A robust model for cell type-specific interindividual variation in single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) has been widely used to characterize cell types based on their average gene expression profiles. However, most studies do not consider cell type-specific variation across donors. Modelling this cell type-specific inter-individual variation could help elucidate...
Saved in:
| Published in: | Nature communications Vol. 15; no. 1; pp. 5229 - 12 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
19.06.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Single-cell RNA sequencing (scRNA-seq) has been widely used to characterize cell types based on their average gene expression profiles. However, most studies do not consider cell type-specific variation across donors. Modelling this cell type-specific inter-individual variation could help elucidate cell type-specific biology and inform genes and cell types underlying complex traits. We therefore develop a new model to detect and quantify cell type-specific variation across individuals called CTMM (Cell Type-specific linear Mixed Model). We use extensive simulations to show that CTMM is powerful and unbiased in realistic settings. We also derive calibrated tests for cell type-specific interindividual variation, which is challenging given the modest sample sizes in scRNA-seq. We apply CTMM to scRNA-seq data from human induced pluripotent stem cells to characterize the transcriptomic variation across donors as cells differentiate into endoderm. We find that almost 100% of transcriptome-wide variability between donors is differentiation stage-specific. CTMM also identifies individual genes with statistically significant stage-specific variability across samples, including 85 genes that do not have significant stage-specific mean expression. Finally, we extend CTMM to partition interindividual covariance between stages, which recapitulates the overall differentiation trajectory. Overall, CTMM is a powerful tool to illuminate cell type-specific biology in scRNA-seq.
Single-cell RNA sequencing (scRNA-seq) is widely used to characterize cell types based on their average gene expression profiles, however most studies do not consider cell type-specific variation across individuals. Here the authors introduce a model to study cell type-specificity of inter-individual variation in scRNA-seq data and show that it can identify biologically meaningful signals missed by conventional differential expression tests. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-024-49242-9 |