Representation of visual landmarks in retrosplenial cortex
The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which...
Saved in:
| Published in: | eLife Vol. 9 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
eLife Sciences Publications Ltd
10.03.2020
eLife Sciences Publications, Ltd |
| Subjects: | |
| ISSN: | 2050-084X, 2050-084X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.
When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible.
One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before.
To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark.
In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing.
Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations. |
|---|---|
| AbstractList | The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations. The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations. |
| Author | Mojica Soto-Albors, Raul Harnett, Mark T Buck, Friederike Fischer, Lukas F |
| Author_xml | – sequence: 1 givenname: Lukas F orcidid: 0000-0001-9422-3798 surname: Fischer fullname: Fischer, Lukas F organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States – sequence: 2 givenname: Raul orcidid: 0000-0002-6987-5417 surname: Mojica Soto-Albors fullname: Mojica Soto-Albors, Raul organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States – sequence: 3 givenname: Friederike surname: Buck fullname: Buck, Friederike organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States – sequence: 4 givenname: Mark T orcidid: 0000-0002-5301-1139 surname: Harnett fullname: Harnett, Mark T organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32154781$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkt9rFDEQx4NU7A_75Lss-CLItUk22WR9EKSoLRwIRcG3kGQnNedecia7Rf97p3dtaYt5SZj5zJdvZuaQ7KWcgJBXjJ4oKcUpLGOAE8mE1M_IAaeSLqgWP_YevPfJca0rikcJrVn_guy3nEmhNDsg7y9hU6BCmuwUc2pyaK5jne3YjDYNa1t-1SampsBUct2MkCKmfC4T_HlJngc7Vji-vY_I98-fvp2dL5Zfv1ycfVwuvBRsWjCvOVcQWufoEHqpnNadcL31AJo779o-hA463sIgKe2lVrYD74Xj3GlMH5GLne6Q7cpsSkRXf0220WwDuVwZW6boRzBcKdFRGZhqmdDCWuqobP3Qd552lA6o9WGntZndGgaP_y52fCT6OJPiT3OVr42inWgFR4G3twIl_56hTmYdq4cRuwV5roa3Smop0Qeib56gqzyXhK1CSgslGKM9Uq8fOrq3cjciBNgO8DiBWiAYH3fDQoNxNIyam00w200w203AmndPau5k_0f_A1ygtN0 |
| CitedBy_id | crossref_primary_10_1002_jbio_202200025 crossref_primary_10_1007_s00429_023_02694_z crossref_primary_10_1523_JNEUROSCI_1071_22_2023 crossref_primary_10_1038_s41598_025_93263_3 crossref_primary_10_1002_hipo_23513 crossref_primary_10_1126_science_adp7429 crossref_primary_10_1073_pnas_2315167121 crossref_primary_10_1177_2398212820972871 crossref_primary_10_7554_eLife_76051 crossref_primary_10_1038_s41593_025_01944_z crossref_primary_10_1111_ejn_16284 crossref_primary_10_1016_j_neuron_2021_08_004 crossref_primary_10_3389_frvir_2022_981625 crossref_primary_10_1016_j_nlm_2021_107525 crossref_primary_10_1038_s41467_021_26301_z crossref_primary_10_3390_buildings13041024 crossref_primary_10_1146_annurev_neuro_120722_100503 crossref_primary_10_1016_j_tins_2022_01_007 crossref_primary_10_1038_s42003_025_07463_8 crossref_primary_10_7554_eLife_67007 crossref_primary_10_1016_j_celrep_2025_115363 crossref_primary_10_1007_s00429_022_02578_8 crossref_primary_10_1126_science_adu9828 crossref_primary_10_1016_j_conb_2021_08_006 crossref_primary_10_1038_s41467_024_51227_7 crossref_primary_10_3390_brainsci11030345 crossref_primary_10_1016_j_neubiorev_2023_105200 crossref_primary_10_1016_j_conb_2020_03_009 crossref_primary_10_1016_j_nlm_2021_107516 crossref_primary_10_7554_eLife_82952 crossref_primary_10_1038_s41598_021_97749_8 crossref_primary_10_1002_hbm_26069 crossref_primary_10_1002_hipo_23610 crossref_primary_10_1016_j_neuron_2022_11_006 crossref_primary_10_1016_j_nlm_2025_108055 crossref_primary_10_1016_j_neuroimage_2021_118408 crossref_primary_10_1016_j_neuron_2022_05_012 crossref_primary_10_1016_j_jer_2023_100083 crossref_primary_10_1038_s41467_023_37704_5 crossref_primary_10_1038_s42003_023_05291_2 crossref_primary_10_1177_17470218251369786 crossref_primary_10_1038_s41467_024_51391_w crossref_primary_10_1016_j_neuron_2021_10_031 crossref_primary_10_1016_j_bpsgos_2023_07_008 crossref_primary_10_1016_j_cub_2023_09_019 crossref_primary_10_1162_imag_a_00516 crossref_primary_10_1002_hipo_23324 crossref_primary_10_1016_j_neures_2021_07_002 crossref_primary_10_1002_cne_25317 crossref_primary_10_1016_j_neuron_2023_11_018 crossref_primary_10_7554_eLife_63705 crossref_primary_10_1016_j_nlm_2024_108005 crossref_primary_10_1089_neur_2021_0044 crossref_primary_10_1016_j_cub_2020_03_018 crossref_primary_10_1016_j_celrep_2024_114470 crossref_primary_10_1016_j_cogpsych_2025_101734 crossref_primary_10_1016_j_neuroimage_2021_118264 crossref_primary_10_3389_fnbeh_2024_1341705 crossref_primary_10_3389_fnhum_2020_584385 |
| Cites_doi | 10.1002/hipo.10173 10.1523/JNEUROSCI.1392-08.2008 10.1002/cne.902160207 10.1038/nature05453 10.1111/1467-9450.00233 10.1038/nrn2733 10.1002/cne.903150207 10.1002/hipo.20949 10.1016/j.neuron.2014.08.042 10.1146/annurev.neuro.24.1.167 10.1038/nn.4061 10.1523/JNEUROSCI.16-24-08027.1996 10.1016/j.neuroimage.2006.01.037 10.7554/eLife.08760 10.1016/0023-9690(81)90020-5 10.1038/nature10918 10.1002/hipo.20327 10.1097/00001756-199902250-00033 10.1016/j.neuron.2015.03.039 10.1146/annurev.neuro.28.061604.135703 10.1126/science.aah6066 10.1016/j.celrep.2018.08.010 10.1016/j.neuropsychologia.2006.05.023 10.1242/jeb.199.1.201 10.1038/nature11601 10.1016/j.neuron.2010.01.033 10.1037/0735-7044.115.5.1012 10.1038/nn.4385 10.1016/j.neuron.2019.01.029 10.1523/JNEUROSCI.10-02-00436.1990 10.1038/nn.4058 10.1098/rstb.2012.0533 10.1016/j.neuron.2018.06.008 10.1038/nmeth.1175 10.7554/eLife.16937 10.1093/brain/110.6.1631 10.1038/nature08499 10.1371/journal.pone.0043620 10.1152/jn.01041.2010 10.1038/s41593-018-0254-6 10.1038/nature12160 10.1016/j.bbr.2014.07.009 10.1038/s41467-017-00180-9 10.1038/nn1825 10.1038/nrn1932 10.1038/s41586-018-0516-1 10.1038/nn.4062 10.1109/JPROC.2014.2312671 10.1038/nn.4465 10.1038/s41586-019-1346-5 10.1038/s41593-019-0357-8 10.3389/fncom.2014.00058 10.1002/hipo.20113 10.1016/j.tics.2008.07.004 10.1152/jn.1998.80.1.425 10.1146/annurev.neuro.29.051605.112854 10.1093/cercor/bhw192 10.3389/fncom.2011.00039 10.1016/j.neuron.2015.05.037 10.1016/j.cub.2018.04.057 10.1038/nn.3215 10.1037/0735-7044.115.1.3 10.1016/S0010-9452(08)70479-9 10.1002/hipo.20958 10.1523/JNEUROSCI.07-07-01951.1987 10.1037/h0061626 10.1016/j.cub.2016.07.002 10.1038/nature03721 10.1371/journal.pone.0088678 10.1523/JNEUROSCI.4353-05.2006 10.1016/S0028-3908(98)00053-7 10.1038/s41593-018-0189-y 10.1038/nn.2901 10.1523/JNEUROSCI.16-02-00823.1996 10.1016/j.cell.2017.05.023 10.3389/fninf.2011.00007 10.1162/jocn.1991.3.2.190 10.1523/JNEUROSCI.15-03-01648.1995 10.1073/pnas.96.25.14600 10.1126/science.1254126 10.1111/j.1460-9568.2007.05745.x 10.1016/j.cub.2017.04.036 10.1371/journal.pcbi.1000291 10.1073/pnas.1619449114 10.1126/science.1256573 10.1016/j.neurobiolaging.2008.03.014 10.1002/ana.410420114 10.1038/nature12742 10.1038/nn.3567 10.7554/eLife.07192 10.1038/nn.4390 10.1038/nature13186 10.1101/568766 |
| ContentType | Journal Article |
| Copyright | 2020, Fischer et al. 2020, Fischer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020, Fischer et al 2020 Fischer et al |
| Copyright_xml | – notice: 2020, Fischer et al. – notice: 2020, Fischer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020, Fischer et al 2020 Fischer et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7554/eLife.51458 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_2774605f1731484aa0b053cd96c0600d PMC7064342 32154781 10_7554_eLife_51458 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS106031 – fundername: ; – fundername: ; grantid: RO1NS106031 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-1c8227ef3bb0df957b8864b9acee82bcb39ff6e623ed5009587a6ecc4b22b8cb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519733900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Tue Oct 14 19:05:01 EDT 2025 Tue Nov 04 01:39:20 EST 2025 Sun Nov 09 12:23:42 EST 2025 Tue Oct 07 07:20:09 EDT 2025 Thu Apr 03 07:07:46 EDT 2025 Tue Nov 18 21:37:30 EST 2025 Sat Nov 29 06:21:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mouse population imaging visual cortex neuroscience spatial navigation behavior retrosplenial cortex sensorimotor integration |
| Language | English |
| License | 2020, Fischer et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-1c8227ef3bb0df957b8864b9acee82bcb39ff6e623ed5009587a6ecc4b22b8cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6987-5417 0000-0002-5301-1139 0000-0001-9422-3798 |
| OpenAccessLink | https://www.proquest.com/docview/2384741109?pq-origsite=%requestingapplication% |
| PMID | 32154781 |
| PQID | 2384741109 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2774605f1731484aa0b053cd96c0600d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064342 proquest_miscellaneous_2375855774 proquest_journals_2384741109 pubmed_primary_32154781 crossref_citationtrail_10_7554_eLife_51458 crossref_primary_10_7554_eLife_51458 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-10 |
| PublicationDateYYYYMMDD | 2020-03-10 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2020 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
| References | Mao (bib51) 2017; 8 Yoder (bib93) 2011; 105 Valerio (bib86) 2012; 15 Jadi (bib33) 2014; 102 Fuhs (bib21) 2006; 26 Guo (bib26) 2014; 9 Monaco (bib58) 2011; 5 Svoboda (bib80) 2006; 44 Etienne (bib19) 2004; 14 Taube (bib82) 1990; 10 Elduayen (bib15) 2014; 272 Newman (bib63) 2015; 4 Alexander (bib2) 2017; 27 Knierim (bib39) 1995; 15 Gothard (bib25) 1996; 16 Campbell (bib10) 2018; 21 Knierim (bib40) 1998; 80 Niell (bib64) 2010; 65 Sreenivasan (bib77) 2011; 14 Jones (bib37) 2001 Maguire (bib48) 2001; 42 Spiers (bib76) 2006; 31 Miyashita (bib57) 2007; 26 Murray (bib62) 2017; 114 Kononenko (bib42) 2012; 22 Taube (bib83) 2007; 30 Jacob (bib32) 2017; 20 Poort (bib69) 2015; 86 Villain (bib90) 2008; 28 Minoshima (bib56) 1997; 42 Vogt (bib91) 1983; 216 Attinger (bib4) 2017; 169 Cooper (bib14) 1999; 10 Bittner (bib6) 2015; 18 Funamizu (bib22) 2016; 19 Aronov (bib3) 2014; 84 Auger (bib5) 2012; 7 van Groen (bib87) 1992; 315 Pérez-Escobar (bib68) 2016; 5 Rigotti (bib71) 2013; 497 Xu (bib92) 2012; 492 Stringer (bib78) 2019; 571 Oh (bib65) 2014; 508 Jeffery (bib34) 1998; 37 Hardcastle (bib28) 2015; 86 Zhang (bib94) 2014; 345 Mante (bib50) 2013; 503 Saleem (bib74) 2018; 562 Ino (bib31) 2007; 43 Ji (bib36) 2007; 10 Muller (bib61) 1987; 7 Clancy (bib12) 2019; 22 Fiser (bib20) 2016; 19 Hafting (bib27) 2005; 436 Vann (bib88) 2009; 10 Vedder (bib89) 2017; 27 Lein (bib44) 2007; 445 Minderer (bib55) 2019; 102 Cho (bib11) 2001; 115 Pengas (bib67) 2010; 31 Larkum (bib43) 1999; 96 Morris (bib60) 1981; 12 Saleem (bib73) 2013; 16 Etienne (bib18) 1996; 199 Julian (bib38) 2018; 28 London (bib47) 2005; 28 Robertson (bib72) 2016; 26 Buzsáki (bib9) 2005; 15 Lewis (bib45) 2015; 4 Epstein (bib16) 2008; 12 Takahashi (bib81) 2016; 354 McNaughton (bib53) 2006; 7 Smith (bib75) 2012; 22 Gothard (bib24) 1996; 16 Montijn (bib59) 2014; 8 Burak (bib7) 2009; 5 Koay (bib41) 2019 Burgess (bib8) 2007; 17 Pakan (bib66) 2018; 24 Ranganathan (bib70) 2018; 21 Tolman (bib84) 1948; 55 Sugar (bib79) 2011; 5 Alexander (bib1) 2015; 18 Gauthier (bib23) 2018; 99 Valenstein (bib85) 1987; 110 Makino (bib49) 2015; 18 Harvey (bib29) 2009; 461 Miller (bib54) 2001; 24 Epstein (bib17) 2014; 369 Liu (bib46) 2014; 346 Harvey (bib30) 2012; 484 Cooper (bib13) 2001; 115 Ji (bib35) 2008; 5 McNaughton (bib52) 1991; 3 |
| References_xml | – volume: 14 start-page: 180 year: 2004 ident: bib19 article-title: Path integration in mammals publication-title: Hippocampus doi: 10.1002/hipo.10173 – volume: 28 start-page: 6174 year: 2008 ident: bib90 article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1392-08.2008 – volume: 216 start-page: 192 year: 1983 ident: bib91 article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.902160207 – volume: 445 start-page: 168 year: 2007 ident: bib44 article-title: Genome-wide atlas of gene expression in the adult mouse brain publication-title: Nature doi: 10.1038/nature05453 – volume: 42 start-page: 225 year: 2001 ident: bib48 article-title: The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings publication-title: Scandinavian Journal of Psychology doi: 10.1111/1467-9450.00233 – volume: 10 start-page: 792 year: 2009 ident: bib88 article-title: What does the retrosplenial cortex do? publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2733 – volume: 315 start-page: 200 year: 1992 ident: bib87 article-title: Connections of the retrosplenial dysgranular cortex in the rat publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.903150207 – volume: 22 start-page: 881 year: 2012 ident: bib42 article-title: Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex publication-title: Hippocampus doi: 10.1002/hipo.20949 – volume: 84 start-page: 442 year: 2014 ident: bib3 article-title: Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system publication-title: Neuron doi: 10.1016/j.neuron.2014.08.042 – volume: 24 start-page: 167 year: 2001 ident: bib54 article-title: An integrative theory of prefrontal cortex function publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.24.1.167 – volume: 18 start-page: 1116 year: 2015 ident: bib49 article-title: Learning enhances the relative impact of top-down processing in the visual cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4061 – volume: 16 start-page: 8027 year: 1996 ident: bib25 article-title: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.16-24-08027.1996 – volume: 31 start-page: 1826 year: 2006 ident: bib76 article-title: Thoughts, behaviour, and brain dynamics during navigation in the real world publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.037 – volume: 4 year: 2015 ident: bib45 article-title: Thalamic reticular nucleus induces fast and local modulation of arousal state publication-title: eLife doi: 10.7554/eLife.08760 – volume: 12 start-page: 239 year: 1981 ident: bib60 article-title: Spatial localization does not require the presence of local cues publication-title: Learning and Motivation doi: 10.1016/0023-9690(81)90020-5 – volume: 484 start-page: 62 year: 2012 ident: bib30 article-title: Choice-specific sequences in parietal cortex during a virtual-navigation decision task publication-title: Nature doi: 10.1038/nature10918 – volume: 17 start-page: 801 year: 2007 ident: bib8 article-title: An oscillatory interference model of grid cell firing publication-title: Hippocampus doi: 10.1002/hipo.20327 – volume: 10 start-page: 625 year: 1999 ident: bib14 article-title: Retrosplenial cortex inactivation selectively impairs navigation in darkness publication-title: NeuroReport doi: 10.1097/00001756-199902250-00033 – volume: 86 start-page: 827 year: 2015 ident: bib28 article-title: Environmental boundaries as an error correction mechanism for grid cells publication-title: Neuron doi: 10.1016/j.neuron.2015.03.039 – volume: 28 start-page: 503 year: 2005 ident: bib47 article-title: Dendritic computation publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.28.061604.135703 – volume: 354 start-page: 1587 year: 2016 ident: bib81 article-title: Active cortical dendrites modulate perception publication-title: Science doi: 10.1126/science.aah6066 – volume: 24 start-page: 2521 year: 2018 ident: bib66 article-title: The impact of visual cues, reward, and motor feedback on the representation of behaviorally relevant spatial locations in primary visual cortex publication-title: Cell Reports doi: 10.1016/j.celrep.2018.08.010 – volume: 44 start-page: 2189 year: 2006 ident: bib80 article-title: The functional neuroanatomy of autobiographical memory: a meta-analysis publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2006.05.023 – volume: 199 start-page: 201 year: 1996 ident: bib18 article-title: Path integration in mammals and its interaction with visual landmarks publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.199.1.201 – volume: 492 start-page: 247 year: 2012 ident: bib92 article-title: Nonlinear dendritic integration of sensory and motor input during an active sensing task publication-title: Nature doi: 10.1038/nature11601 – volume: 65 start-page: 472 year: 2010 ident: bib64 article-title: Modulation of visual responses by behavioral state in mouse visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2010.01.033 – volume: 115 start-page: 1012 year: 2001 ident: bib13 article-title: Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues publication-title: Behavioral Neuroscience doi: 10.1037/0735-7044.115.5.1012 – volume: 19 start-page: 1658 year: 2016 ident: bib20 article-title: Experience-dependent spatial expectations in mouse visual cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4385 – volume: 102 start-page: 232 year: 2019 ident: bib55 article-title: The spatial structure of neural encoding in mouse posterior cortex during navigation publication-title: Neuron doi: 10.1016/j.neuron.2019.01.029 – volume: 10 start-page: 436 year: 1990 ident: bib82 article-title: Head-direction cells recorded from the postsubiculum in freely moving rats. II. effects of environmental manipulations publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.10-02-00436.1990 – volume: 18 start-page: 1143 year: 2015 ident: bib1 article-title: Retrosplenial cortex maps the conjunction of internal and external spaces publication-title: Nature Neuroscience doi: 10.1038/nn.4058 – volume: 369 year: 2014 ident: bib17 article-title: Neural systems for landmark-based wayfinding in humans publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2012.0533 – volume: 99 start-page: 179 year: 2018 ident: bib23 article-title: A dedicated population for reward coding in the Hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2018.06.008 – volume: 5 start-page: 197 year: 2008 ident: bib35 article-title: High-speed, low-photodamage nonlinear imaging using passive pulse splitters publication-title: Nature Methods doi: 10.1038/nmeth.1175 – volume: 5 year: 2016 ident: bib68 article-title: Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex publication-title: eLife doi: 10.7554/eLife.16937 – volume: 110 start-page: 1631 year: 1987 ident: bib85 article-title: Retrosplenial amnesia publication-title: Brain doi: 10.1093/brain/110.6.1631 – volume: 461 start-page: 941 year: 2009 ident: bib29 article-title: Intracellular dynamics of hippocampal place cells during virtual navigation publication-title: Nature doi: 10.1038/nature08499 – volume: 7 year: 2012 ident: bib5 article-title: Retrosplenial cortex codes for permanent landmarks publication-title: PLOS ONE doi: 10.1371/journal.pone.0043620 – volume: 105 start-page: 2989 year: 2011 ident: bib93 article-title: Both visual and idiothetic cues contribute to head direction cell stability during navigation along complex routes publication-title: Journal of Neurophysiology doi: 10.1152/jn.01041.2010 – volume: 21 start-page: 1583 year: 2018 ident: bib70 article-title: Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0254-6 – volume: 497 start-page: 585 year: 2013 ident: bib71 article-title: The importance of mixed selectivity in complex cognitive tasks publication-title: Nature doi: 10.1038/nature12160 – volume: 272 start-page: 303 year: 2014 ident: bib15 article-title: The retrosplenial cortex is necessary for path integration in the dark publication-title: Behavioural Brain Research doi: 10.1016/j.bbr.2014.07.009 – volume: 8 year: 2017 ident: bib51 article-title: Sparse orthogonal population representation of spatial context in the retrosplenial cortex publication-title: Nature Communications doi: 10.1038/s41467-017-00180-9 – volume: 10 start-page: 100 year: 2007 ident: bib36 article-title: Coordinated memory replay in the visual cortex and Hippocampus during sleep publication-title: Nature Neuroscience doi: 10.1038/nn1825 – volume: 7 start-page: 663 year: 2006 ident: bib53 article-title: Path integration and the neural basis of the 'cognitive map' publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1932 – volume: 562 start-page: 124 year: 2018 ident: bib74 article-title: Coherent encoding of subjective spatial position in visual cortex and Hippocampus publication-title: Nature doi: 10.1038/s41586-018-0516-1 – volume: 18 start-page: 1133 year: 2015 ident: bib6 article-title: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons publication-title: Nature Neuroscience doi: 10.1038/nn.4062 – volume: 102 start-page: 782 year: 2014 ident: bib33 article-title: An augmented Two-Layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2014.2312671 – volume: 20 start-page: 173 year: 2017 ident: bib32 article-title: An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4465 – volume: 571 start-page: 361 year: 2019 ident: bib78 article-title: High-dimensional geometry of population responses in visual cortex publication-title: Nature doi: 10.1038/s41586-019-1346-5 – year: 2001 ident: bib37 article-title: SciPy: open source scientific tools for Python – volume: 22 start-page: 778 year: 2019 ident: bib12 article-title: Locomotion-dependent remapping of distributed cortical networks publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0357-8 – volume: 8 year: 2014 ident: bib59 article-title: Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2014.00058 – volume: 15 start-page: 827 year: 2005 ident: bib9 article-title: Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory publication-title: Hippocampus doi: 10.1002/hipo.20113 – volume: 12 start-page: 388 year: 2008 ident: bib16 article-title: Parahippocampal and retrosplenial contributions to human spatial navigation publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2008.07.004 – volume: 80 start-page: 425 year: 1998 ident: bib40 article-title: Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells publication-title: Journal of Neurophysiology doi: 10.1152/jn.1998.80.1.425 – volume: 30 start-page: 181 year: 2007 ident: bib83 article-title: The head direction signal: origins and sensory-motor integration publication-title: Annual Review of Neuroscience doi: 10.1146/annurev.neuro.29.051605.112854 – volume: 27 start-page: 3713 year: 2017 ident: bib89 article-title: Retrosplenial cortical neurons encode navigational cues, trajectories and reward locations during goal directed navigation publication-title: Cerebral Cortex doi: 10.1093/cercor/bhw192 – volume: 5 year: 2011 ident: bib58 article-title: Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2011.00039 – volume: 86 start-page: 1478 year: 2015 ident: bib69 article-title: Learning enhances sensory and multiple Non-sensory representations in primary visual cortex publication-title: Neuron doi: 10.1016/j.neuron.2015.05.037 – volume: 28 start-page: R1059 year: 2018 ident: bib38 article-title: The neurocognitive basis of spatial reorientation publication-title: Current Biology doi: 10.1016/j.cub.2018.04.057 – volume: 15 start-page: 1445 year: 2012 ident: bib86 article-title: Path integration: how the head direction signal maintains and corrects spatial orientation publication-title: Nature Neuroscience doi: 10.1038/nn.3215 – volume: 115 start-page: 3 year: 2001 ident: bib11 article-title: Head direction, place, and movement correlates for cells in the rat retrosplenial cortex publication-title: Behavioral Neuroscience doi: 10.1037/0735-7044.115.1.3 – volume: 43 start-page: 248 year: 2007 ident: bib31 article-title: Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies publication-title: Cortex doi: 10.1016/S0010-9452(08)70479-9 – volume: 22 start-page: 1121 year: 2012 ident: bib75 article-title: Complimentary roles of the Hippocampus and retrosplenial cortex in behavioral context discrimination publication-title: Hippocampus doi: 10.1002/hipo.20958 – volume: 7 start-page: 1951 year: 1987 ident: bib61 article-title: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.07-07-01951.1987 – volume: 55 start-page: 189 year: 1948 ident: bib84 article-title: Cognitive maps in rats and men publication-title: Psychological Review doi: 10.1037/h0061626 – volume: 26 start-page: 2463 year: 2016 ident: bib72 article-title: Neural representations integrate the current field of view with the remembered 360° panorama in Scene-Selective cortex publication-title: Current Biology doi: 10.1016/j.cub.2016.07.002 – volume: 436 start-page: 801 year: 2005 ident: bib27 article-title: Microstructure of a spatial map in the entorhinal cortex publication-title: Nature doi: 10.1038/nature03721 – volume: 9 year: 2014 ident: bib26 article-title: Procedures for behavioral experiments in head-fixed mice publication-title: PLOS ONE doi: 10.1371/journal.pone.0088678 – volume: 26 start-page: 4266 year: 2006 ident: bib21 article-title: A spin glass model of path integration in rat medial entorhinal cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4353-05.2006 – volume: 37 start-page: 677 year: 1998 ident: bib34 article-title: Learning of landmark stability and instability by hippocampal place cells publication-title: Neuropharmacology doi: 10.1016/S0028-3908(98)00053-7 – volume: 21 start-page: 1096 year: 2018 ident: bib10 article-title: Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0189-y – volume: 14 start-page: 1330 year: 2011 ident: bib77 article-title: Grid cells generate an analog error-correcting code for singularly precise neural computation publication-title: Nature Neuroscience doi: 10.1038/nn.2901 – volume: 16 start-page: 823 year: 1996 ident: bib24 article-title: Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.16-02-00823.1996 – volume: 169 start-page: 1291 year: 2017 ident: bib4 article-title: Visuomotor coupling shapes the functional development of mouse visual cortex publication-title: Cell doi: 10.1016/j.cell.2017.05.023 – volume: 5 year: 2011 ident: bib79 article-title: The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. an interactive connectome publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2011.00007 – volume: 3 start-page: 190 year: 1991 ident: bib52 article-title: “Dead Reckoning,” Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1991.3.2.190 – volume: 15 start-page: 1648 year: 1995 ident: bib39 article-title: Place cells, head direction cells, and the learning of landmark stability publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.15-03-01648.1995 – volume: 96 start-page: 14600 year: 1999 ident: bib43 article-title: Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials publication-title: PNAS doi: 10.1073/pnas.96.25.14600 – volume: 345 start-page: 660 year: 2014 ident: bib94 article-title: Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing publication-title: Science doi: 10.1126/science.1254126 – volume: 26 start-page: 1193 year: 2007 ident: bib57 article-title: GABAergic projections from the Hippocampus to the retrosplenial cortex in the rat publication-title: European Journal of Neuroscience doi: 10.1111/j.1460-9568.2007.05745.x – volume: 27 start-page: 1551 year: 2017 ident: bib2 article-title: Spatially periodic activation patterns of retrosplenial cortex encode route Sub-spaces and distance traveled publication-title: Current Biology doi: 10.1016/j.cub.2017.04.036 – volume: 5 year: 2009 ident: bib7 article-title: Accurate path integration in continuous attractor network models of grid cells publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000291 – volume: 114 start-page: 394 year: 2017 ident: bib62 article-title: Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex publication-title: PNAS doi: 10.1073/pnas.1619449114 – volume: 346 start-page: 458 year: 2014 ident: bib46 article-title: Medial prefrontal activity during delay period contributes to learning of a working memory task publication-title: Science doi: 10.1126/science.1256573 – volume: 31 start-page: 25 year: 2010 ident: bib67 article-title: Focal posterior cingulate atrophy in incipient alzheimer's disease publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2008.03.014 – volume: 42 start-page: 85 year: 1997 ident: bib56 article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease publication-title: Annals of Neurology doi: 10.1002/ana.410420114 – volume: 503 start-page: 78 year: 2013 ident: bib50 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 16 start-page: 1864 year: 2013 ident: bib73 article-title: Integration of visual motion and locomotion in mouse visual cortex publication-title: Nature Neuroscience doi: 10.1038/nn.3567 – volume: 4 year: 2015 ident: bib63 article-title: Optogenetic feedback control of neural activity publication-title: eLife doi: 10.7554/eLife.07192 – volume: 19 start-page: 1682 year: 2016 ident: bib22 article-title: Neural substrate of dynamic bayesian inference in the cerebral cortex publication-title: Nature Neuroscience doi: 10.1038/nn.4390 – volume: 508 start-page: 207 year: 2014 ident: bib65 article-title: A mesoscale connectome of the mouse brain publication-title: Nature doi: 10.1038/nature13186 – volume-title: bioRxiv year: 2019 ident: bib41 article-title: Neural correlates of cognition in primary visual versus neighboring posterior cortices during visual Evidence-Accumulation-based navigation doi: 10.1101/568766 |
| SSID | ssj0000748819 |
| Score | 2.5275807 |
| Snippet | The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and... The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Animals Axons Behavior Behavior, Animal Feedback Female Gyrus Cinguli - physiology Information processing Integration Male Mice Mice, Inbred C57BL Neuroimaging Neuroscience population imaging Reinforcement retrosplenial cortex Sensorimotor integration spatial navigation Spatial Processing - physiology Visual cortex Visual Perception - physiology Visual stimuli |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yFHwRv61OqeCTULe2adP4pqL4MIaIyt5KkiZYnN3YF_rfe5d2o5OBL76V5gqXu-Tud_Q-CLlQYPQzgdU4YAg8yn3l8QyeQhUy4cexNraR9luHdbtJr8efaqO-MCesbA9cCq4VAD4ByG18FgJyp0K0JZwblfFYtcFZZ2h9AfXUgilrgxkcTJ-XBXkMXGZLd3KjrwAe4HD3mguynfpXwcvfWZI1t_OwTbYqvOjelHzukDVd7JKNcoLk9x65fraZrFUBUeEOjDvLx1P4AjMWP8XoY-zmhTvSE2Bl2MfMur6rMMH2a5-8Pty_3D161TgET0XUn3i-AmfOtAmlbGeGR0wmSUwlF-DnkkAqGXJjYg14RmcRQqeEiRg0RGUQyASWD0ijGBT6iLiZDpWm3LBQc8q4AWHG2FiPCnDnmlGHXM4llKqqVziOrOinEDOgOFMrztSK0wGNz4mHZYuM1WS3KOoFCfa1ti9A22ml7fQvbTukOVdUWl22cQqogwIw8tvcIeeLZbgm-O9DFHowRRoMjCKGezss9brgJATYgxW3DmFLGl9idXmlyN9tK26GiI4Gx_-xtxOyGWAwb5MFm6QxGU31KVlXs0k-Hp3Z8_0DUQMAOA priority: 102 providerName: Directory of Open Access Journals |
| Title | Representation of visual landmarks in retrosplenial cortex |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32154781 https://www.proquest.com/docview/2384741109 https://www.proquest.com/docview/2375855774 https://pubmed.ncbi.nlm.nih.gov/PMC7064342 https://doaj.org/article/2774605f1731484aa0b053cd96c0600d |
| Volume | 9 |
| WOSCitedRecordID | wos000519733900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFiRexucgbFRB4gkprEncOOZlYmgTSFsVTYDKUxQ7NkSUpCTtNP577hy3rGjihRcrih3pnLPvfnc-3wG8VCj0y4Ju46AgCJgIVSBKfIpVzIswSbSxibQ_n_HpNJ3NROYcbp0Lq1zLRCuoy0aRj_wQVQtD7ReOxdHiZ0BVo-h01ZXQ2IEhZSpjAxgen0yzi42XBRVkijqvv5jHUXUe6rPK6NcIE6jI-zVVZDP23wQz_46WvKZ-Tu_9L-H3YdcBT_9tv1IewC1dP4Q7fSnKX4_gzYUNiXU3kWq_Mf5l1a3wCwp9_FG03zu_qv1WL3EuizmF6M19RZG6V4_h0-nJx3fvA1dXIVATFi6DUCEq4NrEUo5LIyZcpmnCpChQYaaRVDIWxiQagZEuJ4TBUl4kyGomo0im2L0Hg7qp9VPwSx0rzYThsRaMCyMSlVCGPlYgLtCcefBq_Ytz5ZKOU-2LeY7GB_Ejt_zILT88XDrrwYs-18bNw46JV5shlCDbvmjar7nbb3mEsBYtNRPyGA0-VhRjieJGlUjgGDFe6cHBmlu527Vd_odVHrzYdON-o0OUotbNisaQhTXhNLcn_cLYUBIjfqKrux7wrSWzRep2T119szm9OUFDFj37N1n7cDcie9_GEx7AYNmu9HO4rS6XVdeOYIfPuG3TkdsII-tjwPY8yqjl2A6zD-fZl9-l9xd- |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AgSDBBSl0k3jjGAkhXlWrLiuESrU3Ezt2iViSJdkt9E_xG5lxkqWLKm49cItiJxpnxjPfOPMAeKxR6ecZZeOgIgiYCHUgcryKdcyzMEmMdYW0D0Z8PE4nE_FhDX71uTAUVtnrRKeo80rTGfkWmhaG1i8ciJez7wF1jaK_q30LjVYs9szxD3TZmhe7b5G_T6Jo-93-m52g6yoQ6CEL50Go0SZyY2OlBrkVQ67SNGFKZGgu0khpFQtrE4OwwORDQiApzxJcKFNRpFIcxveeg_OoxzmFkPEJX57poDlO0cK2aYAcDfWWGRXWPENQQi3lTxg-1x_gNFD7d2zmCWO3feV_-0xX4XIHq_1X7T64BmumvA4X20abxzfg-UcX8NvlWZV-Zf2jolngExTY-S2rvzZ-Ufq1meO3m00pAHHqa4pD_nkTPp0J4bdgvaxKcwf83MTaMGF5bATjwopEJ1R_kGWIegxnHjztWSp1V1KdOntMJbpWxH_p-C8d_z3cGP3kWVtJ5PRpr0k2llOo_Le7UdWHstMmMkLQjn6oDXmM7izLsoFCZapzJHCACDb3YLOXDtnppEb-EQ0PHi2HUZvQL6KsNNWC5pD_OOS0ttutIC4piREdUmKyB3xFRFdIXR0piy-uYjkn4Muiu_8m6yFs7Oy_H8nR7njvHlyK6GTDRU5uwvq8Xpj7cEEfzYumfuC2nQ-fz1qAfwPJUW9U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db5RAEJ_Uqo0vfn-gVTHRFxO8AxaWNTFGrRebnpeL0aZvuCy7lXjCCXfV_mv-dc4scPZM41sffCPsQgb47cxvlvkAeKxQ6eeSsnFQEXhM-MoTOR6FKuTSj2NtbCHt_TGfTJKDAzHdgF99LgyFVfY60SrqvFK0Rz5A08LQ-vlDMTBdWMR0Z_Ry_t2jDlL0p7Vvp9FCZE8f_0D3rXmxu4Pf-kkQjN5-fPPO6zoMeCpi_sLzFdpHrk2YZcPciIhnSRKzTEg0HUmQqSwUxsQaKYLOI2IjCZcxPjTLgiBLcBjvew7OcxZFtLreB9PV_g6a5gStbZsSyNFoD_S4MPoZEhRqL3_CCNpeAacR3L_jNE8YvtGV__mVXYXLHd12X7Xr4xps6PI6XGwbcB7fgOcfbCBwl39VupVxj4pmiVdQwOc3WX9t3KJ0a73A9zifUWDizFUUn_zzJnw6E8FvwWZZlfoOuLkOlWbC8FALxoURsYqpLiGTyIY0Zw487T9vqrpS69TxY5aiy0VYSC0WUosFBxdMP3neVhg5fdprwslqCpUFtyeq-jDttEwaIJlH_9T4PEQ3l0k5zFDJqhwFHCKzzR3Y7pGSdrqqSf_AxIFHq2HUMvTrSJa6WtIc8isjTs92uwXlSpIQWSMlLDvA1-C6Jur6SFl8sZXMORFiFtz9t1gPYQtxm453J3v34FJAGx42oHIbNhf1Ut-HC-poUTT1A7sCXfh81vj9DVDueCE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+visual+landmarks+in+retrosplenial+cortex&rft.jtitle=eLife&rft.au=Fischer%2C+Lukas+F&rft.au=Mojica+Soto-Albors%2C+Raul&rft.au=Buck%2C+Friederike&rft.au=Harnett%2C+Mark+T&rft.date=2020-03-10&rft.eissn=2050-084X&rft.volume=9&rft_id=info:doi/10.7554%2FeLife.51458&rft_id=info%3Apmid%2F32154781&rft.externalDocID=32154781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |