A hybrid particle swarm optimization algorithm for solving engineering problem

To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 14; H. 1; S. 8357 - 30
Hauptverfasser: Qiao, Jinwei, Wang, Guangyuan, Yang, Zhi, Luo, Xiaochuan, Chen, Jun, Li, Kan, Liu, Pengbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 10.04.2024
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
AbstractList To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f1-f13) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
Abstract To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function (f1-f13) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.
ArticleNumber 8357
Author Li, Kan
Chen, Jun
Qiao, Jinwei
Wang, Guangyuan
Liu, Pengbo
Luo, Xiaochuan
Yang, Zhi
Author_xml – sequence: 1
  givenname: Jinwei
  surname: Qiao
  fullname: Qiao, Jinwei
  organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research
– sequence: 2
  givenname: Guangyuan
  surname: Wang
  fullname: Wang, Guangyuan
  organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research
– sequence: 3
  givenname: Zhi
  surname: Yang
  fullname: Yang, Zhi
  email: yangzhi@qlu.edu.cn
  organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research
– sequence: 4
  givenname: Xiaochuan
  surname: Luo
  fullname: Luo, Xiaochuan
  organization: School of Information Science and Engineering, Northeastern University
– sequence: 5
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research
– sequence: 6
  givenname: Kan
  surname: Li
  fullname: Li, Kan
  organization: Fushun Supervision Inspection Institute for Special Equipment
– sequence: 7
  givenname: Pengbo
  surname: Liu
  fullname: Liu, Pengbo
  organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38594511$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk9vFSEcJKbG1tov4MFs4sXLKvCDLpxM0_inSaMXPRPYhX287MIK-2rqp5d9-6xtD-UCgZnJ_Jh5iY5CDBah1wS_JxjEh8wIl6LGlNVcYmA1fYZOKGa8pkDp0b3zMTrLeYvL4lQyIl-gYxBcMk7ICfp2UW1uTfJdNek0-3awVf6t01jFafaj_6NnH0Olhz4mP2_GysVU5Tjc-NBXNvQ-WJuW85SiGez4Cj13esj27LCfop-fP_24_Fpff_9ydXlxXbeckbkmQI0lrnGy64QQ3OoGdGu1YZ3TWGDDKGkZl53jRkjQkjuQTSPAYakNbeAUXa26XdRbNSU_6nSrovZqfxFTrw7jqK6RxgCnmgvDwDl5zlsGIKSj1AJmRevjqjXtzGi71oY56eGB6MOX4DeqjzeKEGg4xrQovDsopPhrZ_OsRp9bOww62LjLCjBwzkpIi_G3j6DbuEuh_NWCYuK8TA0F9ea-pTsv_3IrALoC2hRzTtbdQQhWSz_U2g9V-qH2_VCLTfGI1Pp5H3AZyw9PU2Gl5mmJ26b_tp9g_QWme88A
CitedBy_id crossref_primary_10_1007_s00344_024_11542_1
crossref_primary_10_1038_s41598_025_94546_5
crossref_primary_10_3390_en18184946
crossref_primary_10_1371_journal_pone_0326173
crossref_primary_10_17073_2072_1633_2025_2_1420
crossref_primary_10_1177_20552076251361603
crossref_primary_10_1016_j_enconman_2024_118844
crossref_primary_10_1007_s10661_024_13390_8
crossref_primary_10_1007_s11831_025_10388_4
crossref_primary_10_1007_s10586_024_04750_7
crossref_primary_10_1038_s41598_024_78761_0
crossref_primary_10_1016_j_fuel_2025_136491
crossref_primary_10_1016_j_ijthermalsci_2024_109669
crossref_primary_10_1109_ACCESS_2025_3558716
crossref_primary_10_3390_math12223464
crossref_primary_10_1038_s41598_024_80923_z
Cites_doi 10.1115/1.2919393
10.3390/app13010564
10.1016/j.eswa.2022.116631
10.1016/j.knosys.2019.105190
10.1016/j.egyr.2022.05.088
10.3390/app122211550
10.1016/S0166-3615(99)00046-9
10.1007/s00500-021-05939-3
10.1016/j.ijleo.2022.170085
10.1016/j.solener.2018.10.050
10.1016/j.knosys.2017.10.011
10.1007/s00500-017-2940-9
10.1109/4235.771163
10.1016/j.asoc.2009.08.031
10.1016/j.cnsns.2012.06.009
10.1016/j.advengsoft.2016.01.008
10.1007/s10489-020-01893-z
10.1016/j.yofte.2021.102559
10.1016/j.asoc.2011.08.040
10.1016/j.ress.2018.02.002
10.1007/s42235-023-00433-y
10.1016/j.future.2019.02.028
10.1016/j.csite.2022.102500
10.1016/j.autcon.2021.103722
10.1016/j.eswa.2011.07.089
10.1016/j.jocs.2023.102201
10.1016/j.asoc.2017.11.012
10.3390/math9111211
10.1007/s10489-022-03269-x
10.1007/s11831-023-09928-7
10.1109/4235.585893
10.1016/j.neucom.2015.01.110
10.1007/s11831-021-09694-4
10.1016/j.eswa.2021.114952
10.1016/j.juro.2015.09.090
10.3390/math10234555
10.3390/s20010006
10.1016/j.advengsoft.2013.12.007
10.1016/j.engappai.2020.103479
10.1016/j.swevo.2011.02.002
10.1109/ICNN.1995.488968
10.1145/2001576.2001787
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-59034-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 30
ExternalDocumentID oai_doaj_org_article_d79bb352a58b43ff965c43389f22e304
PMC11375002
38594511
10_1038_s41598_024_59034_2
Genre Journal Article
GrantInformation_xml – fundername: Key R&D plan of Shandong Province, China
  grantid: (2021CXGC010207)
– fundername: First batch of talent research projects of Qilu University of Technology in 2023
  grantid: (2023RCKY116)
– fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province
  grantid: (2022TSGC2051); (2022TSGC2051); ( 2023TSGC0024)
– fundername: Young Innovative Talents Introduction & Cultivation Program for Colleges and Universities of Shandong Province ( Granted by Department of Education of Shandong Province, Sub-Title: Innovative Research Team of High Performance Integrated Device).
– fundername: Introduction of urgently needed talent projects in Key Supported Regions of Shandong Province
– fundername: LiaoNing Revitalization Talents Program (XLYC2002041)
– fundername: Key Projects of Natural Science Foundation of Shandong Province
  grantid: (ZR2020ME116); (ZR2020ME116)
– fundername: Key R&D plan of Shandong Province, China,
  grantid: (2023CXGC01020)
– fundername: National Key R&D Program of China
  grantid: (2019YFB1705002)
– fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province
  grantid: (2022TSGC2051)
– fundername: Key Projects of Natural Science Foundation of Shandong Province
  grantid: (ZR2020ME116)
– fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province
  grantid: ( 2023TSGC0024)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-132be1f7f9dd8885ea73aceab4dfa080b421c459df5b893a95f397783f09ab273
IEDL.DBID M2P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199820300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:28 EDT 2025
Tue Nov 04 02:05:01 EST 2025
Wed Oct 01 14:15:24 EDT 2025
Tue Oct 07 07:36:46 EDT 2025
Mon Jul 21 05:59:05 EDT 2025
Sat Nov 29 01:58:50 EST 2025
Tue Nov 18 21:34:50 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Iterative mapping
Elite opposition-based learning
Particle swarm optimization
Convergence analysis
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-132be1f7f9dd8885ea73aceab4dfa080b421c459df5b893a95f397783f09ab273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3034864593?pq-origsite=%requestingapplication%
PMID 38594511
PQID 3034864593
PQPubID 2041939
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_d79bb352a58b43ff965c43389f22e304
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11375002
proquest_miscellaneous_3035540347
proquest_journals_3034864593
pubmed_primary_38594511
crossref_primary_10_1038_s41598_024_59034_2
crossref_citationtrail_10_1038_s41598_024_59034_2
springer_journals_10_1038_s41598_024_59034_2
PublicationCentury 2000
PublicationDate 2024-04-10
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Niu, Xiao (CR34) 2012; 12
Brajević, Stanimirović, Li (CR11) 2022; 10
Sun, Xu, Zhang (CR21) 2021; 2021
Khan, Cao, Brajevic (CR10) 2022; 197
Hashim (CR40) 2021; 51
Abed-Alguni, Paul, Hammad (CR12) 2022; 52
Brajević (CR9) 2021; 9
CR18
Gandomi (CR32) 2013; 18
Yeh (CR17) 2019; 192
Feng (CR24) 2021; 127
Mirjalili, Lewis (CR36) 2016; 95
Coello (CR43) 2000; 41
Sun (CR3) 2022; 40
Gad (CR23) 2022; 29
Mirjalili, Mirjalili, Lewis (CR39) 2014; 69
Mukhopadhyay, Banerjee (CR19) 2012; 39
Zhou, Wang, Luo (CR33) 2016; 188
Abed-alguni, AL-Jarah (CR16) 2024; 75
Bao (CR5) 2022; 2022
Wolpert, Macready (CR31) 1997; 1
Kannan, Kramer (CR44) 1994; 116
Xiong (CR35) 2018; 176
CR6
Bai (CR26) 2021; 177
Alsaidy, Abbood, Sahib (CR27) 2022; 34
Liu, Cai, Wang (CR28) 2010; 10
Li (CR2) 2022; 8
Deng (CR29) 2019; 23
Bartsch (CR4) 2016; 195
Abed-alguni, Alawad, Barhoush (CR8) 2021; 25
Nadimi-Shahraki, Zamani, Asghari Varzaneh (CR14) 2023; 30
Derrac, García, Molina (CR45) 2011; 1
Sami (CR1) 2022; 271
Lin, Zhu, Li (CR7) 2018; 62
Chen, Zhou, Liu (CR25) 2018; 139
Nadimi-Shahraki, Asghari Varzaneh, Zamani (CR13) 2022; 13
Duan (CR20) 2021; 64
Fatahi, Nadimi-Shahraki, Zamani (CR15) 2024; 21
Huang, Zhen (CR30) 2019; 20
Liu (CR22) 2022; 12
Pant, Zaheer, Garcia-Hernandez (CR42) 2020; 90
Yao, Liu, Lin (CR37) 1999; 3
Heidari (CR38) 2019; 97
Faramarzi (CR41) 2020; 191
W Deng (59034_CR29) 2019; 23
Ke Chen (59034_CR25) 2018; 139
SA Alsaidy (59034_CR27) 2022; 34
AA Heidari (59034_CR38) 2019; 97
DH Wolpert (59034_CR31) 1997; 1
G Bartsch (59034_CR4) 2016; 195
AT Khan (59034_CR10) 2022; 197
FA Hashim (59034_CR40) 2021; 51
W-C Yeh (59034_CR17) 2019; 192
F Sami (59034_CR1) 2022; 271
F Sun (59034_CR21) 2021; 2021
MH Nadimi-Shahraki (59034_CR14) 2023; 30
CAC Coello (59034_CR43) 2000; 41
AG Gad (59034_CR23) 2022; 29
AH Gandomi (59034_CR32) 2013; 18
B Sun (59034_CR3) 2022; 40
X Yao (59034_CR37) 1999; 3
59034_CR6
S Mirjalili (59034_CR39) 2014; 69
A Faramarzi (59034_CR41) 2020; 191
Z Bao (59034_CR5) 2022; 2022
B Bai (59034_CR26) 2021; 177
BH Abed-alguni (59034_CR16) 2024; 75
H Feng (59034_CR24) 2021; 127
S Mirjalili (59034_CR36) 2016; 95
BK Kannan (59034_CR44) 1994; 116
G Li (59034_CR34) 2012; 12
MH Nadimi-Shahraki (59034_CR13) 2022; 13
Y Zhou (59034_CR33) 2016; 188
BH Abed-alguni (59034_CR8) 2021; 25
X Li (59034_CR2) 2022; 8
I Brajević (59034_CR11) 2022; 10
M Liu (59034_CR22) 2022; 12
A Fatahi (59034_CR15) 2024; 21
S Mukhopadhyay (59034_CR19) 2012; 39
L Duan (59034_CR20) 2021; 64
J Derrac (59034_CR45) 2011; 1
G Xiong (59034_CR35) 2018; 176
Q Lin (59034_CR7) 2018; 62
59034_CR18
BH Abed-Alguni (59034_CR12) 2022; 52
M Pant (59034_CR42) 2020; 90
H Liu (59034_CR28) 2010; 10
I Brajević (59034_CR9) 2021; 9
M Huang (59034_CR30) 2019; 20
39438545 - Sci Rep. 2024 Oct 22;14(1):24888. doi: 10.1038/s41598-024-75852-w
References_xml – volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: CR44
  article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 13
  start-page: 564
  issue: 1
  year: 2022
  ident: CR13
  article-title: Binary starling murmuration optimizer algorithm to select effective features from medical data
  publication-title: Appl. Sci.
  doi: 10.3390/app13010564
– volume: 34
  start-page: 2370
  issue: 6
  year: 2022
  end-page: 2382
  ident: CR27
  article-title: Heuristic initialization of PSO task scheduling algorithm in cloud computing
  publication-title: J. King Saud Univ. –Comput. Inf. Sci.
– volume: 197
  start-page: 116631
  year: 2022
  ident: CR10
  article-title: Non-linear activated beetle antennae search: A novel technique for non-convex tax-aware portfolio optimization problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116631
– ident: CR18
– volume: 191
  start-page: 105190
  year: 2020
  ident: CR41
  article-title: Equilibrium optimizer: A novel optimization algorithm
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 9
  ident: CR5
  article-title: Secure clustering strategy based on improved particle swarm optimization algorithm in internet of things
  publication-title: Comput. Intell. Neurosci.
– volume: 8
  start-page: 437
  year: 2022
  end-page: 446
  ident: CR2
  article-title: Prediction of electricity consumption during epidemic period based on improved particle swarm optimization algorithm
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.05.088
– volume: 12
  start-page: 11550
  issue: 22
  year: 2022
  ident: CR22
  article-title: An improved particle-swarm-optimization algorithm for a prediction model of steel slab temperature
  publication-title: Appl. Sci.
  doi: 10.3390/app122211550
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  end-page: 127
  ident: CR43
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 25
  start-page: 10167
  issue: 15
  year: 2021
  end-page: 10180
  ident: CR8
  article-title: Exploratory cuckoo search for solving single-objective optimization problems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05939-3
– ident: CR6
– volume: 271
  start-page: 170085
  year: 2022
  ident: CR1
  article-title: Optimize electric automation control using artificial intelligence (AI)
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170085
– volume: 176
  start-page: 742
  year: 2018
  end-page: 761
  ident: CR35
  article-title: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.10.050
– volume: 139
  start-page: 23
  year: 2018
  end-page: 40
  ident: CR25
  article-title: Chaotic dynamic weight particle swarm optimization for numerical function optimization
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.011
– volume: 23
  start-page: 2445
  year: 2019
  end-page: 2462
  ident: CR29
  article-title: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2940-9
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  end-page: 102
  ident: CR37
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  end-page: 640
  ident: CR28
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  end-page: 98
  ident: CR32
  article-title: Firefly algorithm with chaos
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.06.009
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: CR36
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 51
  start-page: 1531
  year: 2021
  end-page: 1551
  ident: CR40
  article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR21
  article-title: Optimization design of wind turbine blade based on an improved particle swarm optimization algorithm combined with non-gaussian distribution
  publication-title: Adv. Civ. Eng.
– volume: 64
  start-page: 102559
  year: 2021
  ident: CR20
  article-title: Improved particle swarm optimization algorithm for enhanced coupling of coaxial optical communication laser
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2021.102559
– volume: 12
  start-page: 320
  issue: 1
  year: 2012
  end-page: 332
  ident: CR34
  article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.040
– volume: 192
  start-page: 106060
  year: 2019
  ident: CR17
  article-title: A novel boundary swarm optimization method for reliability redundancy allocation problems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.002
– volume: 21
  start-page: 426
  issue: 1
  year: 2024
  end-page: 446
  ident: CR15
  article-title: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: A COVID-19 case study
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-023-00433-y
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR38
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 40
  start-page: 102500
  year: 2022
  ident: CR3
  article-title: Adaptive modified ant colony optimization algorithm for global temperature perception of the underground tunnel fire
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102500
– volume: 127
  start-page: 103722
  year: 2021
  ident: CR24
  article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103722
– volume: 39
  start-page: 917
  issue: 1
  year: 2012
  end-page: 924
  ident: CR19
  article-title: Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.089
– volume: 75
  start-page: 102201
  year: 2024
  ident: CR16
  article-title: IBJA: An improved binary DJaya algorithm for feature selection
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2023.102201
– volume: 62
  start-page: 702
  year: 2018
  end-page: 735
  ident: CR7
  article-title: A novel artificial bee colony algorithm with local and global information interaction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.012
– volume: 9
  start-page: 1211
  issue: 11
  year: 2021
  ident: CR9
  article-title: A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems
  publication-title: Mathematics
  doi: 10.3390/math9111211
– volume: 52
  start-page: 17217
  issue: 15
  year: 2022
  end-page: 17236
  ident: CR12
  article-title: Improved Salp swarm algorithm for solving single-objective continuous optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03269-x
– volume: 30
  start-page: 4113
  issue: 7
  year: 2023
  end-page: 4159
  ident: CR14
  article-title: A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations
  publication-title: Archiv. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09928-7
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  ident: CR31
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 188
  start-page: 294
  year: 2016
  end-page: 310
  ident: CR33
  article-title: Elite opposition-based flower pollination algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.110
– volume: 29
  start-page: 2531
  issue: 5
  year: 2022
  end-page: 2561
  ident: CR23
  article-title: Particle swarm optimization algorithm and its applications: a systematic review
  publication-title: Archiv. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09694-4
– volume: 177
  start-page: 114952
  year: 2021
  ident: CR26
  article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114952
– volume: 195
  start-page: 493
  issue: 2
  year: 2016
  end-page: 498
  ident: CR4
  article-title: Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.09.090
– volume: 10
  start-page: 4555
  issue: 23
  year: 2022
  ident: CR11
  article-title: Hybrid sine cosine algorithm for solving engineering optimization problems
  publication-title: Mathematics
  doi: 10.3390/math10234555
– volume: 20
  start-page: 6
  issue: 1
  year: 2019
  ident: CR30
  article-title: Research on mechanical fault prediction method based on multifeature fusion of vibration sensing data
  publication-title: Sensors
  doi: 10.3390/s20010006
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: CR39
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 90
  start-page: 103479
  year: 2020
  ident: CR42
  article-title: Differential evolution: A review of more than two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103479
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  end-page: 18
  ident: CR45
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 25
  start-page: 10167
  issue: 15
  year: 2021
  ident: 59034_CR8
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05939-3
– volume: 13
  start-page: 564
  issue: 1
  year: 2022
  ident: 59034_CR13
  publication-title: Appl. Sci.
  doi: 10.3390/app13010564
– volume: 64
  start-page: 102559
  year: 2021
  ident: 59034_CR20
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2021.102559
– volume: 188
  start-page: 294
  year: 2016
  ident: 59034_CR33
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.110
– volume: 23
  start-page: 2445
  year: 2019
  ident: 59034_CR29
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2940-9
– volume: 191
  start-page: 105190
  year: 2020
  ident: 59034_CR41
  publication-title: Knowl. -Based Syst.
  doi: 10.1016/j.knosys.2019.105190
– volume: 197
  start-page: 116631
  year: 2022
  ident: 59034_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116631
– volume: 10
  start-page: 4555
  issue: 23
  year: 2022
  ident: 59034_CR11
  publication-title: Mathematics
  doi: 10.3390/math10234555
– volume: 39
  start-page: 917
  issue: 1
  year: 2012
  ident: 59034_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.089
– volume: 62
  start-page: 702
  year: 2018
  ident: 59034_CR7
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.012
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 59034_CR31
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 8
  start-page: 437
  year: 2022
  ident: 59034_CR2
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.05.088
– volume: 20
  start-page: 6
  issue: 1
  year: 2019
  ident: 59034_CR30
  publication-title: Sensors
  doi: 10.3390/s20010006
– volume: 195
  start-page: 493
  issue: 2
  year: 2016
  ident: 59034_CR4
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2015.09.090
– volume: 97
  start-page: 849
  year: 2019
  ident: 59034_CR38
  publication-title: Fut. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 30
  start-page: 4113
  issue: 7
  year: 2023
  ident: 59034_CR14
  publication-title: Archiv. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09928-7
– volume: 12
  start-page: 11550
  issue: 22
  year: 2022
  ident: 59034_CR22
  publication-title: Appl. Sci.
  doi: 10.3390/app122211550
– volume: 192
  start-page: 106060
  year: 2019
  ident: 59034_CR17
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.02.002
– volume: 9
  start-page: 1211
  issue: 11
  year: 2021
  ident: 59034_CR9
  publication-title: Mathematics
  doi: 10.3390/math9111211
– volume: 127
  start-page: 103722
  year: 2021
  ident: 59034_CR24
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103722
– volume: 69
  start-page: 46
  year: 2014
  ident: 59034_CR39
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 51
  start-page: 1531
  year: 2021
  ident: 59034_CR40
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01893-z
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 59034_CR43
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 40
  start-page: 102500
  year: 2022
  ident: 59034_CR3
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102500
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 59034_CR45
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 59034_CR37
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– ident: 59034_CR6
  doi: 10.1109/ICNN.1995.488968
– volume: 12
  start-page: 320
  issue: 1
  year: 2012
  ident: 59034_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.08.040
– volume: 34
  start-page: 2370
  issue: 6
  year: 2022
  ident: 59034_CR27
  publication-title: J. King Saud Univ. –Comput. Inf. Sci.
– volume: 95
  start-page: 51
  year: 2016
  ident: 59034_CR36
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 29
  start-page: 2531
  issue: 5
  year: 2022
  ident: 59034_CR23
  publication-title: Archiv. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09694-4
– volume: 177
  start-page: 114952
  year: 2021
  ident: 59034_CR26
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114952
– volume: 271
  start-page: 170085
  year: 2022
  ident: 59034_CR1
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170085
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 59034_CR32
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.06.009
– ident: 59034_CR18
  doi: 10.1145/2001576.2001787
– volume: 90
  start-page: 103479
  year: 2020
  ident: 59034_CR42
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103479
– volume: 52
  start-page: 17217
  issue: 15
  year: 2022
  ident: 59034_CR12
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03269-x
– volume: 176
  start-page: 742
  year: 2018
  ident: 59034_CR35
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2018.10.050
– volume: 2022
  start-page: 1
  year: 2022
  ident: 59034_CR5
  publication-title: Comput. Intell. Neurosci.
– volume: 2021
  start-page: 1
  year: 2021
  ident: 59034_CR21
  publication-title: Adv. Civ. Eng.
– volume: 75
  start-page: 102201
  year: 2024
  ident: 59034_CR16
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2023.102201
– volume: 21
  start-page: 426
  issue: 1
  year: 2024
  ident: 59034_CR15
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-023-00433-y
– volume: 116
  start-page: 405
  year: 1994
  ident: 59034_CR44
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2919393
– volume: 139
  start-page: 23
  year: 2018
  ident: 59034_CR25
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.011
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 59034_CR28
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– reference: 39438545 - Sci Rep. 2024 Oct 22;14(1):24888. doi: 10.1038/s41598-024-75852-w
SSID ssj0000529419
Score 2.5493703
Snippet To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm...
Abstract To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8357
SubjectTerms 639/166/988
639/705/1042
Algorithms
Convergence
Convergence analysis
Elite opposition-based learning
Humanities and Social Sciences
Iterative mapping
multidisciplinary
Optimization algorithms
Particle swarm optimization
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5VFZW4IKA8Fgpypd5g1V0_4vWxoFacIg5U6s2yvTaJ1GyqJC3qv2f8SNrwKBeua680_jze-WZtfwNwpDrDHOY-tcToXPORFbWiMtS-6S2XIy-DcqnYhByPu4sL9fVeqa94JizLA2fgjnuprEWWYERnOQtBjYTjmFepQKlnWQm0kepeMpVVvanirSq3ZBrWHS8xUsXbZJTXQjWM13QrEiXB_j-xzN8PS_6yY5oC0dlTeFIYJDnJlj-DHT88h71cU_J2H8YnZHIbr2GRqzI4svxhFjMyx4_DrNy6JOby-3wxXU1mBEkrQf-L_xWIvxMnJKXSzAs4Pzv99vlLXYom1E7wNpaWp9a3ATHue8xuhTeSGeeN5X0wSA8tp63jQvVBWOQqRokQOWDHQqOMRTLzEnaH-eBfA3FCedd4Pup54NZ7K4I13lkWMMIJ5Spo1wBqVxTFY2GLS512tlmnM-gaQdcJdE0r-LB55yrraTzY-1Ocl03PqIWdHqCH6AKi_peHVHCwnlVdFuhSY-TmXRTSYRUcbppxacX9EjP4-XXqg2QLO8oKXmUn2FjCEIAo7VZBt-UeW6ZutwzTSZLvbluGNK3BwX1ce9KdXX_H4s3_wOItPKZxCUSxyuYAdleLa_8OHrmb1XS5eJ_W0E8M8x6R
  priority: 102
  providerName: Directory of Open Access Journals
Title A hybrid particle swarm optimization algorithm for solving engineering problem
URI https://link.springer.com/article/10.1038/s41598-024-59034-2
https://www.ncbi.nlm.nih.gov/pubmed/38594511
https://www.proquest.com/docview/3034864593
https://www.proquest.com/docview/3035540347
https://pubmed.ncbi.nlm.nih.gov/PMC11375002
https://doaj.org/article/d79bb352a58b43ff965c43389f22e304
Volume 14
WOSCitedRecordID wos001199820300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RBiQuvB8LJTISN1h11494fUItagWHRhECKZxWttduKjUPsimo_56x42wUHr1w8WHXu7I9Y8_nGfsbgDeq0szi3ieXaJ1zPjAiV1T63BWN4XLgpFc2JpuQw2E1HqtRcri16VjlZk2MC3Uzt8FHfohLLa8C8wl7v_ieh6xRIbqaUmjsQQ-RTRmOdJ3RUedjCVEsXqp0V6Zg1WGL9ircKaM8Fwr_mNMdexRp-_-GNf88Mvlb3DSao9P7_9uRB3AvAVFytNach3DLzR7BnXVqyuvHMDwik-twm4ssknKR9qdeTskc15hpurxJ9OU5_no1mRLEvgTVOLgniNtyHJKUsOYJfD09-fLhY55yL-RW8DJkqKfGlR5F1TS4SRZOS6at04Y3XiPKNJyWFjvReGEQ8mglfICSFfOF0gYx0VPYn81n7jkQK5SzheODhntunDPCG-2sYR4NpVA2g3IjgdomYvKQH-OyjgFyVtVrqdUotTpKraYZvO2-WaxpOW6sfRwE29UMlNrxwXx5XqdBrBupjEE4qkVlOPNeDYTluIFXnlLHCp7BwUaedZrnbb0VZgavu9c4Q0PYRc_c_CrWQcyGFWUGz9Za1LWE4QAEhrgMqh392mnq7pvZxSSygJclQ7RXYOfebVRx265_j8WLm7vxEu7SMDsCm2VxAPur5ZV7Bbftj9VFu-zDnhzLWFZ96B2fDEef-9GL0Y8TL5QSy97o09no2y-6FDQ8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETPzbxAaHyqFq1rHooUm_GduxupW6ybLZU-6f4jYzz2NXy6K0HromTeJxvZj4_Zgbglcw1szj3iTP0zjEfGBFLmvnYJYXh2cBlXtqm2EQ2HOZHR_JgDX72sTDhWGVvExtDXVQ2rJFvoqnlech8wt5PvsehalTYXe1LaLSw2HPzc5yy1e92P-H_fU3p9ufDjztxV1UgtoKnofY6NS712ImiwOmfcDpj2jpteOE18ifDaWrxO4UXBp25lsIHkpQzn0ht0Nvje6_AVR4yi4WjgvRgsaYTds14KrvYnITlmzX6xxDDRnksJEoQ0xX_15QJ-Bu3_fOI5m_7tI372779vw3cHbjVEW2y1WrGXVhz5T243pbenN-H4RYZzUO0Gpl0ykPqcz0dkwpt6LgLTiX69BhFmY3GBLk9QTUNyy_ELXM4kq4gzwP4einCPIT1sirdYyBWSGcTxwcF99w4Z4Q32lnDPBIBIW0Eaf_Hle0Sr4f6H6eqOQDActWiRCFKVIMSRSN4s3hm0qYdubD1hwCkRcuQMry5UE2PVTeIqsikMUi3tcgNZ97LgbCcIV_1lDqW8Ag2evyozo7VagmeCF4ubqMFCttKunTVWdMGOSk2zCJ41KJ20ROGAxAy4EWQr-B5paurd8qTUZPlPE0ZstkEhXvbQ3_Zr3-PxZOLxXgBN3YOv-yr_d3h3lO4SYNmhsydyQasz6Zn7hlcsz9mJ_X0eaPaBL5dtkr8Anafiyo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUB74Q0bWMBIcIKoie008QGhhaWiWqh6AGk5GduxtyttH7RdVv1r_DrGidOqPPa2B66Jk3icb2Y-P2YG4LkoFDM494lz9M4x7-gsFjR3sU1KzfOOzZ0wVbGJvN8vjo7EYAt-NrEw_lhlYxMrQ11OjF8jb6Op5YXPfMLaLhyLGBx030y_x76ClN9pbcpp1BA5tMtznL7NX_cO8F-_oLT7_vO7D3GoMBCbjKe-DjvVNnXYobLEqWBmVc6UsUrz0inkUprT1OA3S5dpdOxKZM4TpoK5RCiNnh_fewW2kZJz2oLtQe_T4OtqhcfvofFUhEidhBXtOXpLH9FGeZwJlCemG96wKhrwN6b754HN33ZtK2fYvfk_D-MtuBEoONmvdeY2bNnxHbhWF-Vc3oX-PhkufRwbmQa1IvNzNRuRCVrXUQhbJer0GEVZDEcEWT9BBfYLM8SuszuSUKrnHny5FGHuQ2s8GdtdICYT1iSWd0ruuLZWZ04razRzSBEyYSJIm78vTUjJ7iuDnMrqaAArZI0YiYiRFWIkjeDl6plpnZDkwtZvPahWLX0y8erCZHYswyDKMhdaIxFXWaE5c050MsMZMllHqWUJj2CvwZIMFm4u10CK4NnqNtomv-GkxnZyVrVBtooN8wge1Ahe9YThAPjceBEUG9je6OrmnfHJsMp_nqYMeW6Cwr1q1GDdr3-PxcOLxXgK11ET5Mde__AR7FCvpD6lZ7IHrcXszD6Gq-bH4mQ-exL0nMC3y9aJX1y9lXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+algorithm+for+solving+engineering+problem&rft.jtitle=Scientific+reports&rft.au=Qiao%2C+Jinwei&rft.au=Wang%2C+Guangyuan&rft.au=Yang%2C+Zhi&rft.au=Luo%2C+Xiaochuan&rft.date=2024-04-10&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=8357&rft_id=info:doi/10.1038%2Fs41598-024-59034-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon