Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework

Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen inte...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 15; no. 1; pp. 3555 - 31
Main Authors: Antonijevic, Milos, Zivkovic, Miodrag, Djuric Jovicic, Milica, Nikolic, Bosko, Perisic, Jasmina, Milovanovic, Marina, Jovanovic, Luka, Abdel-Salam, Mahmoud, Bacanin, Nebojsa
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 28.01.2025
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems.
AbstractList Abstract Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems.
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems.
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems.Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems.
ArticleNumber 3555
Author Nikolic, Bosko
Bacanin, Nebojsa
Djuric Jovicic, Milica
Jovanovic, Luka
Zivkovic, Miodrag
Perisic, Jasmina
Antonijevic, Milos
Milovanovic, Marina
Abdel-Salam, Mahmoud
Author_xml – sequence: 1
  givenname: Milos
  surname: Antonijevic
  fullname: Antonijevic, Milos
  organization: Singidunum University
– sequence: 2
  givenname: Miodrag
  surname: Zivkovic
  fullname: Zivkovic, Miodrag
  organization: Singidunum University
– sequence: 3
  givenname: Milica
  surname: Djuric Jovicic
  fullname: Djuric Jovicic, Milica
  organization: Innovation Centre, School of Electrical Engineering, University of Belgrade
– sequence: 4
  givenname: Bosko
  surname: Nikolic
  fullname: Nikolic, Bosko
  organization: School of Electrical Engineering, University of Belgrade
– sequence: 5
  givenname: Jasmina
  surname: Perisic
  fullname: Perisic, Jasmina
  organization: Singidunum University
– sequence: 6
  givenname: Marina
  surname: Milovanovic
  fullname: Milovanovic, Marina
  organization: Singidunum University
– sequence: 7
  givenname: Luka
  surname: Jovanovic
  fullname: Jovanovic, Luka
  organization: Singidunum University
– sequence: 8
  givenname: Mahmoud
  surname: Abdel-Salam
  fullname: Abdel-Salam, Mahmoud
  organization: Faculty of Computer and Information Science, Mansoura University
– sequence: 9
  givenname: Nebojsa
  surname: Bacanin
  fullname: Bacanin, Nebojsa
  email: nbacanin@singidunum.ac.rs
  organization: Singidunum University, Saveetha School of Engineering, SIMATS, Sinergija University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39875592$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEUtFARLaV_gAOyxIXLgr92bZ8QqviIVIkLnC1n9zlx2LWL7U2Vf18naaHtob7Y8psZzXtvXqOTEAMg9JaSj5Rw9SkL2mrVENY2SlHeNvoFOmNEtA3jjJ08eJ-ii5w3pJ6WaUH1K3TKtZJtq9kZyotQ0px9DHiAAn3Zv3zAExS7hZQBQ9j6FMMEodRCgRSg4OhwWfuwyjjvcoEp4-XuwFnDnHwuvs-4zAEGXG4iHmELI3bJTnAT05836KWzY4aLu_sc_f729dflj-bq5_fF5Zerpm8FLQ1lhPXdICx3A5eddtQ57bpWac0dl7KrXYilcD1QXXvT2oGzapDUgRycEvwcLY66Q7Qbc538ZNPOROvN4SOmlbGpWh3BCD4AkZQvoRWCSKH2OpoPmmtJOFlWrc9Hret5OcHQ12kkOz4SfVwJfm1WcWsolbLOnVWFD3cKKf6dIRcz-dzDONoAcc6G045orhjjFfr-CXQT5xTqrA6oToquZuAcvXto6Z-X--VWgDoC-hRzTuBM74vdb7g69KOhxOyjZI5RMjVK5hAloyuVPaHeqz9L4kdSruCwgvTf9jOsW67C3Qk
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110982
crossref_primary_10_3389_fpsyg_2025_1579259
crossref_primary_10_3390_biomimetics10080542
crossref_primary_10_1016_j_suscom_2025_101174
crossref_primary_10_1007_s42979_025_03879_5
crossref_primary_10_1038_s41598_025_12775_0
crossref_primary_10_1186_s44147_025_00635_7
crossref_primary_10_1109_ACCESS_2025_3550378
crossref_primary_10_3390_s25123720
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_1016_j_compbiomed_2025_110835
crossref_primary_10_3389_fphy_2025_1553224
crossref_primary_10_1007_s10586_025_05228_w
crossref_primary_10_1016_j_jjimei_2025_100356
crossref_primary_10_1016_j_knosys_2025_113286
Cites_doi 10.1002/cpe.8252
10.1016/j.eswa.2020.113338
10.1002/ett.4969
10.1145/3065386
10.1002/cpe.8091
10.1016/j.knosys.2023.111081
10.57019/jmv.1286526
10.1016/j.caeai.2022.100082
10.1016/j.engfailanal.2023.107219
10.1109/ACCESS.2022.3233596
10.3390/s20133625
10.1109/ACCESS.2024.3446653
10.1145/2939672.2939785
10.4310/SII.2009.v2.n3.a8
10.1016/j.asoc.2024.111434
10.1016/j.aei.2023.102130
10.1007/s11042-024-18295-9
10.1109/CEC48606.2020.9185583
10.1016/j.swevo.2021.100973
10.3390/math12182918
10.3390/s23135941
10.1109/ICACITE53722.2022.9823766
10.1504/IJBIC.2013.055093
10.1080/01621459.1972.10481232
10.7717/peerj-cs.1565
10.1002/ett.5056
10.3390/encyclopedia2010031
10.1109/JIOT.2023.3278329
10.3390/app10124102
10.1109/JAS.2021.1004129
10.1007/978-981-97-1488-9_26
10.3390/axioms12030266
10.1109/MCOM.018.2300095
10.1007/s00521-023-09366-3
10.1002/wics.1278
10.3390/jimaging6100110
10.3390/su151612563
10.1016/j.ijcip.2024.100674
10.1109/4235.585893
10.1002/0470011815.b2a15177
10.21037/atm.2020.02.44
10.7717/peerj-cs.1795
10.26599/BDMA.2022.9020047
10.1109/COMST.2020.2988293
10.1007/s10586-024-04351-4
10.1023/A:1010933404324
10.1109/MSP.2012.2205597
10.1016/S0305-0548(97)00031-2
10.1016/j.sintl.2024.100297
10.1016/j.rineng.2024.103171
10.1145/507533.507538
10.1093/sysbio/34.4.449
10.3390/app132312687
10.1117/1.JEI.31.6.061815
10.1007/s11831-023-09975-0
10.1016/j.eswa.2021.116158
10.1016/j.eswa.2020.114107
10.1109/JIOT.2022.3232845
10.1016/j.asoc.2023.110659
10.1109/ICNN.1995.488968
10.1155/2018/6973103
10.1007/s00500-022-07780-8
10.1109/COMST.2022.3202047
10.1109/ACCESS.2023.3299589
10.1016/j.jhydrol.2023.129599
10.1016/j.advengsoft.2016.01.008
10.3390/electronics11223798
10.1016/j.engappai.2021.104210
10.1007/s10462-023-10678-y
10.3390/app10196620
10.1109/CEC.2007.4424748
10.1002/dac.5886
10.1007/s10462-023-10567-4
10.1038/s41598-024-73932-5
10.1186/s12864-019-6413-7
10.1007/s40747-023-01265-3
10.1109/FG.2017.137
10.1007/s10898-007-9149-x
10.1109/COMST.2020.2986444
10.1038/s41598-020-57897-9
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-88135-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 31
ExternalDocumentID oai_doaj_org_article_43de0713be54407488d7193d9397030b
PMC11775292
39875592
10_1038_s41598_025_88135_9
Genre Journal Article
GrantInformation_xml – fundername: Science Fund of the Republic of Serbia
  grantid: 7502; 7373
  funderid: http://dx.doi.org/10.13039/501100016047
– fundername: Science Fund of the Republic of Serbia
  grantid: 7502
– fundername: Science Fund of the Republic of Serbia
  grantid: 7373
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-1202c6d4a3fd3769f1ff9f658993f37763984b4fce1900599fefa8d71fe7df843
IEDL.DBID DOA
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409657900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:50:56 EDT 2025
Tue Nov 04 02:03:23 EST 2025
Fri Sep 05 06:10:05 EDT 2025
Tue Oct 07 09:11:03 EDT 2025
Thu Apr 03 07:03:55 EDT 2025
Tue Nov 18 21:44:21 EST 2025
Sat Nov 29 03:22:27 EST 2025
Fri Feb 21 02:36:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metaheuristics algorithms
Chimp optimization algorithm
Metaverse
LightGBM
CatBoost
Optimization
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1202c6d4a3fd3769f1ff9f658993f37763984b4fce1900599fefa8d71fe7df843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/43de0713be54407488d7193d9397030b
PMID 39875592
PQID 3160674610
PQPubID 2041939
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_43de0713be54407488d7193d9397030b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11775292
proquest_miscellaneous_3160938223
proquest_journals_3160674610
pubmed_primary_39875592
crossref_citationtrail_10_1038_s41598_025_88135_9
crossref_primary_10_1038_s41598_025_88135_9
springer_journals_10_1038_s41598_025_88135_9
PublicationCentury 2000
PublicationDate 2025-01-28
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References P Dakic (88135_CR77) 2024; 14
M Zivkovic (88135_CR18) 2022; 11
YK Saheed (88135_CR32) 2024; 155
MA Al-Garadi (88135_CR14) 2020; 22
YK Saheed (88135_CR27) 2024; 45
J Zou (88135_CR87) 2009
F Hussain (88135_CR15) 2020; 22
BB Schultz (88135_CR89) 1985; 34
X-S Yang (88135_CR61) 2013; 5
SS Shapiro (88135_CR90) 1972; 67
Y Huang (88135_CR12) 2023; 6
Y Wang (88135_CR7) 2022; 25
88135_CR64
A Petrovic (88135_CR17) 2024; 12
BAS Emambocus (88135_CR52) 2023; 11
R Zhao (88135_CR10) 2023; 3
R Cheng (88135_CR11) 2023; 62
S Mystakidis (88135_CR1) 2022; 2
S Albawi (88135_CR36) 2018; 2018
88135_CR62
M Khishe (88135_CR21) 2020; 149
H Wang (88135_CR3) 2023; 10
S Mirjalili (88135_CR57) 2019
N Savanović (88135_CR76) 2023; 15
D Micci-Barreca (88135_CR45) 2001; 3
L Jovanovic (88135_CR20) 2023; 22
B de Ville (88135_CR82) 2013; 5
88135_CR29
G-J Hwang (88135_CR5) 2022; 3
D Połap (88135_CR23) 2021; 166
M Bjekic (88135_CR43) 2023; 9
D Karaboga (88135_CR59) 2007; 39
Z Lao (88135_CR51) 2023; 148
88135_CR31
B Predić (88135_CR66) 2024; 10
88135_CR30
X-S Yang (88135_CR60) 2013; 1
88135_CR74
88135_CR37
M Bukumira (88135_CR44) 2022; 31
J Tang (88135_CR54) 2021; 8
M Pavlov-Kagadejev (88135_CR71) 2024; 57
88135_CR79
RF Woolson (88135_CR91) 2005
D Wolpert (88135_CR16) 1997; 1
88135_CR78
D Chicco (88135_CR80) 2020; 21
S Thapa (88135_CR25) 2020; 53
K Li (88135_CR6) 2022; 10
88135_CR70
L Li (88135_CR50) 2023; 58
S Lundberg (88135_CR93) 2017; 1705
H Mrabet (88135_CR8) 2020; 20
88135_CR39
A Chattopadhyay (88135_CR42) 2020; 10
T Zivkovic (88135_CR65) 2023; 146
YK Saheed (88135_CR92) 2024; 24
Z Amiri (88135_CR73) 2024; 35
K Zanbouri (88135_CR75) 2024; 37
88135_CR41
L Breiman (88135_CR83) 2001; 45
88135_CR85
88135_CR47
88135_CR46
L Velasco (88135_CR69) 2024; 31
J Bai (88135_CR63) 2023; 282
T Hastie (88135_CR86) 2009; 2
N Mladenović (88135_CR58) 1997; 24
X Guo (88135_CR49) 2023; 621
88135_CR2
C Stoean (88135_CR68) 2023; 12
C-F Tsai (88135_CR28) 2020; 10
A Heidari (88135_CR4) 2024; 36
L Tawalbeh (88135_CR9) 2020; 10
M Asadi (88135_CR13) 2024; 35
A Krizhevsky (88135_CR35) 2017; 60
M Salb (88135_CR19) 2023; 13
YK Saheed (88135_CR33) 2025; 6
M Dobrojevic (88135_CR72) 2024; 80
L Abualigah (88135_CR24) 2022; 191
BB Sinha (88135_CR48) 2023; 15
MA Tawhid (88135_CR53) 2023; 27
O Kramer (88135_CR84) 2013
F Lombardi (88135_CR40) 2020; 6
S Mirjalili (88135_CR81) 2016; 95
A LaTorre (88135_CR88) 2021; 67
H Jia (88135_CR22) 2023; 56
88135_CR56
M Rostami (88135_CR55) 2021; 100
Z Amiri (88135_CR26) 2024; 36
G Hinton (88135_CR38) 2012; 29
A Vakili (88135_CR67) 2024; 36
ECP Neto (88135_CR34) 2023; 23
References_xml – volume: 36
  year: 2024
  ident: 88135_CR4
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.8252
– volume: 149
  year: 2020
  ident: 88135_CR21
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– volume: 35
  year: 2024
  ident: 88135_CR73
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.4969
– volume: 60
  start-page: 84
  year: 2017
  ident: 88135_CR35
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 36
  year: 2024
  ident: 88135_CR67
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.8091
– volume: 282
  year: 2023
  ident: 88135_CR63
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.111081
– volume: 3
  start-page: 93
  year: 2023
  ident: 88135_CR10
  publication-title: J. Metaverse
  doi: 10.57019/jmv.1286526
– volume: 3
  year: 2022
  ident: 88135_CR5
  publication-title: Comput. Educ. Artif. Intell.
  doi: 10.1016/j.caeai.2022.100082
– volume: 148
  year: 2023
  ident: 88135_CR51
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107219
– volume: 11
  start-page: 1280
  year: 2023
  ident: 88135_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3233596
– volume: 20
  start-page: 3625
  year: 2020
  ident: 88135_CR8
  publication-title: Sensors
  doi: 10.3390/s20133625
– ident: 88135_CR30
  doi: 10.1109/ACCESS.2024.3446653
– ident: 88135_CR85
  doi: 10.1145/2939672.2939785
– ident: 88135_CR37
– volume: 2
  start-page: 349
  year: 2009
  ident: 88135_CR86
  publication-title: Stat. Interface
  doi: 10.4310/SII.2009.v2.n3.a8
– volume: 155
  year: 2024
  ident: 88135_CR32
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111434
– volume: 22
  start-page: 543
  year: 2023
  ident: 88135_CR20
  publication-title: J. Web Eng.
– volume: 58
  year: 2023
  ident: 88135_CR50
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102130
– ident: 88135_CR31
  doi: 10.1007/s11042-024-18295-9
– ident: 88135_CR62
  doi: 10.1109/CEC48606.2020.9185583
– ident: 88135_CR46
– volume: 67
  year: 2021
  ident: 88135_CR88
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100973
– volume: 12
  start-page: 2918
  year: 2024
  ident: 88135_CR17
  publication-title: Mathematics
  doi: 10.3390/math12182918
– volume: 23
  start-page: 5941
  year: 2023
  ident: 88135_CR34
  publication-title: Sensors
  doi: 10.3390/s23135941
– ident: 88135_CR2
  doi: 10.1109/ICACITE53722.2022.9823766
– volume: 5
  start-page: 141
  year: 2013
  ident: 88135_CR61
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2013.055093
– volume: 67
  start-page: 215
  year: 1972
  ident: 88135_CR90
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1972.10481232
– ident: 88135_CR78
– ident: 88135_CR47
– volume: 9
  year: 2023
  ident: 88135_CR43
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1565
– volume: 35
  year: 2024
  ident: 88135_CR13
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.5056
– volume: 2
  start-page: 486
  year: 2022
  ident: 88135_CR1
  publication-title: Encyclopedia
  doi: 10.3390/encyclopedia2010031
– volume: 10
  start-page: 14671
  year: 2023
  ident: 88135_CR3
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3278329
– volume: 15
  start-page: 2053
  year: 2023
  ident: 88135_CR48
  publication-title: Int. J. Inf. Technol.
– volume: 10
  start-page: 4102
  year: 2020
  ident: 88135_CR9
  publication-title: Appl. Sci.
  doi: 10.3390/app10124102
– volume: 8
  start-page: 1627
  year: 2021
  ident: 88135_CR54
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– ident: 88135_CR70
  doi: 10.1007/978-981-97-1488-9_26
– volume: 12
  start-page: 266
  year: 2023
  ident: 88135_CR68
  publication-title: Axioms
  doi: 10.3390/axioms12030266
– volume: 62
  start-page: 156
  year: 2023
  ident: 88135_CR11
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.018.2300095
– volume: 36
  start-page: 5757
  year: 2024
  ident: 88135_CR26
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-09366-3
– volume: 5
  start-page: 448
  year: 2013
  ident: 88135_CR82
  publication-title: WIREs Comput. Stat.
  doi: 10.1002/wics.1278
– volume: 6
  start-page: 110
  year: 2020
  ident: 88135_CR40
  publication-title: J. Imaging
  doi: 10.3390/jimaging6100110
– volume: 15
  start-page: 12563
  year: 2023
  ident: 88135_CR76
  publication-title: Sustainability
  doi: 10.3390/su151612563
– volume: 45
  year: 2024
  ident: 88135_CR27
  publication-title: Int. J. Crit. Infrastruct. Prot.
  doi: 10.1016/j.ijcip.2024.100674
– volume: 1
  start-page: 67
  year: 1997
  ident: 88135_CR16
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume-title: In Encyclopedia of Biostatistics
  year: 2005
  ident: 88135_CR91
  doi: 10.1002/0470011815.b2a15177
– ident: 88135_CR41
  doi: 10.21037/atm.2020.02.44
– ident: 88135_CR64
  doi: 10.7717/peerj-cs.1795
– volume: 6
  start-page: 234
  year: 2023
  ident: 88135_CR12
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2022.9020047
– volume: 22
  start-page: 1646
  year: 2020
  ident: 88135_CR14
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2988293
– ident: 88135_CR74
  doi: 10.1007/s10586-024-04351-4
– volume: 45
  start-page: 5
  year: 2001
  ident: 88135_CR83
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 82
  year: 2012
  ident: 88135_CR38
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 24
  start-page: 1097
  year: 1997
  ident: 88135_CR58
  publication-title: Comput. Oper. Res.
  doi: 10.1016/S0305-0548(97)00031-2
– volume: 6
  year: 2025
  ident: 88135_CR33
  publication-title: Sens. Int.
  doi: 10.1016/j.sintl.2024.100297
– volume: 24
  year: 2024
  ident: 88135_CR92
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.103171
– volume: 3
  start-page: 27
  year: 2001
  ident: 88135_CR45
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/507533.507538
– volume: 1705
  start-page: 07874
  year: 2017
  ident: 88135_CR93
  publication-title: A unified approach to interpreting model predictions
– volume: 34
  start-page: 449
  year: 1985
  ident: 88135_CR89
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/34.4.449
– volume: 13
  start-page: 12687
  year: 2023
  ident: 88135_CR19
  publication-title: Appl. Sci.
  doi: 10.3390/app132312687
– volume: 31
  start-page: 061815
  year: 2022
  ident: 88135_CR44
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.31.6.061815
– volume: 31
  start-page: 125
  year: 2024
  ident: 88135_CR69
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-023-09975-0
– volume: 191
  year: 2022
  ident: 88135_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 166
  year: 2021
  ident: 88135_CR23
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114107
– volume: 10
  start-page: 4148
  year: 2022
  ident: 88135_CR6
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2022.3232845
– volume: 146
  year: 2023
  ident: 88135_CR65
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110659
– volume: 80
  start-page: 4997
  year: 2024
  ident: 88135_CR72
  publication-title: Comput. Mater. Contin.
– ident: 88135_CR56
  doi: 10.1109/ICNN.1995.488968
– volume: 2018
  start-page: 6973103
  year: 2018
  ident: 88135_CR36
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/6973103
– volume: 27
  start-page: 8867
  year: 2023
  ident: 88135_CR53
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-022-07780-8
– volume: 25
  start-page: 319
  year: 2022
  ident: 88135_CR7
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2022.3202047
– ident: 88135_CR29
  doi: 10.1109/ACCESS.2023.3299589
– volume: 621
  year: 2023
  ident: 88135_CR49
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129599
– volume: 95
  start-page: 51
  year: 2016
  ident: 88135_CR81
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– start-page: 43
  volume-title: Genetic Algorithm
  year: 2019
  ident: 88135_CR57
– volume: 11
  start-page: 3798
  year: 2022
  ident: 88135_CR18
  publication-title: Electronics
  doi: 10.3390/electronics11223798
– volume: 100
  year: 2021
  ident: 88135_CR55
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104210
– volume: 57
  start-page: 45
  year: 2024
  ident: 88135_CR71
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10678-y
– volume: 10
  start-page: 6620
  year: 2020
  ident: 88135_CR28
  publication-title: Appl. Sci.
  doi: 10.3390/app10196620
– ident: 88135_CR79
  doi: 10.1109/CEC.2007.4424748
– volume: 37
  year: 2024
  ident: 88135_CR75
  publication-title: Int. J. Commun Syst.
  doi: 10.1002/dac.5886
– volume: 56
  start-page: 1919
  year: 2023
  ident: 88135_CR22
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10567-4
– volume: 14
  start-page: 22884
  year: 2024
  ident: 88135_CR77
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-73932-5
– volume: 21
  start-page: 1
  year: 2020
  ident: 88135_CR80
  publication-title: BMC Genom.
  doi: 10.1186/s12864-019-6413-7
– volume: 1
  start-page: 36
  year: 2013
  ident: 88135_CR60
  publication-title: Int. J. Swarm Intell.
– start-page: 13
  volume-title: K-Nearest Neighbors
  year: 2013
  ident: 88135_CR84
– volume: 53
  start-page: 1
  year: 2020
  ident: 88135_CR25
  publication-title: In Conference: Midwest Instruction and Computing Symposium (MICS)
– volume: 10
  start-page: 2249
  year: 2024
  ident: 88135_CR66
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-023-01265-3
– start-page: 14
  volume-title: Overview of Artificial Neural Networks
  year: 2009
  ident: 88135_CR87
– ident: 88135_CR39
  doi: 10.1109/FG.2017.137
– volume: 39
  start-page: 459
  year: 2007
  ident: 88135_CR59
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 22
  start-page: 1686
  year: 2020
  ident: 88135_CR15
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2020.2986444
– volume: 10
  start-page: 1317
  year: 2020
  ident: 88135_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57897-9
SSID ssj0000529419
Score 2.5210397
Snippet Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among...
Abstract Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3555
SubjectTerms 631/114/2164
631/114/2397
631/114/2400
631/114/2401
Artificial intelligence
CatBoost
Chimp optimization algorithm
Classification
Data collection
Datasets
Decision making
Electrical engineering
Humanities and Social Sciences
Internet
Internet of Things
LightGBM
Machine learning
Metaheuristics algorithms
Metaverse
multidisciplinary
Neural networks
Optimization
Optimization algorithms
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Lb9YwDI9ggLQL4znKBgoSN4jWNO2anBAgJpBg2gHQblHbOOyTtnZb-4H232OnacfHYxeubVIl9esX27EZe14bl5ZOg9DGa4H2NqUkgF1RmawAgyYegh_y68dyf18fHpqD6HDrY1rlpBODonZdQz7yHSURapdUHfzV6ZmgrlEUXY0tNK6zG4hsJKV0fcoOZh8LRbFyaeJdmVTpnR7tFd0pywqhtVSFMCv2KJTt_xvW_DNl8re4aTBHexv_u5E77HYEovz1yDl32TVo77FbY2vKi_us_9DSdQykGncwhHytli9afgJDRZkcwH-5IscXwa8IA-88H0InUD6WiO55fRHmHMEy1oTmwxJVOx9-dPyYMpa4n_LDHrAve-8-v30vYoMG0RS5HITM0qzZdXmlvENFZbz03njENAh6vCpRdRmd17lvAGEHFYLx4CvtSumhdF7n6iFba7sWHjGOmiZXXkJdVggyHWicVZKmxm9LqaqEyYlMtonVy6mJxrENUXSl7Uhai6S1gbTWJOzFPOd0rN1x5eg3RP15JNXdDg-68282irHNlQM619dQ5HgURu2HuzHKGYR1qC7rhG1PRLdRGfT2kuIJeza_RjGm2EzVQrccxxiFaE0lbHNktXkl-BdLPPhlCdMrTLiy1NU37eIolAqnkDwKAU59OfHr5br-_S8eX72NLbaekQilUmR6m60hP8ITdrP5Piz686dBBn8C-605VA
  priority: 102
  providerName: ProQuest
Title Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework
URI https://link.springer.com/article/10.1038/s41598-025-88135-9
https://www.ncbi.nlm.nih.gov/pubmed/39875592
https://www.proquest.com/docview/3160674610
https://www.proquest.com/docview/3160938223
https://pubmed.ncbi.nlm.nih.gov/PMC11775292
https://doaj.org/article/43de0713be54407488d7193d9397030b
Volume 15
WOSCitedRecordID wos001409657900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BC1IviDeBsjISN4gax0ltHylqRSW6ihCg5WQlsa2uVLKoyYL675mxs8suzwsXHxI7smY-z4zj8TcAzxttM2mVS5X2KkV_m1ESwGFa67x0Gl28C_8hP76V06mazXS1UeqLcsIiPXAU3EEhrKOdVOPKAjcfiDcrMeiwGh0pArQh65tJvbGZiqzeuS64Hm_JZEId9Oip6DZZXqZKcVGmessTBcL-30WZvyZL_nRiGhzRyW24NUaQ7FWc-R245rq7cDPWlLy6B_1pR_coUNzMuiEkWnVs3rHPbqgpBcOxjbttbB5-CLqBLTwbQglPFrmde9ZchTHnbjmSObNhiTaZDd8W7IJSjZhfJXbdhw8nx-9fv0nHygppWxZ8SHme5e2hLWrhLVoY7bn32mMwgtGKFxJtjlZFU_jWYbxADC7e-ZoE7520XhXiAex0i849AoYmohCeu0bWGB1ap3CUJBOL3-Zc1AnwlZRNO9KOU_WLCxOOv4UyUTMGNWOCZoxO4MV6zJdIuvHX3kekvHVPIswODxBGZoSR-ReMEthfqd6Mq7g3guP2ThIjfQLP1q9x_dGhSt25xTL20QLDLJHAw4iU9UxQihJ3bHkCagtDW1PdftPNzwPHN52lI4Zx6MsV3H7M68-yePw_ZPEE9nJaJxlPc7UPO4ha9xRutF-HeX85getyJkOrJrB7dDyt3k3C4sP2LK-oldjuVqdn1afv7sgwow
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFHXcdLYB4R4VV11WfVQUG9uEtt0pZKUJku1f4rfyIzzKMujtx64JnZkO9_MNx6PZwCe5cqMUiNtKJWTIfLtiIIANsJMRYlVSPHW-yE_T9LpVO7tqZ0V-NHfhaGwyl4nekVtqoJ85OuCo6mdUnbw10ffQqoaRaerfQmNFhbbdnGCW7b61fg9_t_nUbT5YffdVthVFQiLJOZNyHG7X2yYOBPOoHQpx51TDokYmdqJFOVNyTiPXWGRKyl7ibMukyblzqbGyVjgdy_AxZgyi1GoYLQz-HTo1CzmqrubMxJyvUZ-pDtsURJKyUUSqiX-82UC_mbb_hmi-ds5rae_zev_28LdgGudoc3etJJxE1ZseQsut6U3F7ehHpd03QRRyYxtfDxayWYl-2qbjCJVLPvlCiCbeb-pbVjlWOMrnbI2BXbN8oXvc2DnXc5r1syRulhzUrFDishiro9_uwOfzmXGd2G1rEp7Hxhq0lg4bvM0QyPaWIm9UmIi_DbnIguA97DQRZednYqEHGofJSCkbqGkEUraQ0mrAF4MfY7a3CRntn5LaBtaUl5x_6A6_qI7NaVjYSz5LXKbEMBRu-NslDAKzVakgzyAtR5kulN2tT5FWABPh9eopujsKSttNW_bKIHWqAjgXgvtYSS4iilubKMA5BLol4a6_KacHfhU6BRygEKHXV_28nE6rn-vxYOzp_EErmztfpzoyXi6_RCuRiS-Ix5Gcg1WEZv2EVwqvjez-vixl38G--ctNz8B0UeWBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvCmBAkaCE0S7jp3GPiAElBWrltUeAJWTSWK7XakkpclS7V_j1zF2HmV59NYD18SObOeb-cbj8QzAk0zqUaKFCYW0IkS-HbkggK0wlVFsJFK88X7IT7vJdCr29uRsDX50d2FcWGWnE72i1mXufORDRtHUTlx28KFtwyJm2-OXR99CV0HKnbR25TQaiOyY5Qlu36oXk23810-jaPz2w5t3YVthIMxjTuuQ4tY_39I8ZVajpElLrZUWSRlZ27IEZU8KnnGbG-RNl8nEGpsKnVBrEm0FZ_jdC7COJjmPBrA-m7yffe49PO4MjVPZ3tQZMTGskC3djbYoDoWgLA7lChv6ogF_s3T_DNj87dTWk-H42v-8jNfhamuCk1eNzNyANVPchEtNUc7lLagmhbuIgngl2tQ-Uq0g84J8NXXqYlgM-eVyIJl7j6qpSWlJ7WugkiY5dkWype9zYBZtNmxSL5DUSH1SkkMXq0VsFxl3Gz6ey4zvwKAoC3MXCOpYziw1WZKiea2NwF6J4yj8NqUsDYB2EFF5m7fdlQ85VD5-gAnVwEohrJSHlZIBPOv7HDVZS85s_dohr2_pMo77B-XxvmoVmOJMG-fRyEzMOdqdws1GMi3RoEWiyALY7ACnWjVYqVO0BfC4f40KzJ1KpYUpF00bydBOZQFsNDDvR4KrmOCWNwpArAjAylBX3xTzA58k3QUjoABi1-edrJyO699rce_saTyCyyguancy3bkPVyInySMaRmITBghN8wAu5t_reXX8sFUGBL6ct-D8BB-moE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+in+metaverse+environment+internet+of+things+systems+by+metaheuristics+tuned+two+level+framework&rft.jtitle=Scientific+reports&rft.au=Milos+Antonijevic&rft.au=Miodrag+Zivkovic&rft.au=Milica+Djuric+Jovicic&rft.au=Bosko+Nikolic&rft.date=2025-01-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1038%2Fs41598-025-88135-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43de0713be54407488d7193d9397030b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon