A hybrid particle swarm optimization algorithm for solving engineering problem
To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized t...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 14; H. 1; S. 8357 - 30 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
10.04.2024
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function (
f
1
-
f
13
) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. |
|---|---|
| AbstractList | To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f1-f13) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems.To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. Abstract To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function (f1-f13) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( $${f}_{1}-{f}_{13}$$ f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm optimization algorithm (named NDWPSO algorithm) based on multiple hybrid strategies. Firstly, the elite opposition-based learning method is utilized to initialize the particle position matrix. Secondly, the dynamic inertial weight parameters are given to improve the global search speed in the early iterative phase. Thirdly, a new local optimal jump-out strategy is proposed to overcome the "premature" problem. Finally, the algorithm applies the spiral shrinkage search strategy from the whale optimization algorithm (WOA) and the Differential Evolution (DE) mutation strategy in the later iteration to accelerate the convergence speed. The NDWPSO is further compared with other 8 well-known nature-inspired algorithms (3 PSO variants and 5 other intelligent algorithms) on 23 benchmark test functions and three practical engineering problems. Simulation results prove that the NDWPSO algorithm obtains better results for all 49 sets of data than the other 3 PSO variants. Compared with 5 other intelligent algorithms, the NDWPSO obtains 69.2%, 84.6%, and 84.6% of the best results for the benchmark function ( f 1 - f 13 ) with 3 kinds of dimensional spaces (Dim = 30,50,100) and 80% of the best optimal solutions for 10 fixed-multimodal benchmark functions. Also, the best design solutions are obtained by NDWPSO for all 3 classical practical engineering problems. |
| ArticleNumber | 8357 |
| Author | Li, Kan Chen, Jun Qiao, Jinwei Wang, Guangyuan Liu, Pengbo Luo, Xiaochuan Yang, Zhi |
| Author_xml | – sequence: 1 givenname: Jinwei surname: Qiao fullname: Qiao, Jinwei organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research – sequence: 2 givenname: Guangyuan surname: Wang fullname: Wang, Guangyuan organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research – sequence: 3 givenname: Zhi surname: Yang fullname: Yang, Zhi email: yangzhi@qlu.edu.cn organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research – sequence: 4 givenname: Xiaochuan surname: Luo fullname: Luo, Xiaochuan organization: School of Information Science and Engineering, Northeastern University – sequence: 5 givenname: Jun surname: Chen fullname: Chen, Jun organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research – sequence: 6 givenname: Kan surname: Li fullname: Li, Kan organization: Fushun Supervision Inspection Institute for Special Equipment – sequence: 7 givenname: Pengbo surname: Liu fullname: Liu, Pengbo organization: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong Institute of Mechanical Design and Research |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38594511$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk9vFSEcJKbG1tov4MFs4sXLKvCDLpxM0_inSaMXPRPYhX287MIK-2rqp5d9-6xtD-UCgZnJ_Jh5iY5CDBah1wS_JxjEh8wIl6LGlNVcYmA1fYZOKGa8pkDp0b3zMTrLeYvL4lQyIl-gYxBcMk7ICfp2UW1uTfJdNek0-3awVf6t01jFafaj_6NnH0Olhz4mP2_GysVU5Tjc-NBXNvQ-WJuW85SiGez4Cj13esj27LCfop-fP_24_Fpff_9ydXlxXbeckbkmQI0lrnGy64QQ3OoGdGu1YZ3TWGDDKGkZl53jRkjQkjuQTSPAYakNbeAUXa26XdRbNSU_6nSrovZqfxFTrw7jqK6RxgCnmgvDwDl5zlsGIKSj1AJmRevjqjXtzGi71oY56eGB6MOX4DeqjzeKEGg4xrQovDsopPhrZ_OsRp9bOww62LjLCjBwzkpIi_G3j6DbuEuh_NWCYuK8TA0F9ea-pTsv_3IrALoC2hRzTtbdQQhWSz_U2g9V-qH2_VCLTfGI1Pp5H3AZyw9PU2Gl5mmJ26b_tp9g_QWme88A |
| CitedBy_id | crossref_primary_10_1007_s00344_024_11542_1 crossref_primary_10_1038_s41598_025_94546_5 crossref_primary_10_3390_en18184946 crossref_primary_10_1371_journal_pone_0326173 crossref_primary_10_17073_2072_1633_2025_2_1420 crossref_primary_10_1177_20552076251361603 crossref_primary_10_1016_j_enconman_2024_118844 crossref_primary_10_1007_s10661_024_13390_8 crossref_primary_10_1007_s11831_025_10388_4 crossref_primary_10_1007_s10586_024_04750_7 crossref_primary_10_1038_s41598_024_78761_0 crossref_primary_10_1016_j_fuel_2025_136491 crossref_primary_10_1016_j_ijthermalsci_2024_109669 crossref_primary_10_1109_ACCESS_2025_3558716 crossref_primary_10_3390_math12223464 crossref_primary_10_1038_s41598_024_80923_z |
| Cites_doi | 10.1115/1.2919393 10.3390/app13010564 10.1016/j.eswa.2022.116631 10.1016/j.knosys.2019.105190 10.1016/j.egyr.2022.05.088 10.3390/app122211550 10.1016/S0166-3615(99)00046-9 10.1007/s00500-021-05939-3 10.1016/j.ijleo.2022.170085 10.1016/j.solener.2018.10.050 10.1016/j.knosys.2017.10.011 10.1007/s00500-017-2940-9 10.1109/4235.771163 10.1016/j.asoc.2009.08.031 10.1016/j.cnsns.2012.06.009 10.1016/j.advengsoft.2016.01.008 10.1007/s10489-020-01893-z 10.1016/j.yofte.2021.102559 10.1016/j.asoc.2011.08.040 10.1016/j.ress.2018.02.002 10.1007/s42235-023-00433-y 10.1016/j.future.2019.02.028 10.1016/j.csite.2022.102500 10.1016/j.autcon.2021.103722 10.1016/j.eswa.2011.07.089 10.1016/j.jocs.2023.102201 10.1016/j.asoc.2017.11.012 10.3390/math9111211 10.1007/s10489-022-03269-x 10.1007/s11831-023-09928-7 10.1109/4235.585893 10.1016/j.neucom.2015.01.110 10.1007/s11831-021-09694-4 10.1016/j.eswa.2021.114952 10.1016/j.juro.2015.09.090 10.3390/math10234555 10.3390/s20010006 10.1016/j.advengsoft.2013.12.007 10.1016/j.engappai.2020.103479 10.1016/j.swevo.2011.02.002 10.1109/ICNN.1995.488968 10.1145/2001576.2001787 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-59034-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 30 |
| ExternalDocumentID | oai_doaj_org_article_d79bb352a58b43ff965c43389f22e304 PMC11375002 38594511 10_1038_s41598_024_59034_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Key R&D plan of Shandong Province, China grantid: (2021CXGC010207) – fundername: First batch of talent research projects of Qilu University of Technology in 2023 grantid: (2023RCKY116) – fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province grantid: (2022TSGC2051); (2022TSGC2051); ( 2023TSGC0024) – fundername: Young Innovative Talents Introduction & Cultivation Program for Colleges and Universities of Shandong Province ( Granted by Department of Education of Shandong Province, Sub-Title: Innovative Research Team of High Performance Integrated Device). – fundername: Introduction of urgently needed talent projects in Key Supported Regions of Shandong Province – fundername: LiaoNing Revitalization Talents Program (XLYC2002041) – fundername: Key Projects of Natural Science Foundation of Shandong Province grantid: (ZR2020ME116); (ZR2020ME116) – fundername: Key R&D plan of Shandong Province, China, grantid: (2023CXGC01020) – fundername: National Key R&D Program of China grantid: (2019YFB1705002) – fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province grantid: (2022TSGC2051) – fundername: Key Projects of Natural Science Foundation of Shandong Province grantid: (ZR2020ME116) – fundername: the Innovation Ability Improvement Project for Technology-based Small- and Medium-sized Enterprises of Shandong Province grantid: ( 2023TSGC0024) |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-132be1f7f9dd8885ea73aceab4dfa080b421c459df5b893a95f397783f09ab273 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001199820300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:51:28 EDT 2025 Tue Nov 04 02:05:01 EST 2025 Wed Oct 01 14:15:24 EDT 2025 Tue Oct 07 07:36:46 EDT 2025 Mon Jul 21 05:59:05 EDT 2025 Sat Nov 29 01:58:50 EST 2025 Tue Nov 18 21:34:50 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Iterative mapping Elite opposition-based learning Particle swarm optimization Convergence analysis |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-132be1f7f9dd8885ea73aceab4dfa080b421c459df5b893a95f397783f09ab273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3034864593?pq-origsite=%requestingapplication% |
| PMID | 38594511 |
| PQID | 3034864593 |
| PQPubID | 2041939 |
| PageCount | 30 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d79bb352a58b43ff965c43389f22e304 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11375002 proquest_miscellaneous_3035540347 proquest_journals_3034864593 pubmed_primary_38594511 crossref_primary_10_1038_s41598_024_59034_2 crossref_citationtrail_10_1038_s41598_024_59034_2 springer_journals_10_1038_s41598_024_59034_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-10 |
| PublicationDateYYYYMMDD | 2024-04-10 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Li, Niu, Xiao (CR34) 2012; 12 Brajević, Stanimirović, Li (CR11) 2022; 10 Sun, Xu, Zhang (CR21) 2021; 2021 Khan, Cao, Brajevic (CR10) 2022; 197 Hashim (CR40) 2021; 51 Abed-Alguni, Paul, Hammad (CR12) 2022; 52 Brajević (CR9) 2021; 9 CR18 Gandomi (CR32) 2013; 18 Yeh (CR17) 2019; 192 Feng (CR24) 2021; 127 Mirjalili, Lewis (CR36) 2016; 95 Coello (CR43) 2000; 41 Sun (CR3) 2022; 40 Gad (CR23) 2022; 29 Mirjalili, Mirjalili, Lewis (CR39) 2014; 69 Mukhopadhyay, Banerjee (CR19) 2012; 39 Zhou, Wang, Luo (CR33) 2016; 188 Abed-alguni, AL-Jarah (CR16) 2024; 75 Bao (CR5) 2022; 2022 Wolpert, Macready (CR31) 1997; 1 Kannan, Kramer (CR44) 1994; 116 Xiong (CR35) 2018; 176 CR6 Bai (CR26) 2021; 177 Alsaidy, Abbood, Sahib (CR27) 2022; 34 Liu, Cai, Wang (CR28) 2010; 10 Li (CR2) 2022; 8 Deng (CR29) 2019; 23 Bartsch (CR4) 2016; 195 Abed-alguni, Alawad, Barhoush (CR8) 2021; 25 Nadimi-Shahraki, Zamani, Asghari Varzaneh (CR14) 2023; 30 Derrac, García, Molina (CR45) 2011; 1 Sami (CR1) 2022; 271 Lin, Zhu, Li (CR7) 2018; 62 Chen, Zhou, Liu (CR25) 2018; 139 Nadimi-Shahraki, Asghari Varzaneh, Zamani (CR13) 2022; 13 Duan (CR20) 2021; 64 Fatahi, Nadimi-Shahraki, Zamani (CR15) 2024; 21 Huang, Zhen (CR30) 2019; 20 Liu (CR22) 2022; 12 Pant, Zaheer, Garcia-Hernandez (CR42) 2020; 90 Yao, Liu, Lin (CR37) 1999; 3 Heidari (CR38) 2019; 97 Faramarzi (CR41) 2020; 191 W Deng (59034_CR29) 2019; 23 Ke Chen (59034_CR25) 2018; 139 SA Alsaidy (59034_CR27) 2022; 34 AA Heidari (59034_CR38) 2019; 97 DH Wolpert (59034_CR31) 1997; 1 G Bartsch (59034_CR4) 2016; 195 AT Khan (59034_CR10) 2022; 197 FA Hashim (59034_CR40) 2021; 51 W-C Yeh (59034_CR17) 2019; 192 F Sami (59034_CR1) 2022; 271 F Sun (59034_CR21) 2021; 2021 MH Nadimi-Shahraki (59034_CR14) 2023; 30 CAC Coello (59034_CR43) 2000; 41 AG Gad (59034_CR23) 2022; 29 AH Gandomi (59034_CR32) 2013; 18 B Sun (59034_CR3) 2022; 40 X Yao (59034_CR37) 1999; 3 59034_CR6 S Mirjalili (59034_CR39) 2014; 69 A Faramarzi (59034_CR41) 2020; 191 Z Bao (59034_CR5) 2022; 2022 B Bai (59034_CR26) 2021; 177 BH Abed-alguni (59034_CR16) 2024; 75 H Feng (59034_CR24) 2021; 127 S Mirjalili (59034_CR36) 2016; 95 BK Kannan (59034_CR44) 1994; 116 G Li (59034_CR34) 2012; 12 MH Nadimi-Shahraki (59034_CR13) 2022; 13 Y Zhou (59034_CR33) 2016; 188 BH Abed-alguni (59034_CR8) 2021; 25 X Li (59034_CR2) 2022; 8 I Brajević (59034_CR11) 2022; 10 M Liu (59034_CR22) 2022; 12 A Fatahi (59034_CR15) 2024; 21 S Mukhopadhyay (59034_CR19) 2012; 39 L Duan (59034_CR20) 2021; 64 J Derrac (59034_CR45) 2011; 1 G Xiong (59034_CR35) 2018; 176 Q Lin (59034_CR7) 2018; 62 59034_CR18 BH Abed-Alguni (59034_CR12) 2022; 52 M Pant (59034_CR42) 2020; 90 H Liu (59034_CR28) 2010; 10 I Brajević (59034_CR9) 2021; 9 M Huang (59034_CR30) 2019; 20 39438545 - Sci Rep. 2024 Oct 22;14(1):24888. doi: 10.1038/s41598-024-75852-w |
| References_xml | – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: CR44 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 13 start-page: 564 issue: 1 year: 2022 ident: CR13 article-title: Binary starling murmuration optimizer algorithm to select effective features from medical data publication-title: Appl. Sci. doi: 10.3390/app13010564 – volume: 34 start-page: 2370 issue: 6 year: 2022 end-page: 2382 ident: CR27 article-title: Heuristic initialization of PSO task scheduling algorithm in cloud computing publication-title: J. King Saud Univ. –Comput. Inf. Sci. – volume: 197 start-page: 116631 year: 2022 ident: CR10 article-title: Non-linear activated beetle antennae search: A novel technique for non-convex tax-aware portfolio optimization problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116631 – ident: CR18 – volume: 191 start-page: 105190 year: 2020 ident: CR41 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 2022 start-page: 1 year: 2022 end-page: 9 ident: CR5 article-title: Secure clustering strategy based on improved particle swarm optimization algorithm in internet of things publication-title: Comput. Intell. Neurosci. – volume: 8 start-page: 437 year: 2022 end-page: 446 ident: CR2 article-title: Prediction of electricity consumption during epidemic period based on improved particle swarm optimization algorithm publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.05.088 – volume: 12 start-page: 11550 issue: 22 year: 2022 ident: CR22 article-title: An improved particle-swarm-optimization algorithm for a prediction model of steel slab temperature publication-title: Appl. Sci. doi: 10.3390/app122211550 – volume: 41 start-page: 113 issue: 2 year: 2000 end-page: 127 ident: CR43 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 25 start-page: 10167 issue: 15 year: 2021 end-page: 10180 ident: CR8 article-title: Exploratory cuckoo search for solving single-objective optimization problems publication-title: Soft Comput. doi: 10.1007/s00500-021-05939-3 – ident: CR6 – volume: 271 start-page: 170085 year: 2022 ident: CR1 article-title: Optimize electric automation control using artificial intelligence (AI) publication-title: Optik doi: 10.1016/j.ijleo.2022.170085 – volume: 176 start-page: 742 year: 2018 end-page: 761 ident: CR35 article-title: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm publication-title: Solar Energy doi: 10.1016/j.solener.2018.10.050 – volume: 139 start-page: 23 year: 2018 end-page: 40 ident: CR25 article-title: Chaotic dynamic weight particle swarm optimization for numerical function optimization publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.10.011 – volume: 23 start-page: 2445 year: 2019 end-page: 2462 ident: CR29 article-title: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm publication-title: Soft Comput. doi: 10.1007/s00500-017-2940-9 – volume: 3 start-page: 82 issue: 2 year: 1999 end-page: 102 ident: CR37 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 10 start-page: 629 issue: 2 year: 2010 end-page: 640 ident: CR28 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – volume: 18 start-page: 89 issue: 1 year: 2013 end-page: 98 ident: CR32 article-title: Firefly algorithm with chaos publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.06.009 – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR36 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: CR40 article-title: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 2021 start-page: 1 year: 2021 end-page: 9 ident: CR21 article-title: Optimization design of wind turbine blade based on an improved particle swarm optimization algorithm combined with non-gaussian distribution publication-title: Adv. Civ. Eng. – volume: 64 start-page: 102559 year: 2021 ident: CR20 article-title: Improved particle swarm optimization algorithm for enhanced coupling of coaxial optical communication laser publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2021.102559 – volume: 12 start-page: 320 issue: 1 year: 2012 end-page: 332 ident: CR34 article-title: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.040 – volume: 192 start-page: 106060 year: 2019 ident: CR17 article-title: A novel boundary swarm optimization method for reliability redundancy allocation problems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.02.002 – volume: 21 start-page: 426 issue: 1 year: 2024 end-page: 446 ident: CR15 article-title: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: A COVID-19 case study publication-title: J. Bionic Eng. doi: 10.1007/s42235-023-00433-y – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR38 article-title: Harris hawks optimization: Algorithm and applications publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 40 start-page: 102500 year: 2022 ident: CR3 article-title: Adaptive modified ant colony optimization algorithm for global temperature perception of the underground tunnel fire publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102500 – volume: 127 start-page: 103722 year: 2021 ident: CR24 article-title: Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103722 – volume: 39 start-page: 917 issue: 1 year: 2012 end-page: 924 ident: CR19 article-title: Global optimization of an optical chaotic system by chaotic multi swarm particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.089 – volume: 75 start-page: 102201 year: 2024 ident: CR16 article-title: IBJA: An improved binary DJaya algorithm for feature selection publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2023.102201 – volume: 62 start-page: 702 year: 2018 end-page: 735 ident: CR7 article-title: A novel artificial bee colony algorithm with local and global information interaction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.012 – volume: 9 start-page: 1211 issue: 11 year: 2021 ident: CR9 article-title: A shuffle-based artificial bee colony algorithm for solving integer programming and minimax problems publication-title: Mathematics doi: 10.3390/math9111211 – volume: 52 start-page: 17217 issue: 15 year: 2022 end-page: 17236 ident: CR12 article-title: Improved Salp swarm algorithm for solving single-objective continuous optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-022-03269-x – volume: 30 start-page: 4113 issue: 7 year: 2023 end-page: 4159 ident: CR14 article-title: A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations publication-title: Archiv. Comput. Methods Eng. doi: 10.1007/s11831-023-09928-7 – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR31 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 188 start-page: 294 year: 2016 end-page: 310 ident: CR33 article-title: Elite opposition-based flower pollination algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.110 – volume: 29 start-page: 2531 issue: 5 year: 2022 end-page: 2561 ident: CR23 article-title: Particle swarm optimization algorithm and its applications: a systematic review publication-title: Archiv. Comput. Methods Eng. doi: 10.1007/s11831-021-09694-4 – volume: 177 start-page: 114952 year: 2021 ident: CR26 article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114952 – volume: 195 start-page: 493 issue: 2 year: 2016 end-page: 498 ident: CR4 article-title: Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle invasive urothelial carcinoma of the bladder publication-title: J. Urol. doi: 10.1016/j.juro.2015.09.090 – volume: 10 start-page: 4555 issue: 23 year: 2022 ident: CR11 article-title: Hybrid sine cosine algorithm for solving engineering optimization problems publication-title: Mathematics doi: 10.3390/math10234555 – volume: 20 start-page: 6 issue: 1 year: 2019 ident: CR30 article-title: Research on mechanical fault prediction method based on multifeature fusion of vibration sensing data publication-title: Sensors doi: 10.3390/s20010006 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR39 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 90 start-page: 103479 year: 2020 ident: CR42 article-title: Differential evolution: A review of more than two decades of research publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103479 – volume: 1 start-page: 3 issue: 1 year: 2011 end-page: 18 ident: CR45 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 25 start-page: 10167 issue: 15 year: 2021 ident: 59034_CR8 publication-title: Soft Comput. doi: 10.1007/s00500-021-05939-3 – volume: 13 start-page: 564 issue: 1 year: 2022 ident: 59034_CR13 publication-title: Appl. Sci. doi: 10.3390/app13010564 – volume: 64 start-page: 102559 year: 2021 ident: 59034_CR20 publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2021.102559 – volume: 188 start-page: 294 year: 2016 ident: 59034_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.110 – volume: 23 start-page: 2445 year: 2019 ident: 59034_CR29 publication-title: Soft Comput. doi: 10.1007/s00500-017-2940-9 – volume: 191 start-page: 105190 year: 2020 ident: 59034_CR41 publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 197 start-page: 116631 year: 2022 ident: 59034_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116631 – volume: 10 start-page: 4555 issue: 23 year: 2022 ident: 59034_CR11 publication-title: Mathematics doi: 10.3390/math10234555 – volume: 39 start-page: 917 issue: 1 year: 2012 ident: 59034_CR19 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.089 – volume: 62 start-page: 702 year: 2018 ident: 59034_CR7 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.012 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 59034_CR31 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 8 start-page: 437 year: 2022 ident: 59034_CR2 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.05.088 – volume: 20 start-page: 6 issue: 1 year: 2019 ident: 59034_CR30 publication-title: Sensors doi: 10.3390/s20010006 – volume: 195 start-page: 493 issue: 2 year: 2016 ident: 59034_CR4 publication-title: J. Urol. doi: 10.1016/j.juro.2015.09.090 – volume: 97 start-page: 849 year: 2019 ident: 59034_CR38 publication-title: Fut. Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 30 start-page: 4113 issue: 7 year: 2023 ident: 59034_CR14 publication-title: Archiv. Comput. Methods Eng. doi: 10.1007/s11831-023-09928-7 – volume: 12 start-page: 11550 issue: 22 year: 2022 ident: 59034_CR22 publication-title: Appl. Sci. doi: 10.3390/app122211550 – volume: 192 start-page: 106060 year: 2019 ident: 59034_CR17 publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.02.002 – volume: 9 start-page: 1211 issue: 11 year: 2021 ident: 59034_CR9 publication-title: Mathematics doi: 10.3390/math9111211 – volume: 127 start-page: 103722 year: 2021 ident: 59034_CR24 publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103722 – volume: 69 start-page: 46 year: 2014 ident: 59034_CR39 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 51 start-page: 1531 year: 2021 ident: 59034_CR40 publication-title: Appl. Intell. doi: 10.1007/s10489-020-01893-z – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 59034_CR43 publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 40 start-page: 102500 year: 2022 ident: 59034_CR3 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102500 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 59034_CR45 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 59034_CR37 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – ident: 59034_CR6 doi: 10.1109/ICNN.1995.488968 – volume: 12 start-page: 320 issue: 1 year: 2012 ident: 59034_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.08.040 – volume: 34 start-page: 2370 issue: 6 year: 2022 ident: 59034_CR27 publication-title: J. King Saud Univ. –Comput. Inf. Sci. – volume: 95 start-page: 51 year: 2016 ident: 59034_CR36 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 29 start-page: 2531 issue: 5 year: 2022 ident: 59034_CR23 publication-title: Archiv. Comput. Methods Eng. doi: 10.1007/s11831-021-09694-4 – volume: 177 start-page: 114952 year: 2021 ident: 59034_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114952 – volume: 271 start-page: 170085 year: 2022 ident: 59034_CR1 publication-title: Optik doi: 10.1016/j.ijleo.2022.170085 – volume: 18 start-page: 89 issue: 1 year: 2013 ident: 59034_CR32 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.06.009 – ident: 59034_CR18 doi: 10.1145/2001576.2001787 – volume: 90 start-page: 103479 year: 2020 ident: 59034_CR42 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103479 – volume: 52 start-page: 17217 issue: 15 year: 2022 ident: 59034_CR12 publication-title: Appl. Intell. doi: 10.1007/s10489-022-03269-x – volume: 176 start-page: 742 year: 2018 ident: 59034_CR35 publication-title: Solar Energy doi: 10.1016/j.solener.2018.10.050 – volume: 2022 start-page: 1 year: 2022 ident: 59034_CR5 publication-title: Comput. Intell. Neurosci. – volume: 2021 start-page: 1 year: 2021 ident: 59034_CR21 publication-title: Adv. Civ. Eng. – volume: 75 start-page: 102201 year: 2024 ident: 59034_CR16 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2023.102201 – volume: 21 start-page: 426 issue: 1 year: 2024 ident: 59034_CR15 publication-title: J. Bionic Eng. doi: 10.1007/s42235-023-00433-y – volume: 116 start-page: 405 year: 1994 ident: 59034_CR44 publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 139 start-page: 23 year: 2018 ident: 59034_CR25 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.10.011 – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 59034_CR28 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – reference: 39438545 - Sci Rep. 2024 Oct 22;14(1):24888. doi: 10.1038/s41598-024-75852-w |
| SSID | ssj0000529419 |
| Score | 2.5493703 |
| Snippet | To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm... Abstract To overcome the disadvantages of premature convergence and easy trapping into local optimum solutions, this paper proposes an improved particle swarm... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8357 |
| SubjectTerms | 639/166/988 639/705/1042 Algorithms Convergence Convergence analysis Elite opposition-based learning Humanities and Social Sciences Iterative mapping multidisciplinary Optimization algorithms Particle swarm optimization Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB5VFZW4IKA8Fgpypd5g1V0_4vWxoFacIg5U6s2yvTaJ1GyqJC3qv2f8SNrwKBeua680_jze-WZtfwNwpDrDHOY-tcToXPORFbWiMtS-6S2XIy-DcqnYhByPu4sL9fVeqa94JizLA2fgjnuprEWWYERnOQtBjYTjmFepQKlnWQm0kepeMpVVvanirSq3ZBrWHS8xUsXbZJTXQjWM13QrEiXB_j-xzN8PS_6yY5oC0dlTeFIYJDnJlj-DHT88h71cU_J2H8YnZHIbr2GRqzI4svxhFjMyx4_DrNy6JOby-3wxXU1mBEkrQf-L_xWIvxMnJKXSzAs4Pzv99vlLXYom1E7wNpaWp9a3ATHue8xuhTeSGeeN5X0wSA8tp63jQvVBWOQqRokQOWDHQqOMRTLzEnaH-eBfA3FCedd4Pup54NZ7K4I13lkWMMIJ5Spo1wBqVxTFY2GLS512tlmnM-gaQdcJdE0r-LB55yrraTzY-1Ocl03PqIWdHqCH6AKi_peHVHCwnlVdFuhSY-TmXRTSYRUcbppxacX9EjP4-XXqg2QLO8oKXmUn2FjCEIAo7VZBt-UeW6ZutwzTSZLvbluGNK3BwX1ce9KdXX_H4s3_wOItPKZxCUSxyuYAdleLa_8OHrmb1XS5eJ_W0E8M8x6R priority: 102 providerName: Directory of Open Access Journals |
| Title | A hybrid particle swarm optimization algorithm for solving engineering problem |
| URI | https://link.springer.com/article/10.1038/s41598-024-59034-2 https://www.ncbi.nlm.nih.gov/pubmed/38594511 https://www.proquest.com/docview/3034864593 https://www.proquest.com/docview/3035540347 https://pubmed.ncbi.nlm.nih.gov/PMC11375002 https://doaj.org/article/d79bb352a58b43ff965c43389f22e304 |
| Volume | 14 |
| WOSCitedRecordID | wos001199820300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RBiQuvB8LJTISN1h11494fUItagWHRhECKZxWttduKjUPsimo_56x42wUHr1w8WHXu7I9Y8_nGfsbgDeq0szi3ieXaJ1zPjAiV1T63BWN4XLgpFc2JpuQw2E1HqtRcri16VjlZk2MC3Uzt8FHfohLLa8C8wl7v_ieh6xRIbqaUmjsQQ-RTRmOdJ3RUedjCVEsXqp0V6Zg1WGL9ircKaM8Fwr_mNMdexRp-_-GNf88Mvlb3DSao9P7_9uRB3AvAVFytNach3DLzR7BnXVqyuvHMDwik-twm4ssknKR9qdeTskc15hpurxJ9OU5_no1mRLEvgTVOLgniNtyHJKUsOYJfD09-fLhY55yL-RW8DJkqKfGlR5F1TS4SRZOS6at04Y3XiPKNJyWFjvReGEQ8mglfICSFfOF0gYx0VPYn81n7jkQK5SzheODhntunDPCG-2sYR4NpVA2g3IjgdomYvKQH-OyjgFyVtVrqdUotTpKraYZvO2-WaxpOW6sfRwE29UMlNrxwXx5XqdBrBupjEE4qkVlOPNeDYTluIFXnlLHCp7BwUaedZrnbb0VZgavu9c4Q0PYRc_c_CrWQcyGFWUGz9Za1LWE4QAEhrgMqh392mnq7pvZxSSygJclQ7RXYOfebVRx265_j8WLm7vxEu7SMDsCm2VxAPur5ZV7Bbftj9VFu-zDnhzLWFZ96B2fDEef-9GL0Y8TL5QSy97o09no2y-6FDQ8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETPzbxAaHyqFq1rHooUm_GduxupW6ybLZU-6f4jYzz2NXy6K0HromTeJxvZj4_Zgbglcw1szj3iTP0zjEfGBFLmvnYJYXh2cBlXtqm2EQ2HOZHR_JgDX72sTDhWGVvExtDXVQ2rJFvoqnlech8wt5PvsehalTYXe1LaLSw2HPzc5yy1e92P-H_fU3p9ufDjztxV1UgtoKnofY6NS712ImiwOmfcDpj2jpteOE18ifDaWrxO4UXBp25lsIHkpQzn0ht0Nvje6_AVR4yi4WjgvRgsaYTds14KrvYnITlmzX6xxDDRnksJEoQ0xX_15QJ-Bu3_fOI5m_7tI372779vw3cHbjVEW2y1WrGXVhz5T243pbenN-H4RYZzUO0Gpl0ykPqcz0dkwpt6LgLTiX69BhFmY3GBLk9QTUNyy_ELXM4kq4gzwP4einCPIT1sirdYyBWSGcTxwcF99w4Z4Q32lnDPBIBIW0Eaf_Hle0Sr4f6H6eqOQDActWiRCFKVIMSRSN4s3hm0qYdubD1hwCkRcuQMry5UE2PVTeIqsikMUi3tcgNZ97LgbCcIV_1lDqW8Ag2evyozo7VagmeCF4ubqMFCttKunTVWdMGOSk2zCJ41KJ20ROGAxAy4EWQr-B5paurd8qTUZPlPE0ZstkEhXvbQ3_Zr3-PxZOLxXgBN3YOv-yr_d3h3lO4SYNmhsydyQasz6Zn7hlcsz9mJ_X0eaPaBL5dtkr8Anafiyo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUB74Q0bWMBIcIKoie008QGhhaWiWqh6AGk5GduxtyttH7RdVv1r_DrGidOqPPa2B66Jk3icb2Y-P2YG4LkoFDM494lz9M4x7-gsFjR3sU1KzfOOzZ0wVbGJvN8vjo7EYAt-NrEw_lhlYxMrQ11OjF8jb6Op5YXPfMLaLhyLGBx030y_x76ClN9pbcpp1BA5tMtznL7NX_cO8F-_oLT7_vO7D3GoMBCbjKe-DjvVNnXYobLEqWBmVc6UsUrz0inkUprT1OA3S5dpdOxKZM4TpoK5RCiNnh_fewW2kZJz2oLtQe_T4OtqhcfvofFUhEidhBXtOXpLH9FGeZwJlCemG96wKhrwN6b754HN33ZtK2fYvfk_D-MtuBEoONmvdeY2bNnxHbhWF-Vc3oX-PhkufRwbmQa1IvNzNRuRCVrXUQhbJer0GEVZDEcEWT9BBfYLM8SuszuSUKrnHny5FGHuQ2s8GdtdICYT1iSWd0ruuLZWZ04razRzSBEyYSJIm78vTUjJ7iuDnMrqaAArZI0YiYiRFWIkjeDl6plpnZDkwtZvPahWLX0y8erCZHYswyDKMhdaIxFXWaE5c050MsMZMllHqWUJj2CvwZIMFm4u10CK4NnqNtomv-GkxnZyVrVBtooN8wge1Ahe9YThAPjceBEUG9je6OrmnfHJsMp_nqYMeW6Cwr1q1GDdr3-PxcOLxXgK11ET5Mde__AR7FCvpD6lZ7IHrcXszD6Gq-bH4mQ-exL0nMC3y9aJX1y9lXM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+particle+swarm+optimization+algorithm+for+solving+engineering+problem&rft.jtitle=Scientific+reports&rft.au=Qiao%2C+Jinwei&rft.au=Wang%2C+Guangyuan&rft.au=Yang%2C+Zhi&rft.au=Luo%2C+Xiaochuan&rft.date=2024-04-10&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=8357&rft_id=info:doi/10.1038%2Fs41598-024-59034-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |