Representation of visual landmarks in retrosplenial cortex

The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 9
Main Authors: Fischer, Lukas F, Mojica Soto-Albors, Raul, Buck, Friederike, Harnett, Mark T
Format: Journal Article
Language:English
Published: England eLife Sciences Publications Ltd 10.03.2020
eLife Sciences Publications, Ltd
Subjects:
ISSN:2050-084X, 2050-084X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations.
AbstractList The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.
The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information.
The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations.
The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and rodents suggest that retrosplenial cortex (RSC) plays a key role in these computations. We developed an RSC-dependent behavioral task in which head-fixed mice learned the spatial relationship between visual landmark cues and hidden reward locations. Two-photon imaging revealed that these cues served as dominant reference points for most task-active neurons and anchored the spatial code in RSC. This encoding was more robust after task acquisition. Decoupling the virtual environment from mouse behavior degraded spatial representations and provided evidence that supralinear integration of visual and motor inputs contributes to landmark encoding. V1 axons recorded in RSC were less modulated by task engagement but showed surprisingly similar spatial tuning. Our data indicate that landmark representations in RSC are the result of local integration of visual, motor, and spatial information. When moving through a city, people often use notable or familiar landmarks to help them navigate. Landmarks provide us with information about where we are and where we need to go next. But despite the ease with which we – and most other animals – use landmarks to find our way around, it remains unclear exactly how the brain makes this possible. One area that seems to have a key role is the retrosplenial cortex, which is located deep within the back of the brain in humans. This area becomes more active when animals use visual landmarks to navigate. It is also one of the first brain regions to be affected in Alzheimer's disease, which may help to explain why patients with this condition can become lost and disoriented, even in places they have been many times before. To find out how the retrosplenial cortex supports navigation, Fischer et al. measured its activity in mice exploring a virtual reality world. The mice ran through simulated corridors in which visual landmarks indicated where hidden rewards could be found. The activity of most neurons in the retrosplenial cortex was most strongly influenced by the mouse’s position relative to the landmark; for example, some neurons were always active 10 centimeters after the landmark. In other experiments, when the landmarks were present but no longer indicated the location of a reward, the same neurons were much less active. Fischer et al. also measured the activity of the neurons when the mice were running with nothing shown on the virtual reality, and when they saw a landmark but did not run. Notably, the activity seen when the mice were using the landmarks to find rewards was greater than the sum of that recorded when the mice were just running or just seeing the landmark without a reward, making the “landmark response” an example of so-called supralinear processing. Fischer et al. showed that visual centers of the brain send information about landmarks to retrosplenial cortex. But only the latter adjusts its activity depending on whether the mouse is using that landmark to navigate. These findings provide the first evidence for a “landmark code” at the level of neurons and lay the foundations for studying impaired navigation in patients with Alzheimer's disease. By showing that retrosplenial cortex neurons combine different types of input in a supralinear fashion, the results also point to general principles for how neurons in the brain perform complex calculations.
Author Mojica Soto-Albors, Raul
Harnett, Mark T
Buck, Friederike
Fischer, Lukas F
Author_xml – sequence: 1
  givenname: Lukas F
  orcidid: 0000-0001-9422-3798
  surname: Fischer
  fullname: Fischer, Lukas F
  organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 2
  givenname: Raul
  orcidid: 0000-0002-6987-5417
  surname: Mojica Soto-Albors
  fullname: Mojica Soto-Albors, Raul
  organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 3
  givenname: Friederike
  surname: Buck
  fullname: Buck, Friederike
  organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
– sequence: 4
  givenname: Mark T
  orcidid: 0000-0002-5301-1139
  surname: Harnett
  fullname: Harnett, Mark T
  organization: Department of Brain and Cognitive Sciences, MGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32154781$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQx4NU7A_75Lss-CLItUk22WR9EKSoLRwIRcG3kGQnNedecia7Rf97p3dtaYt5SZj5zJdvZuaQ7KWcgJBXjJ4oKcUpLGOAE8mE1M_IAaeSLqgWP_YevPfJca0rikcJrVn_guy3nEmhNDsg7y9hU6BCmuwUc2pyaK5jne3YjDYNa1t-1SampsBUct2MkCKmfC4T_HlJngc7Vji-vY_I98-fvp2dL5Zfv1ycfVwuvBRsWjCvOVcQWufoEHqpnNadcL31AJo779o-hA463sIgKe2lVrYD74Xj3GlMH5GLne6Q7cpsSkRXf0220WwDuVwZW6boRzBcKdFRGZhqmdDCWuqobP3Qd552lA6o9WGntZndGgaP_y52fCT6OJPiT3OVr42inWgFR4G3twIl_56hTmYdq4cRuwV5roa3Smop0Qeib56gqzyXhK1CSgslGKM9Uq8fOrq3cjciBNgO8DiBWiAYH3fDQoNxNIyam00w200w203AmndPau5k_0f_A1ygtN0
CitedBy_id crossref_primary_10_1002_jbio_202200025
crossref_primary_10_1007_s00429_023_02694_z
crossref_primary_10_1523_JNEUROSCI_1071_22_2023
crossref_primary_10_1038_s41598_025_93263_3
crossref_primary_10_1002_hipo_23513
crossref_primary_10_1126_science_adp7429
crossref_primary_10_1073_pnas_2315167121
crossref_primary_10_1177_2398212820972871
crossref_primary_10_7554_eLife_76051
crossref_primary_10_1038_s41593_025_01944_z
crossref_primary_10_1111_ejn_16284
crossref_primary_10_1016_j_neuron_2021_08_004
crossref_primary_10_3389_frvir_2022_981625
crossref_primary_10_1016_j_nlm_2021_107525
crossref_primary_10_1038_s41467_021_26301_z
crossref_primary_10_3390_buildings13041024
crossref_primary_10_1146_annurev_neuro_120722_100503
crossref_primary_10_1016_j_tins_2022_01_007
crossref_primary_10_1038_s42003_025_07463_8
crossref_primary_10_7554_eLife_67007
crossref_primary_10_1016_j_celrep_2025_115363
crossref_primary_10_1007_s00429_022_02578_8
crossref_primary_10_1126_science_adu9828
crossref_primary_10_1016_j_conb_2021_08_006
crossref_primary_10_1038_s41467_024_51227_7
crossref_primary_10_3390_brainsci11030345
crossref_primary_10_1016_j_neubiorev_2023_105200
crossref_primary_10_1016_j_conb_2020_03_009
crossref_primary_10_1016_j_nlm_2021_107516
crossref_primary_10_7554_eLife_82952
crossref_primary_10_1038_s41598_021_97749_8
crossref_primary_10_1002_hbm_26069
crossref_primary_10_1002_hipo_23610
crossref_primary_10_1016_j_neuron_2022_11_006
crossref_primary_10_1016_j_nlm_2025_108055
crossref_primary_10_1016_j_neuroimage_2021_118408
crossref_primary_10_1016_j_neuron_2022_05_012
crossref_primary_10_1016_j_jer_2023_100083
crossref_primary_10_1038_s41467_023_37704_5
crossref_primary_10_1038_s42003_023_05291_2
crossref_primary_10_1177_17470218251369786
crossref_primary_10_1038_s41467_024_51391_w
crossref_primary_10_1016_j_neuron_2021_10_031
crossref_primary_10_1016_j_bpsgos_2023_07_008
crossref_primary_10_1016_j_cub_2023_09_019
crossref_primary_10_1162_imag_a_00516
crossref_primary_10_1002_hipo_23324
crossref_primary_10_1016_j_neures_2021_07_002
crossref_primary_10_1002_cne_25317
crossref_primary_10_1016_j_neuron_2023_11_018
crossref_primary_10_7554_eLife_63705
crossref_primary_10_1016_j_nlm_2024_108005
crossref_primary_10_1089_neur_2021_0044
crossref_primary_10_1016_j_cub_2020_03_018
crossref_primary_10_1016_j_celrep_2024_114470
crossref_primary_10_1016_j_cogpsych_2025_101734
crossref_primary_10_1016_j_neuroimage_2021_118264
crossref_primary_10_3389_fnbeh_2024_1341705
crossref_primary_10_3389_fnhum_2020_584385
Cites_doi 10.1002/hipo.10173
10.1523/JNEUROSCI.1392-08.2008
10.1002/cne.902160207
10.1038/nature05453
10.1111/1467-9450.00233
10.1038/nrn2733
10.1002/cne.903150207
10.1002/hipo.20949
10.1016/j.neuron.2014.08.042
10.1146/annurev.neuro.24.1.167
10.1038/nn.4061
10.1523/JNEUROSCI.16-24-08027.1996
10.1016/j.neuroimage.2006.01.037
10.7554/eLife.08760
10.1016/0023-9690(81)90020-5
10.1038/nature10918
10.1002/hipo.20327
10.1097/00001756-199902250-00033
10.1016/j.neuron.2015.03.039
10.1146/annurev.neuro.28.061604.135703
10.1126/science.aah6066
10.1016/j.celrep.2018.08.010
10.1016/j.neuropsychologia.2006.05.023
10.1242/jeb.199.1.201
10.1038/nature11601
10.1016/j.neuron.2010.01.033
10.1037/0735-7044.115.5.1012
10.1038/nn.4385
10.1016/j.neuron.2019.01.029
10.1523/JNEUROSCI.10-02-00436.1990
10.1038/nn.4058
10.1098/rstb.2012.0533
10.1016/j.neuron.2018.06.008
10.1038/nmeth.1175
10.7554/eLife.16937
10.1093/brain/110.6.1631
10.1038/nature08499
10.1371/journal.pone.0043620
10.1152/jn.01041.2010
10.1038/s41593-018-0254-6
10.1038/nature12160
10.1016/j.bbr.2014.07.009
10.1038/s41467-017-00180-9
10.1038/nn1825
10.1038/nrn1932
10.1038/s41586-018-0516-1
10.1038/nn.4062
10.1109/JPROC.2014.2312671
10.1038/nn.4465
10.1038/s41586-019-1346-5
10.1038/s41593-019-0357-8
10.3389/fncom.2014.00058
10.1002/hipo.20113
10.1016/j.tics.2008.07.004
10.1152/jn.1998.80.1.425
10.1146/annurev.neuro.29.051605.112854
10.1093/cercor/bhw192
10.3389/fncom.2011.00039
10.1016/j.neuron.2015.05.037
10.1016/j.cub.2018.04.057
10.1038/nn.3215
10.1037/0735-7044.115.1.3
10.1016/S0010-9452(08)70479-9
10.1002/hipo.20958
10.1523/JNEUROSCI.07-07-01951.1987
10.1037/h0061626
10.1016/j.cub.2016.07.002
10.1038/nature03721
10.1371/journal.pone.0088678
10.1523/JNEUROSCI.4353-05.2006
10.1016/S0028-3908(98)00053-7
10.1038/s41593-018-0189-y
10.1038/nn.2901
10.1523/JNEUROSCI.16-02-00823.1996
10.1016/j.cell.2017.05.023
10.3389/fninf.2011.00007
10.1162/jocn.1991.3.2.190
10.1523/JNEUROSCI.15-03-01648.1995
10.1073/pnas.96.25.14600
10.1126/science.1254126
10.1111/j.1460-9568.2007.05745.x
10.1016/j.cub.2017.04.036
10.1371/journal.pcbi.1000291
10.1073/pnas.1619449114
10.1126/science.1256573
10.1016/j.neurobiolaging.2008.03.014
10.1002/ana.410420114
10.1038/nature12742
10.1038/nn.3567
10.7554/eLife.07192
10.1038/nn.4390
10.1038/nature13186
10.1101/568766
ContentType Journal Article
Copyright 2020, Fischer et al.
2020, Fischer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020, Fischer et al 2020 Fischer et al
Copyright_xml – notice: 2020, Fischer et al.
– notice: 2020, Fischer et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020, Fischer et al 2020 Fischer et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.51458
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_2774605f1731484aa0b053cd96c0600d
PMC7064342
32154781
10_7554_eLife_51458
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS106031
– fundername: ;
– fundername: ;
  grantid: RO1NS106031
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-1c8227ef3bb0df957b8864b9acee82bcb39ff6e623ed5009587a6ecc4b22b8cb3
IEDL.DBID BENPR
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519733900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Tue Oct 14 19:05:01 EDT 2025
Tue Nov 04 01:39:20 EST 2025
Sun Nov 09 12:23:42 EST 2025
Tue Oct 07 07:20:09 EDT 2025
Thu Apr 03 07:07:46 EDT 2025
Tue Nov 18 21:37:30 EST 2025
Sat Nov 29 06:21:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
population imaging
visual cortex
neuroscience
spatial navigation
behavior
retrosplenial cortex
sensorimotor integration
Language English
License 2020, Fischer et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1c8227ef3bb0df957b8864b9acee82bcb39ff6e623ed5009587a6ecc4b22b8cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6987-5417
0000-0002-5301-1139
0000-0001-9422-3798
OpenAccessLink https://www.proquest.com/docview/2384741109?pq-origsite=%requestingapplication%
PMID 32154781
PQID 2384741109
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_2774605f1731484aa0b053cd96c0600d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7064342
proquest_miscellaneous_2375855774
proquest_journals_2384741109
pubmed_primary_32154781
crossref_citationtrail_10_7554_eLife_51458
crossref_primary_10_7554_eLife_51458
PublicationCentury 2000
PublicationDate 2020-03-10
PublicationDateYYYYMMDD 2020-03-10
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2020
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Mao (bib51) 2017; 8
Yoder (bib93) 2011; 105
Valerio (bib86) 2012; 15
Jadi (bib33) 2014; 102
Fuhs (bib21) 2006; 26
Guo (bib26) 2014; 9
Monaco (bib58) 2011; 5
Svoboda (bib80) 2006; 44
Etienne (bib19) 2004; 14
Taube (bib82) 1990; 10
Elduayen (bib15) 2014; 272
Newman (bib63) 2015; 4
Alexander (bib2) 2017; 27
Knierim (bib39) 1995; 15
Gothard (bib25) 1996; 16
Campbell (bib10) 2018; 21
Knierim (bib40) 1998; 80
Niell (bib64) 2010; 65
Sreenivasan (bib77) 2011; 14
Jones (bib37) 2001
Maguire (bib48) 2001; 42
Spiers (bib76) 2006; 31
Miyashita (bib57) 2007; 26
Murray (bib62) 2017; 114
Kononenko (bib42) 2012; 22
Taube (bib83) 2007; 30
Jacob (bib32) 2017; 20
Poort (bib69) 2015; 86
Villain (bib90) 2008; 28
Minoshima (bib56) 1997; 42
Vogt (bib91) 1983; 216
Attinger (bib4) 2017; 169
Cooper (bib14) 1999; 10
Bittner (bib6) 2015; 18
Funamizu (bib22) 2016; 19
Aronov (bib3) 2014; 84
Auger (bib5) 2012; 7
van Groen (bib87) 1992; 315
Pérez-Escobar (bib68) 2016; 5
Rigotti (bib71) 2013; 497
Xu (bib92) 2012; 492
Stringer (bib78) 2019; 571
Oh (bib65) 2014; 508
Jeffery (bib34) 1998; 37
Hardcastle (bib28) 2015; 86
Zhang (bib94) 2014; 345
Mante (bib50) 2013; 503
Saleem (bib74) 2018; 562
Ino (bib31) 2007; 43
Ji (bib36) 2007; 10
Muller (bib61) 1987; 7
Clancy (bib12) 2019; 22
Fiser (bib20) 2016; 19
Hafting (bib27) 2005; 436
Vann (bib88) 2009; 10
Vedder (bib89) 2017; 27
Lein (bib44) 2007; 445
Minderer (bib55) 2019; 102
Cho (bib11) 2001; 115
Pengas (bib67) 2010; 31
Larkum (bib43) 1999; 96
Morris (bib60) 1981; 12
Saleem (bib73) 2013; 16
Etienne (bib18) 1996; 199
Julian (bib38) 2018; 28
London (bib47) 2005; 28
Robertson (bib72) 2016; 26
Buzsáki (bib9) 2005; 15
Lewis (bib45) 2015; 4
Epstein (bib16) 2008; 12
Takahashi (bib81) 2016; 354
McNaughton (bib53) 2006; 7
Smith (bib75) 2012; 22
Gothard (bib24) 1996; 16
Montijn (bib59) 2014; 8
Burak (bib7) 2009; 5
Koay (bib41) 2019
Burgess (bib8) 2007; 17
Pakan (bib66) 2018; 24
Ranganathan (bib70) 2018; 21
Tolman (bib84) 1948; 55
Sugar (bib79) 2011; 5
Alexander (bib1) 2015; 18
Gauthier (bib23) 2018; 99
Valenstein (bib85) 1987; 110
Makino (bib49) 2015; 18
Harvey (bib29) 2009; 461
Miller (bib54) 2001; 24
Epstein (bib17) 2014; 369
Liu (bib46) 2014; 346
Harvey (bib30) 2012; 484
Cooper (bib13) 2001; 115
Ji (bib35) 2008; 5
McNaughton (bib52) 1991; 3
References_xml – volume: 14
  start-page: 180
  year: 2004
  ident: bib19
  article-title: Path integration in mammals
  publication-title: Hippocampus
  doi: 10.1002/hipo.10173
– volume: 28
  start-page: 6174
  year: 2008
  ident: bib90
  article-title: Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1392-08.2008
– volume: 216
  start-page: 192
  year: 1983
  ident: bib91
  article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices
  publication-title: The Journal of Comparative Neurology
  doi: 10.1002/cne.902160207
– volume: 445
  start-page: 168
  year: 2007
  ident: bib44
  article-title: Genome-wide atlas of gene expression in the adult mouse brain
  publication-title: Nature
  doi: 10.1038/nature05453
– volume: 42
  start-page: 225
  year: 2001
  ident: bib48
  article-title: The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings
  publication-title: Scandinavian Journal of Psychology
  doi: 10.1111/1467-9450.00233
– volume: 10
  start-page: 792
  year: 2009
  ident: bib88
  article-title: What does the retrosplenial cortex do?
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2733
– volume: 315
  start-page: 200
  year: 1992
  ident: bib87
  article-title: Connections of the retrosplenial dysgranular cortex in the rat
  publication-title: The Journal of Comparative Neurology
  doi: 10.1002/cne.903150207
– volume: 22
  start-page: 881
  year: 2012
  ident: bib42
  article-title: Presubiculum layer III conveys retrosplenial input to the medial entorhinal cortex
  publication-title: Hippocampus
  doi: 10.1002/hipo.20949
– volume: 84
  start-page: 442
  year: 2014
  ident: bib3
  article-title: Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.042
– volume: 24
  start-page: 167
  year: 2001
  ident: bib54
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.24.1.167
– volume: 18
  start-page: 1116
  year: 2015
  ident: bib49
  article-title: Learning enhances the relative impact of top-down processing in the visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4061
– volume: 16
  start-page: 8027
  year: 1996
  ident: bib25
  article-title: Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.16-24-08027.1996
– volume: 31
  start-page: 1826
  year: 2006
  ident: bib76
  article-title: Thoughts, behaviour, and brain dynamics during navigation in the real world
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.037
– volume: 4
  year: 2015
  ident: bib45
  article-title: Thalamic reticular nucleus induces fast and local modulation of arousal state
  publication-title: eLife
  doi: 10.7554/eLife.08760
– volume: 12
  start-page: 239
  year: 1981
  ident: bib60
  article-title: Spatial localization does not require the presence of local cues
  publication-title: Learning and Motivation
  doi: 10.1016/0023-9690(81)90020-5
– volume: 484
  start-page: 62
  year: 2012
  ident: bib30
  article-title: Choice-specific sequences in parietal cortex during a virtual-navigation decision task
  publication-title: Nature
  doi: 10.1038/nature10918
– volume: 17
  start-page: 801
  year: 2007
  ident: bib8
  article-title: An oscillatory interference model of grid cell firing
  publication-title: Hippocampus
  doi: 10.1002/hipo.20327
– volume: 10
  start-page: 625
  year: 1999
  ident: bib14
  article-title: Retrosplenial cortex inactivation selectively impairs navigation in darkness
  publication-title: NeuroReport
  doi: 10.1097/00001756-199902250-00033
– volume: 86
  start-page: 827
  year: 2015
  ident: bib28
  article-title: Environmental boundaries as an error correction mechanism for grid cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.03.039
– volume: 28
  start-page: 503
  year: 2005
  ident: bib47
  article-title: Dendritic computation
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.28.061604.135703
– volume: 354
  start-page: 1587
  year: 2016
  ident: bib81
  article-title: Active cortical dendrites modulate perception
  publication-title: Science
  doi: 10.1126/science.aah6066
– volume: 24
  start-page: 2521
  year: 2018
  ident: bib66
  article-title: The impact of visual cues, reward, and motor feedback on the representation of behaviorally relevant spatial locations in primary visual cortex
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2018.08.010
– volume: 44
  start-page: 2189
  year: 2006
  ident: bib80
  article-title: The functional neuroanatomy of autobiographical memory: a meta-analysis
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2006.05.023
– volume: 199
  start-page: 201
  year: 1996
  ident: bib18
  article-title: Path integration in mammals and its interaction with visual landmarks
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.199.1.201
– volume: 492
  start-page: 247
  year: 2012
  ident: bib92
  article-title: Nonlinear dendritic integration of sensory and motor input during an active sensing task
  publication-title: Nature
  doi: 10.1038/nature11601
– volume: 65
  start-page: 472
  year: 2010
  ident: bib64
  article-title: Modulation of visual responses by behavioral state in mouse visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.033
– volume: 115
  start-page: 1012
  year: 2001
  ident: bib13
  article-title: Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues
  publication-title: Behavioral Neuroscience
  doi: 10.1037/0735-7044.115.5.1012
– volume: 19
  start-page: 1658
  year: 2016
  ident: bib20
  article-title: Experience-dependent spatial expectations in mouse visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4385
– volume: 102
  start-page: 232
  year: 2019
  ident: bib55
  article-title: The spatial structure of neural encoding in mouse posterior cortex during navigation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.029
– volume: 10
  start-page: 436
  year: 1990
  ident: bib82
  article-title: Head-direction cells recorded from the postsubiculum in freely moving rats. II. effects of environmental manipulations
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.10-02-00436.1990
– volume: 18
  start-page: 1143
  year: 2015
  ident: bib1
  article-title: Retrosplenial cortex maps the conjunction of internal and external spaces
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4058
– volume: 369
  year: 2014
  ident: bib17
  article-title: Neural systems for landmark-based wayfinding in humans
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2012.0533
– volume: 99
  start-page: 179
  year: 2018
  ident: bib23
  article-title: A dedicated population for reward coding in the Hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.06.008
– volume: 5
  start-page: 197
  year: 2008
  ident: bib35
  article-title: High-speed, low-photodamage nonlinear imaging using passive pulse splitters
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1175
– volume: 5
  year: 2016
  ident: bib68
  article-title: Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex
  publication-title: eLife
  doi: 10.7554/eLife.16937
– volume: 110
  start-page: 1631
  year: 1987
  ident: bib85
  article-title: Retrosplenial amnesia
  publication-title: Brain
  doi: 10.1093/brain/110.6.1631
– volume: 461
  start-page: 941
  year: 2009
  ident: bib29
  article-title: Intracellular dynamics of hippocampal place cells during virtual navigation
  publication-title: Nature
  doi: 10.1038/nature08499
– volume: 7
  year: 2012
  ident: bib5
  article-title: Retrosplenial cortex codes for permanent landmarks
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0043620
– volume: 105
  start-page: 2989
  year: 2011
  ident: bib93
  article-title: Both visual and idiothetic cues contribute to head direction cell stability during navigation along complex routes
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.01041.2010
– volume: 21
  start-page: 1583
  year: 2018
  ident: bib70
  article-title: Active dendritic integration and mixed neocortical network representations during an adaptive sensing behavior
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0254-6
– volume: 497
  start-page: 585
  year: 2013
  ident: bib71
  article-title: The importance of mixed selectivity in complex cognitive tasks
  publication-title: Nature
  doi: 10.1038/nature12160
– volume: 272
  start-page: 303
  year: 2014
  ident: bib15
  article-title: The retrosplenial cortex is necessary for path integration in the dark
  publication-title: Behavioural Brain Research
  doi: 10.1016/j.bbr.2014.07.009
– volume: 8
  year: 2017
  ident: bib51
  article-title: Sparse orthogonal population representation of spatial context in the retrosplenial cortex
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-00180-9
– volume: 10
  start-page: 100
  year: 2007
  ident: bib36
  article-title: Coordinated memory replay in the visual cortex and Hippocampus during sleep
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1825
– volume: 7
  start-page: 663
  year: 2006
  ident: bib53
  article-title: Path integration and the neural basis of the 'cognitive map'
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1932
– volume: 562
  start-page: 124
  year: 2018
  ident: bib74
  article-title: Coherent encoding of subjective spatial position in visual cortex and Hippocampus
  publication-title: Nature
  doi: 10.1038/s41586-018-0516-1
– volume: 18
  start-page: 1133
  year: 2015
  ident: bib6
  article-title: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4062
– volume: 102
  start-page: 782
  year: 2014
  ident: bib33
  article-title: An augmented Two-Layer model captures nonlinear analog spatial integration effects in pyramidal neuron dendrites
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2014.2312671
– volume: 20
  start-page: 173
  year: 2017
  ident: bib32
  article-title: An independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4465
– volume: 571
  start-page: 361
  year: 2019
  ident: bib78
  article-title: High-dimensional geometry of population responses in visual cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1346-5
– year: 2001
  ident: bib37
  article-title: SciPy: open source scientific tools for Python
– volume: 22
  start-page: 778
  year: 2019
  ident: bib12
  article-title: Locomotion-dependent remapping of distributed cortical networks
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-019-0357-8
– volume: 8
  year: 2014
  ident: bib59
  article-title: Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2014.00058
– volume: 15
  start-page: 827
  year: 2005
  ident: bib9
  article-title: Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory
  publication-title: Hippocampus
  doi: 10.1002/hipo.20113
– volume: 12
  start-page: 388
  year: 2008
  ident: bib16
  article-title: Parahippocampal and retrosplenial contributions to human spatial navigation
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2008.07.004
– volume: 80
  start-page: 425
  year: 1998
  ident: bib40
  article-title: Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1998.80.1.425
– volume: 30
  start-page: 181
  year: 2007
  ident: bib83
  article-title: The head direction signal: origins and sensory-motor integration
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev.neuro.29.051605.112854
– volume: 27
  start-page: 3713
  year: 2017
  ident: bib89
  article-title: Retrosplenial cortical neurons encode navigational cues, trajectories and reward locations during goal directed navigation
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhw192
– volume: 5
  year: 2011
  ident: bib58
  article-title: Sensory feedback, error correction, and remapping in a multiple oscillator model of place-cell activity
  publication-title: Frontiers in Computational Neuroscience
  doi: 10.3389/fncom.2011.00039
– volume: 86
  start-page: 1478
  year: 2015
  ident: bib69
  article-title: Learning enhances sensory and multiple Non-sensory representations in primary visual cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.037
– volume: 28
  start-page: R1059
  year: 2018
  ident: bib38
  article-title: The neurocognitive basis of spatial reorientation
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.04.057
– volume: 15
  start-page: 1445
  year: 2012
  ident: bib86
  article-title: Path integration: how the head direction signal maintains and corrects spatial orientation
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3215
– volume: 115
  start-page: 3
  year: 2001
  ident: bib11
  article-title: Head direction, place, and movement correlates for cells in the rat retrosplenial cortex
  publication-title: Behavioral Neuroscience
  doi: 10.1037/0735-7044.115.1.3
– volume: 43
  start-page: 248
  year: 2007
  ident: bib31
  article-title: Directional disorientation following left retrosplenial hemorrhage: a case report with fMRI studies
  publication-title: Cortex
  doi: 10.1016/S0010-9452(08)70479-9
– volume: 22
  start-page: 1121
  year: 2012
  ident: bib75
  article-title: Complimentary roles of the Hippocampus and retrosplenial cortex in behavioral context discrimination
  publication-title: Hippocampus
  doi: 10.1002/hipo.20958
– volume: 7
  start-page: 1951
  year: 1987
  ident: bib61
  article-title: The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.07-07-01951.1987
– volume: 55
  start-page: 189
  year: 1948
  ident: bib84
  article-title: Cognitive maps in rats and men
  publication-title: Psychological Review
  doi: 10.1037/h0061626
– volume: 26
  start-page: 2463
  year: 2016
  ident: bib72
  article-title: Neural representations integrate the current field of view with the remembered 360° panorama in Scene-Selective cortex
  publication-title: Current Biology
  doi: 10.1016/j.cub.2016.07.002
– volume: 436
  start-page: 801
  year: 2005
  ident: bib27
  article-title: Microstructure of a spatial map in the entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature03721
– volume: 9
  year: 2014
  ident: bib26
  article-title: Procedures for behavioral experiments in head-fixed mice
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0088678
– volume: 26
  start-page: 4266
  year: 2006
  ident: bib21
  article-title: A spin glass model of path integration in rat medial entorhinal cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4353-05.2006
– volume: 37
  start-page: 677
  year: 1998
  ident: bib34
  article-title: Learning of landmark stability and instability by hippocampal place cells
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(98)00053-7
– volume: 21
  start-page: 1096
  year: 2018
  ident: bib10
  article-title: Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0189-y
– volume: 14
  start-page: 1330
  year: 2011
  ident: bib77
  article-title: Grid cells generate an analog error-correcting code for singularly precise neural computation
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2901
– volume: 16
  start-page: 823
  year: 1996
  ident: bib24
  article-title: Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.16-02-00823.1996
– volume: 169
  start-page: 1291
  year: 2017
  ident: bib4
  article-title: Visuomotor coupling shapes the functional development of mouse visual cortex
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.023
– volume: 5
  year: 2011
  ident: bib79
  article-title: The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat. an interactive connectome
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2011.00007
– volume: 3
  start-page: 190
  year: 1991
  ident: bib52
  article-title: “Dead Reckoning,” Landmark Learning, and the Sense of Direction: A Neurophysiological and Computational Hypothesis
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.1991.3.2.190
– volume: 15
  start-page: 1648
  year: 1995
  ident: bib39
  article-title: Place cells, head direction cells, and the learning of landmark stability
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.15-03-01648.1995
– volume: 96
  start-page: 14600
  year: 1999
  ident: bib43
  article-title: Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials
  publication-title: PNAS
  doi: 10.1073/pnas.96.25.14600
– volume: 345
  start-page: 660
  year: 2014
  ident: bib94
  article-title: Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing
  publication-title: Science
  doi: 10.1126/science.1254126
– volume: 26
  start-page: 1193
  year: 2007
  ident: bib57
  article-title: GABAergic projections from the Hippocampus to the retrosplenial cortex in the rat
  publication-title: European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2007.05745.x
– volume: 27
  start-page: 1551
  year: 2017
  ident: bib2
  article-title: Spatially periodic activation patterns of retrosplenial cortex encode route Sub-spaces and distance traveled
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.04.036
– volume: 5
  year: 2009
  ident: bib7
  article-title: Accurate path integration in continuous attractor network models of grid cells
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000291
– volume: 114
  start-page: 394
  year: 2017
  ident: bib62
  article-title: Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1619449114
– volume: 346
  start-page: 458
  year: 2014
  ident: bib46
  article-title: Medial prefrontal activity during delay period contributes to learning of a working memory task
  publication-title: Science
  doi: 10.1126/science.1256573
– volume: 31
  start-page: 25
  year: 2010
  ident: bib67
  article-title: Focal posterior cingulate atrophy in incipient alzheimer's disease
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2008.03.014
– volume: 42
  start-page: 85
  year: 1997
  ident: bib56
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Annals of Neurology
  doi: 10.1002/ana.410420114
– volume: 503
  start-page: 78
  year: 2013
  ident: bib50
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 16
  start-page: 1864
  year: 2013
  ident: bib73
  article-title: Integration of visual motion and locomotion in mouse visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3567
– volume: 4
  year: 2015
  ident: bib63
  article-title: Optogenetic feedback control of neural activity
  publication-title: eLife
  doi: 10.7554/eLife.07192
– volume: 19
  start-page: 1682
  year: 2016
  ident: bib22
  article-title: Neural substrate of dynamic bayesian inference in the cerebral cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4390
– volume: 508
  start-page: 207
  year: 2014
  ident: bib65
  article-title: A mesoscale connectome of the mouse brain
  publication-title: Nature
  doi: 10.1038/nature13186
– volume-title: bioRxiv
  year: 2019
  ident: bib41
  article-title: Neural correlates of cognition in primary visual versus neighboring posterior cortices during visual Evidence-Accumulation-based navigation
  doi: 10.1101/568766
SSID ssj0000748819
Score 2.5275807
Snippet The process by which visual information is incorporated into the brain’s spatial framework to represent landmarks is poorly understood. Studies in humans and...
The process by which visual information is incorporated into the brain's spatial framework to represent landmarks is poorly understood. Studies in humans and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Axons
Behavior
Behavior, Animal
Feedback
Female
Gyrus Cinguli - physiology
Information processing
Integration
Male
Mice
Mice, Inbred C57BL
Neuroimaging
Neuroscience
population imaging
Reinforcement
retrosplenial cortex
Sensorimotor integration
spatial navigation
Spatial Processing - physiology
Visual cortex
Visual Perception - physiology
Visual stimuli
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yFHwRv61OqeCTULe2adP4pqL4MIaIyt5KkiZYnN3YF_rfe5d2o5OBL76V5gqXu-Tud_Q-CLlQYPQzgdU4YAg8yn3l8QyeQhUy4cexNraR9luHdbtJr8efaqO-MCesbA9cCq4VAD4ByG18FgJyp0K0JZwblfFYtcFZZ2h9AfXUgilrgxkcTJ-XBXkMXGZLd3KjrwAe4HD3mguynfpXwcvfWZI1t_OwTbYqvOjelHzukDVd7JKNcoLk9x65fraZrFUBUeEOjDvLx1P4AjMWP8XoY-zmhTvSE2Bl2MfMur6rMMH2a5-8Pty_3D161TgET0XUn3i-AmfOtAmlbGeGR0wmSUwlF-DnkkAqGXJjYg14RmcRQqeEiRg0RGUQyASWD0ijGBT6iLiZDpWm3LBQc8q4AWHG2FiPCnDnmlGHXM4llKqqVziOrOinEDOgOFMrztSK0wGNz4mHZYuM1WS3KOoFCfa1ti9A22ml7fQvbTukOVdUWl22cQqogwIw8tvcIeeLZbgm-O9DFHowRRoMjCKGezss9brgJATYgxW3DmFLGl9idXmlyN9tK26GiI4Gx_-xtxOyGWAwb5MFm6QxGU31KVlXs0k-Hp3Z8_0DUQMAOA
  priority: 102
  providerName: Directory of Open Access Journals
Title Representation of visual landmarks in retrosplenial cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/32154781
https://www.proquest.com/docview/2384741109
https://www.proquest.com/docview/2375855774
https://pubmed.ncbi.nlm.nih.gov/PMC7064342
https://doaj.org/article/2774605f1731484aa0b053cd96c0600d
Volume 9
WOSCitedRecordID wos000519733900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xFiRexucgbFRB4gkprEncOOZlYmgTSFsVTYDKUxQ7NkSUpCTtNP577hy3rGjihRcrih3pnLPvfnc-3wG8VCj0y4Ju46AgCJgIVSBKfIpVzIswSbSxibQ_n_HpNJ3NROYcbp0Lq1zLRCuoy0aRj_wQVQtD7ReOxdHiZ0BVo-h01ZXQ2IEhZSpjAxgen0yzi42XBRVkijqvv5jHUXUe6rPK6NcIE6jI-zVVZDP23wQz_46WvKZ-Tu_9L-H3YdcBT_9tv1IewC1dP4Q7fSnKX4_gzYUNiXU3kWq_Mf5l1a3wCwp9_FG03zu_qv1WL3EuizmF6M19RZG6V4_h0-nJx3fvA1dXIVATFi6DUCEq4NrEUo5LIyZcpmnCpChQYaaRVDIWxiQagZEuJ4TBUl4kyGomo0im2L0Hg7qp9VPwSx0rzYThsRaMCyMSlVCGPlYgLtCcefBq_Ytz5ZKOU-2LeY7GB_Ejt_zILT88XDrrwYs-18bNw46JV5shlCDbvmjar7nbb3mEsBYtNRPyGA0-VhRjieJGlUjgGDFe6cHBmlu527Vd_odVHrzYdON-o0OUotbNisaQhTXhNLcn_cLYUBIjfqKrux7wrSWzRep2T119szm9OUFDFj37N1n7cDcie9_GEx7AYNmu9HO4rS6XVdeOYIfPuG3TkdsII-tjwPY8yqjl2A6zD-fZl9-l9xd-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3o9AgSDBBSl0k3jjGAkhXlWrLiuESrU3Ezt2iViSJdkt9E_xG5lxkqWLKm49cItiJxpnxjPfOPMAeKxR6ecZZeOgIgiYCHUgcryKdcyzMEmMdYW0D0Z8PE4nE_FhDX71uTAUVtnrRKeo80rTGfkWmhaG1i8ciJez7wF1jaK_q30LjVYs9szxD3TZmhe7b5G_T6Jo-93-m52g6yoQ6CEL50Go0SZyY2OlBrkVQ67SNGFKZGgu0khpFQtrE4OwwORDQiApzxJcKFNRpFIcxveeg_OoxzmFkPEJX57poDlO0cK2aYAcDfWWGRXWPENQQi3lTxg-1x_gNFD7d2zmCWO3feV_-0xX4XIHq_1X7T64BmumvA4X20abxzfg-UcX8NvlWZV-Zf2jolngExTY-S2rvzZ-Ufq1meO3m00pAHHqa4pD_nkTPp0J4bdgvaxKcwf83MTaMGF5bATjwopEJ1R_kGWIegxnHjztWSp1V1KdOntMJbpWxH_p-C8d_z3cGP3kWVtJ5PRpr0k2llOo_Le7UdWHstMmMkLQjn6oDXmM7izLsoFCZapzJHCACDb3YLOXDtnppEb-EQ0PHi2HUZvQL6KsNNWC5pD_OOS0ttutIC4piREdUmKyB3xFRFdIXR0piy-uYjkn4Muiu_8m6yFs7Oy_H8nR7njvHlyK6GTDRU5uwvq8Xpj7cEEfzYumfuC2nQ-fz1qAfwPJUW9U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db5RAEJ_Uqo0vfn-gVTHRFxO8AxaWNTFGrRebnpeL0aZvuCy7lXjCCXfV_mv-dc4scPZM41sffCPsQgb47cxvlvkAeKxQ6eeSsnFQEXhM-MoTOR6FKuTSj2NtbCHt_TGfTJKDAzHdgF99LgyFVfY60SrqvFK0Rz5A08LQ-vlDMTBdWMR0Z_Ry_t2jDlL0p7Vvp9FCZE8f_0D3rXmxu4Pf-kkQjN5-fPPO6zoMeCpi_sLzFdpHrk2YZcPciIhnSRKzTEg0HUmQqSwUxsQaKYLOI2IjCZcxPjTLgiBLcBjvew7OcxZFtLreB9PV_g6a5gStbZsSyNFoD_S4MPoZEhRqL3_CCNpeAacR3L_jNE8YvtGV__mVXYXLHd12X7Xr4xps6PI6XGwbcB7fgOcfbCBwl39VupVxj4pmiVdQwOc3WX9t3KJ0a73A9zifUWDizFUUn_zzJnw6E8FvwWZZlfoOuLkOlWbC8FALxoURsYqpLiGTyIY0Zw487T9vqrpS69TxY5aiy0VYSC0WUosFBxdMP3neVhg5fdprwslqCpUFtyeq-jDttEwaIJlH_9T4PEQ3l0k5zFDJqhwFHCKzzR3Y7pGSdrqqSf_AxIFHq2HUMvTrSJa6WtIc8isjTs92uwXlSpIQWSMlLDvA1-C6Jur6SFl8sZXMORFiFtz9t1gPYQtxm453J3v34FJAGx42oHIbNhf1Ut-HC-poUTT1A7sCXfh81vj9DVDueCE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+visual+landmarks+in+retrosplenial+cortex&rft.jtitle=eLife&rft.au=Fischer%2C+Lukas+F&rft.au=Mojica+Soto-Albors%2C+Raul&rft.au=Buck%2C+Friederike&rft.au=Harnett%2C+Mark+T&rft.date=2020-03-10&rft.eissn=2050-084X&rft.volume=9&rft_id=info:doi/10.7554%2FeLife.51458&rft_id=info%3Apmid%2F32154781&rft.externalDocID=32154781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon