publication-title: Cell Syst. – volume: 15 start-page: 816 year: 2018 ident: 37958_CR33 publication-title: Nat. Methods doi: 10.1038/s41592-018-0138-4 – volume: 14 start-page: 361 year: 2018 ident: 37958_CR75 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0006-7 – volume: 47 start-page: 5449 year: 2019 ident: 37958_CR20 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz280 – volume: 373 start-page: 871 year: 2021 ident: 37958_CR9 publication-title: Science doi: 10.1126/science.abj8754 – volume: 113 start-page: 12186 year: 2016 ident: 37958_CR19 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1607570113 – volume: 63 start-page: 307 year: 2007 ident: 37958_CR65 publication-title: J. Trauma - Inj., Infect. Crit. Care – volume: 13 start-page: 1 year: 2022 ident: 37958_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29443-w – volume: 8 start-page: 1 year: 2018 ident: 37958_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34533-1 – ident: 37958_CR37 doi: 10.1561/9781680836233 – volume: 23 start-page: 1 year: 2021 ident: 37958_CR16 publication-title: Entropy (Basel, Switz.) – volume: 8 start-page: 3 year: 2019 ident: 37958_CR31 publication-title: eLife doi: 10.7554/eLife.39397 – volume: 15 start-page: e1006767 year: 2019 ident: 37958_CR86 publication-title: PLoS Computat. Biol. doi: 10.1371/journal.pcbi.1006767 – volume: 599 start-page: 91 year: 2021 ident: 37958_CR21 publication-title: Nature doi: 10.1038/s41586-021-04043-8 – volume: 87 start-page: 012707 year: 2013 ident: 37958_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.012707 – volume: 12 start-page: 5655 year: 2021 ident: 37958_CR24 publication-title: Chem. Sci. doi: 10.1039/D0SC06061E – volume: 13 start-page: 1 year: 2012 ident: 37958_CR81 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-S4-S14 – volume: 581 start-page: 480 year: 2020 ident: 37958_CR83 publication-title: Nature doi: 10.1038/s41586-020-2292-y – volume: 46 start-page: W84 year: 2018 ident: 37958_CR80 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky350 – volume: 23 start-page: 1 year: 2022 ident: 37958_CR45 publication-title: BMC Bioinforma. doi: 10.1186/s12859-022-04628-8 – volume: 35 start-page: 1018 year: 2018 ident: 37958_CR89 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msy007 – volume: 57 start-page: 1499 year: 2017 ident: 37958_CR30 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00028 – volume: 49 start-page: W277 year: 2021 ident: 37958_CR14 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab358 – volume: 26 start-page: 1641 year: 2009 ident: 37958_CR91 publication-title: Mol. Biol. Evolut. doi: 10.1093/molbev/msp077 – volume: 9 start-page: 90 year: 2007 ident: 37958_CR92 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 117 start-page: 27162 year: 2020 ident: 37958_CR87 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2005013117 – volume: 12 start-page: 1 year: 2017 ident: 37958_CR12 publication-title: PLoS One doi: 10.1371/journal.pone.0175796 |
| SSID | ssj0000391844 |
| Score | 2.5147204 |
| Snippet | Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by phylogeny and... Abstract Variational autoencoders are unsupervised learning models with generative capabilities, when applied to protein data, they classify sequences by... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2222 |
| SubjectTerms | 631/114/1305 631/114/2404 631/114/469 631/57/2266 Amino Acid Sequence beta-Lactamases - genetics Clustering Fitness Globins Hamiltonian functions Humanities and Social Sciences Ion channels Manifolds multidisciplinary Phylogenetics Phylogeny Protein composition Protein engineering Protein families Proteins Reproductive fitness Science Science (multidisciplinary) Transcription Factors Unsupervised learning β Lactamase |
| SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiPIMbZGRuEHUzfp9LBUVh6riAFVvVjK2YSXIVs0Wif76ju1k6fK8cIqU2JL1eV6OZ74BeCm55thaVUeusRZobG0xiNrHxI0iZAi5jvv0WJ-cmLMz-_5Gq6-UE1bogQtw-6khCUaNWgU6yjS6wxDJ50ppPEcvcx05RT03DlPZBnNL88RYJTPjZn8Q2SaQiyKdstLUVxueKBP2_y7K_DVZ8qcb0-yIju7DvTGCZAdl5dtwK_QP4E7pKfn9IZweU_TYr9inzCedjBnL5bwp0Wlg7cC-tucDW0aWPFr5Ecj8lJzBFj3LzA30nJKsGdkcDI_g49HbD4fv6rF5Qo1SNKuajlVoUJL_7qJv_dxQYMpjM49CWoWhNYQmb32gkEHMolSEaudjx2X0qvHK8Mew1S_78BRYVFzLSBYavaHzTdfprsFIoVZQ2rbdrIJmAtLhyCyeGlx8cfmGmxtXwHcEvsvgu6sKXq3nnBdejb-OfpP2Zz0ycWLnFyQpbpQU9y9JqWB32l03KurgUnOuJvU6FhW8WH8mFUv3Jm0flpdlDNkpbW0FT4owrFfC9UwrioIrMBtisrHUzS_94nOm8SZj2JCm0NTXk0T9WNefsXj2P7DYgbvzpAqJtNLuwtbq4jLswW38tloMF8-zLl0DP7Ei6Q priority: 102 providerName: Directory of Open Access Journals |
| Title | Latent generative landscapes as maps of functional diversity in protein sequence space |
| URI | https://link.springer.com/article/10.1038/s41467-023-37958-z https://www.ncbi.nlm.nih.gov/pubmed/37076519 https://www.proquest.com/docview/2803110574 https://www.proquest.com/docview/2803963799 https://pubmed.ncbi.nlm.nih.gov/PMC10113739 https://doaj.org/article/6184cf7c76e54917bcef727558d3cd57 |
| Volume | 14 |
| WOSCitedRecordID | wos000988360100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iLUi9sC-BMjISN4g6GduxfUIUtQKpjCIE1cDFSryUkWhmmEyR6K_n2VmqYemFSyLFtmTnrX5-_h7Ac04FNaXKU0-FSZmRKlXGsdT6gI3CuHPxHvfJsZhO5Wymii7g1nRplb1OjIraLkyIke-HKkpZKErLXi2_p6FqVDhd7UpobMFOQEmgMXWvGGIsAf1cMtbdlRlTud-wqBnQUKFkKS7Tiw17FGH7_-Zr_pky-du5aTRHR7f-dyG34WbniJLXLefcgWuuvgs32tKUP-_ByTE6ofWanEZY6qATSbwVHPKlGlI25KxcNmThSTCMbTyR2D7Hg8xrEgEg8N3nahNUXcbdh09Hhx_fvE27Ggyp4Sxbp7g7M9JwdAMqb0s7kejfUp9NPOMqN66UuL-kpXXoebCx57nzorK-otzbPLO5pA9gu17U7hEQn1PBPSp6YyVuk6pKVJnx6LG5XKiyGieQ9ZTQpgMoD3Uyvul4UE6lbqmnkXo6Uk9fJPBiGLNs4Tmu7H0QCDz0DNDa8cNidao7SdWhAo7xwojc4doyURlc00RwLi01losE9nq66k7eG31J1ASeDc0oqeH4pazd4rztg-pOKJXAw5abhplQMRY5OtMJyA0-25jqZks9_xrRwFGnZihwOPRlz5KX8_r3v3h89TKewO4kSElAtVR7sL1enbuncN38WM-b1Qi2xEzEpxzBzsHhtPgwitGMURRAfBb8C7YU794Xn38B00Q4AQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFE3cRzbB4R4Va26rHooVW9u4kdZCZJlswW1P4rfyNh5VMujtx44RUqcyHZmvpmxx98APGOUU13IPHaU6zjTQsZS2yw2znOjZMzacI57b8wnE7G_L3dW4Gd_FsanVfaYGIDa1Nqvka_7KkqJL0qbvZ59i33VKL-72pfQaMVi2x7_wJCtebX1Hv_v8zTd-LD7bjPuqgrEmmXJIsZ4QwvN0LCVzhQmFeixUZekLmMy17YQGDHRwli0pdnIsdw6XhpXUuZMnphcUPzuBbiIbkQqQqrgzrCm49nWRZZ1Z3NGVKw3WUAiNIyoyZKJ-GTJ_oUyAX_zbf9M0fxtnzaYv43r_9vE3YBrnaNN3rSacRNWbHULLrelN49vw94YnexqQQ4D7bbHfBJOPft8sIYUDflazBpSO-INf7teSkyfw0KmFQkEF3jtc9EJQrO2d-DTuQzqLqxWdWXvA3E55cyhIdNGYBhYlrxMtEOP1OZcFuUogqT_80p3BOy-DsgXFRIBqFCttCiUFhWkRZ1E8GJ4Z9bSj5zZ-q0XqKGlpw4PN-r5oeqQSPkKP9pxzXOLY0t4qXFMKWdMGKoN4xGs9XKkOjxr1KkQRfB0eIxI5LeXisrWR20bhHMuZQT3WukdekL5iOcYLEQgluR6qavLT6rp58B2jjYjQUDBV1_2KnDar3_PxYOzh_EErmzufhyr8dZk-yFcTb2GegZPuQari_mRfQSX9PfFtJk_DipO4OC8VeMXtDSO7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmsR07B4SAMqLqaDQHqHpzEy9lJEiGyRTU_jR-Hc9OMtWw9NYDp0iJE9nO9zb7-XsAzzgVVBd5FjsqdMy0zONcWxYb57lRGLc2nOPeG4vJRO7v59MN-NmfhfFplb1ODIra1NqvkQ98FaXEF6VlA9elRUy3R6_n32JfQcrvtPblNFqI7NrjHxi-Na92tvFfP0_T0fuP7z7EXYWBWHOWLGOMPbTUHI1c6UxhUoneG3VJ6hjPM20LidETLYxFu8qGjmfWidK4knJnssRkkuJ3L8BF4UnLQ9rgdLW-45nXJWPdOZ0hlYOGBa2ERhKlOucyPlmzhaFkwN_83D_TNX_bsw2mcHT9f57EG3Ctc8DJm1ZibsKGrW7B5bYk5_Ft2Buj810tyWGg4_a2gITT0D5PrCFFQ74W84bUjniHoF1HJabPbSGzigTiC7z2OeoEVba2d-DTuQzqLmxWdWXvA3EZFdyhgdNGYnhYlqJMtENP1WYiL8phBEmPAqU7YnZfH-SLCgkCVKoWOQqRowJy1EkEL1bvzFtakjNbv_XgWrX0lOLhRr04VJ2GUr7yj3ZCi8zi2BJRahxTKjiXhmrDRQRbPaZUp-cadQqoCJ6uHqOG8ttORWXro7YNqnmR5xHca5G86gkVQ5FhEBGBXMP4WlfXn1Szz4EFHW1JgooGX33Zi8Npv_49Fw_OHsYTuIISocY7k92HcDX1wuqJPfMt2FwujuwjuKS_L2fN4nGQdgIH5y0ZvwCuMpeq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent+generative+landscapes+as+maps+of+functional+diversity+in+protein+sequence+space&rft.jtitle=Nature+communications&rft.au=Ziegler%2C+Cheyenne&rft.au=Martin%2C+Jonathan&rft.au=Sinner%2C+Claude&rft.au=Morcos%2C+Faruck&rft.date=2023-04-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft_id=info:doi/10.1038%2Fs41467-023-37958-z&rft.externalDocID=PMC10113739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |