Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework
Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen inte...
Uložené v:
| Vydané v: | Scientific reports Ročník 15; číslo 1; s. 3555 - 31 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
28.01.2025
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems. |
|---|---|
| AbstractList | Abstract Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems. Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture’s efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model’s decision-making process, supporting future data collection efforts and enhancing security of these systems. Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems.Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among physical and virtual domains. Integrating sensor devices, wearables, and smart gadgets into Metaverse environment enables IoT to deepen interactions and enhance immersion, both crucial for a completely integrated, data-driven Metaverse. Nevertheless, because IoT devices are often built with minimal hardware and are connected to the Internet, they are highly susceptible to different types of cyberattacks, presenting a significant security problem for maintaining a secure infrastructure. Conventional security techniques have difficulty countering these evolving threats, highlighting the need for adaptive solutions powered by artificial intelligence (AI). This work seeks to improve trust and security in IoT edge devices integrated in to the Metaverse. This study revolves around hybrid framework that combines convolutional neural networks (CNN) and machine learning (ML) classifying models, like categorical boosting (CatBoost) and light gradient-boosting machine (LightGBM), further optimized through metaheuristics optimizers for leveraged performance. A two-leveled architecture was designed to manage intricate data, enabling the detection and classification of attacks within IoT networks. A thorough analysis utilizing a real-world IoT network attacks dataset validates the proposed architecture's efficacy in identification of the specific variants of malevolent assaults, that is a classic multi-class classification challenge. Three experiments were executed utilizing data open to public, where the top models attained a supreme accuracy of 99.83% for multi-class classification. Additionally, explainable AI methods offered valuable supplementary insights into the model's decision-making process, supporting future data collection efforts and enhancing security of these systems. |
| ArticleNumber | 3555 |
| Author | Nikolic, Bosko Bacanin, Nebojsa Djuric Jovicic, Milica Jovanovic, Luka Zivkovic, Miodrag Perisic, Jasmina Antonijevic, Milos Milovanovic, Marina Abdel-Salam, Mahmoud |
| Author_xml | – sequence: 1 givenname: Milos surname: Antonijevic fullname: Antonijevic, Milos organization: Singidunum University – sequence: 2 givenname: Miodrag surname: Zivkovic fullname: Zivkovic, Miodrag organization: Singidunum University – sequence: 3 givenname: Milica surname: Djuric Jovicic fullname: Djuric Jovicic, Milica organization: Innovation Centre, School of Electrical Engineering, University of Belgrade – sequence: 4 givenname: Bosko surname: Nikolic fullname: Nikolic, Bosko organization: School of Electrical Engineering, University of Belgrade – sequence: 5 givenname: Jasmina surname: Perisic fullname: Perisic, Jasmina organization: Singidunum University – sequence: 6 givenname: Marina surname: Milovanovic fullname: Milovanovic, Marina organization: Singidunum University – sequence: 7 givenname: Luka surname: Jovanovic fullname: Jovanovic, Luka organization: Singidunum University – sequence: 8 givenname: Mahmoud surname: Abdel-Salam fullname: Abdel-Salam, Mahmoud organization: Faculty of Computer and Information Science, Mansoura University – sequence: 9 givenname: Nebojsa surname: Bacanin fullname: Bacanin, Nebojsa email: nbacanin@singidunum.ac.rs organization: Singidunum University, Saveetha School of Engineering, SIMATS, Sinergija University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39875592$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vEzEUtFARLaV_gAOyxIXLgr92bZ8QqviIVIkLnC1n9zlx2LWL7U2Vf18naaHtob7Y8psZzXtvXqOTEAMg9JaSj5Rw9SkL2mrVENY2SlHeNvoFOmNEtA3jjJ08eJ-ii5w3pJ6WaUH1K3TKtZJtq9kZyotQ0px9DHiAAn3Zv3zAExS7hZQBQ9j6FMMEodRCgRSg4OhwWfuwyjjvcoEp4-XuwFnDnHwuvs-4zAEGXG4iHmELI3bJTnAT05836KWzY4aLu_sc_f729dflj-bq5_fF5Zerpm8FLQ1lhPXdICx3A5eddtQ57bpWac0dl7KrXYilcD1QXXvT2oGzapDUgRycEvwcLY66Q7Qbc538ZNPOROvN4SOmlbGpWh3BCD4AkZQvoRWCSKH2OpoPmmtJOFlWrc9Hret5OcHQ12kkOz4SfVwJfm1WcWsolbLOnVWFD3cKKf6dIRcz-dzDONoAcc6G045orhjjFfr-CXQT5xTqrA6oToquZuAcvXto6Z-X--VWgDoC-hRzTuBM74vdb7g69KOhxOyjZI5RMjVK5hAloyuVPaHeqz9L4kdSruCwgvTf9jOsW67C3Qk |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_110982 crossref_primary_10_3389_fpsyg_2025_1579259 crossref_primary_10_3390_biomimetics10080542 crossref_primary_10_1016_j_suscom_2025_101174 crossref_primary_10_1007_s42979_025_03879_5 crossref_primary_10_1038_s41598_025_12775_0 crossref_primary_10_1186_s44147_025_00635_7 crossref_primary_10_1109_ACCESS_2025_3550378 crossref_primary_10_3390_s25123720 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_1016_j_compbiomed_2025_110835 crossref_primary_10_3389_fphy_2025_1553224 crossref_primary_10_1007_s10586_025_05228_w crossref_primary_10_1016_j_jjimei_2025_100356 crossref_primary_10_1016_j_knosys_2025_113286 |
| Cites_doi | 10.1002/cpe.8252 10.1016/j.eswa.2020.113338 10.1002/ett.4969 10.1145/3065386 10.1002/cpe.8091 10.1016/j.knosys.2023.111081 10.57019/jmv.1286526 10.1016/j.caeai.2022.100082 10.1016/j.engfailanal.2023.107219 10.1109/ACCESS.2022.3233596 10.3390/s20133625 10.1109/ACCESS.2024.3446653 10.1145/2939672.2939785 10.4310/SII.2009.v2.n3.a8 10.1016/j.asoc.2024.111434 10.1016/j.aei.2023.102130 10.1007/s11042-024-18295-9 10.1109/CEC48606.2020.9185583 10.1016/j.swevo.2021.100973 10.3390/math12182918 10.3390/s23135941 10.1109/ICACITE53722.2022.9823766 10.1504/IJBIC.2013.055093 10.1080/01621459.1972.10481232 10.7717/peerj-cs.1565 10.1002/ett.5056 10.3390/encyclopedia2010031 10.1109/JIOT.2023.3278329 10.3390/app10124102 10.1109/JAS.2021.1004129 10.1007/978-981-97-1488-9_26 10.3390/axioms12030266 10.1109/MCOM.018.2300095 10.1007/s00521-023-09366-3 10.1002/wics.1278 10.3390/jimaging6100110 10.3390/su151612563 10.1016/j.ijcip.2024.100674 10.1109/4235.585893 10.1002/0470011815.b2a15177 10.21037/atm.2020.02.44 10.7717/peerj-cs.1795 10.26599/BDMA.2022.9020047 10.1109/COMST.2020.2988293 10.1007/s10586-024-04351-4 10.1023/A:1010933404324 10.1109/MSP.2012.2205597 10.1016/S0305-0548(97)00031-2 10.1016/j.sintl.2024.100297 10.1016/j.rineng.2024.103171 10.1145/507533.507538 10.1093/sysbio/34.4.449 10.3390/app132312687 10.1117/1.JEI.31.6.061815 10.1007/s11831-023-09975-0 10.1016/j.eswa.2021.116158 10.1016/j.eswa.2020.114107 10.1109/JIOT.2022.3232845 10.1016/j.asoc.2023.110659 10.1109/ICNN.1995.488968 10.1155/2018/6973103 10.1007/s00500-022-07780-8 10.1109/COMST.2022.3202047 10.1109/ACCESS.2023.3299589 10.1016/j.jhydrol.2023.129599 10.1016/j.advengsoft.2016.01.008 10.3390/electronics11223798 10.1016/j.engappai.2021.104210 10.1007/s10462-023-10678-y 10.3390/app10196620 10.1109/CEC.2007.4424748 10.1002/dac.5886 10.1007/s10462-023-10567-4 10.1038/s41598-024-73932-5 10.1186/s12864-019-6413-7 10.1007/s40747-023-01265-3 10.1109/FG.2017.137 10.1007/s10898-007-9149-x 10.1109/COMST.2020.2986444 10.1038/s41598-020-57897-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-025-88135-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database (NC LIVE) ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 31 |
| ExternalDocumentID | oai_doaj_org_article_43de0713be54407488d7193d9397030b PMC11775292 39875592 10_1038_s41598_025_88135_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Science Fund of the Republic of Serbia grantid: 7502; 7373 funderid: http://dx.doi.org/10.13039/501100016047 – fundername: Science Fund of the Republic of Serbia grantid: 7502 – fundername: Science Fund of the Republic of Serbia grantid: 7373 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-1202c6d4a3fd3769f1ff9f658993f37763984b4fce1900599fefa8d71fe7df843 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409657900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:50:56 EDT 2025 Tue Nov 04 02:03:23 EST 2025 Fri Sep 05 06:10:05 EDT 2025 Tue Oct 07 09:11:03 EDT 2025 Thu Apr 03 07:03:55 EDT 2025 Tue Nov 18 21:44:21 EST 2025 Sat Nov 29 03:22:27 EST 2025 Fri Feb 21 02:36:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Metaheuristics algorithms Chimp optimization algorithm Metaverse LightGBM CatBoost Optimization |
| Language | English |
| License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-1202c6d4a3fd3769f1ff9f658993f37763984b4fce1900599fefa8d71fe7df843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/43de0713be54407488d7193d9397030b |
| PMID | 39875592 |
| PQID | 3160674610 |
| PQPubID | 2041939 |
| PageCount | 31 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_43de0713be54407488d7193d9397030b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11775292 proquest_miscellaneous_3160938223 proquest_journals_3160674610 pubmed_primary_39875592 crossref_citationtrail_10_1038_s41598_025_88135_9 crossref_primary_10_1038_s41598_025_88135_9 springer_journals_10_1038_s41598_025_88135_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-28 |
| PublicationDateYYYYMMDD | 2025-01-28 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | P Dakic (88135_CR77) 2024; 14 M Zivkovic (88135_CR18) 2022; 11 YK Saheed (88135_CR32) 2024; 155 MA Al-Garadi (88135_CR14) 2020; 22 YK Saheed (88135_CR27) 2024; 45 J Zou (88135_CR87) 2009 F Hussain (88135_CR15) 2020; 22 BB Schultz (88135_CR89) 1985; 34 X-S Yang (88135_CR61) 2013; 5 SS Shapiro (88135_CR90) 1972; 67 Y Huang (88135_CR12) 2023; 6 Y Wang (88135_CR7) 2022; 25 88135_CR64 A Petrovic (88135_CR17) 2024; 12 BAS Emambocus (88135_CR52) 2023; 11 R Zhao (88135_CR10) 2023; 3 R Cheng (88135_CR11) 2023; 62 S Mystakidis (88135_CR1) 2022; 2 S Albawi (88135_CR36) 2018; 2018 88135_CR62 M Khishe (88135_CR21) 2020; 149 H Wang (88135_CR3) 2023; 10 S Mirjalili (88135_CR57) 2019 N Savanović (88135_CR76) 2023; 15 D Micci-Barreca (88135_CR45) 2001; 3 L Jovanovic (88135_CR20) 2023; 22 B de Ville (88135_CR82) 2013; 5 88135_CR29 G-J Hwang (88135_CR5) 2022; 3 D Połap (88135_CR23) 2021; 166 M Bjekic (88135_CR43) 2023; 9 D Karaboga (88135_CR59) 2007; 39 Z Lao (88135_CR51) 2023; 148 88135_CR31 B Predić (88135_CR66) 2024; 10 88135_CR30 X-S Yang (88135_CR60) 2013; 1 88135_CR74 88135_CR37 M Bukumira (88135_CR44) 2022; 31 J Tang (88135_CR54) 2021; 8 M Pavlov-Kagadejev (88135_CR71) 2024; 57 88135_CR79 RF Woolson (88135_CR91) 2005 D Wolpert (88135_CR16) 1997; 1 88135_CR78 D Chicco (88135_CR80) 2020; 21 S Thapa (88135_CR25) 2020; 53 K Li (88135_CR6) 2022; 10 88135_CR70 L Li (88135_CR50) 2023; 58 S Lundberg (88135_CR93) 2017; 1705 H Mrabet (88135_CR8) 2020; 20 88135_CR39 A Chattopadhyay (88135_CR42) 2020; 10 T Zivkovic (88135_CR65) 2023; 146 YK Saheed (88135_CR92) 2024; 24 Z Amiri (88135_CR73) 2024; 35 K Zanbouri (88135_CR75) 2024; 37 88135_CR41 L Breiman (88135_CR83) 2001; 45 88135_CR85 88135_CR47 88135_CR46 L Velasco (88135_CR69) 2024; 31 J Bai (88135_CR63) 2023; 282 T Hastie (88135_CR86) 2009; 2 N Mladenović (88135_CR58) 1997; 24 X Guo (88135_CR49) 2023; 621 88135_CR2 C Stoean (88135_CR68) 2023; 12 C-F Tsai (88135_CR28) 2020; 10 A Heidari (88135_CR4) 2024; 36 L Tawalbeh (88135_CR9) 2020; 10 M Asadi (88135_CR13) 2024; 35 A Krizhevsky (88135_CR35) 2017; 60 M Salb (88135_CR19) 2023; 13 YK Saheed (88135_CR33) 2025; 6 M Dobrojevic (88135_CR72) 2024; 80 L Abualigah (88135_CR24) 2022; 191 BB Sinha (88135_CR48) 2023; 15 MA Tawhid (88135_CR53) 2023; 27 O Kramer (88135_CR84) 2013 F Lombardi (88135_CR40) 2020; 6 S Mirjalili (88135_CR81) 2016; 95 A LaTorre (88135_CR88) 2021; 67 H Jia (88135_CR22) 2023; 56 88135_CR56 M Rostami (88135_CR55) 2021; 100 Z Amiri (88135_CR26) 2024; 36 G Hinton (88135_CR38) 2012; 29 A Vakili (88135_CR67) 2024; 36 ECP Neto (88135_CR34) 2023; 23 |
| References_xml | – volume: 36 year: 2024 ident: 88135_CR4 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.8252 – volume: 149 year: 2020 ident: 88135_CR21 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – volume: 35 year: 2024 ident: 88135_CR73 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.4969 – volume: 60 start-page: 84 year: 2017 ident: 88135_CR35 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 36 year: 2024 ident: 88135_CR67 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.8091 – volume: 282 year: 2023 ident: 88135_CR63 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.111081 – volume: 3 start-page: 93 year: 2023 ident: 88135_CR10 publication-title: J. Metaverse doi: 10.57019/jmv.1286526 – volume: 3 year: 2022 ident: 88135_CR5 publication-title: Comput. Educ. Artif. Intell. doi: 10.1016/j.caeai.2022.100082 – volume: 148 year: 2023 ident: 88135_CR51 publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107219 – volume: 11 start-page: 1280 year: 2023 ident: 88135_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3233596 – volume: 20 start-page: 3625 year: 2020 ident: 88135_CR8 publication-title: Sensors doi: 10.3390/s20133625 – ident: 88135_CR30 doi: 10.1109/ACCESS.2024.3446653 – ident: 88135_CR85 doi: 10.1145/2939672.2939785 – ident: 88135_CR37 – volume: 2 start-page: 349 year: 2009 ident: 88135_CR86 publication-title: Stat. Interface doi: 10.4310/SII.2009.v2.n3.a8 – volume: 155 year: 2024 ident: 88135_CR32 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111434 – volume: 22 start-page: 543 year: 2023 ident: 88135_CR20 publication-title: J. Web Eng. – volume: 58 year: 2023 ident: 88135_CR50 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102130 – ident: 88135_CR31 doi: 10.1007/s11042-024-18295-9 – ident: 88135_CR62 doi: 10.1109/CEC48606.2020.9185583 – ident: 88135_CR46 – volume: 67 year: 2021 ident: 88135_CR88 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2021.100973 – volume: 12 start-page: 2918 year: 2024 ident: 88135_CR17 publication-title: Mathematics doi: 10.3390/math12182918 – volume: 23 start-page: 5941 year: 2023 ident: 88135_CR34 publication-title: Sensors doi: 10.3390/s23135941 – ident: 88135_CR2 doi: 10.1109/ICACITE53722.2022.9823766 – volume: 5 start-page: 141 year: 2013 ident: 88135_CR61 publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2013.055093 – volume: 67 start-page: 215 year: 1972 ident: 88135_CR90 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1972.10481232 – ident: 88135_CR78 – ident: 88135_CR47 – volume: 9 year: 2023 ident: 88135_CR43 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1565 – volume: 35 year: 2024 ident: 88135_CR13 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.5056 – volume: 2 start-page: 486 year: 2022 ident: 88135_CR1 publication-title: Encyclopedia doi: 10.3390/encyclopedia2010031 – volume: 10 start-page: 14671 year: 2023 ident: 88135_CR3 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3278329 – volume: 15 start-page: 2053 year: 2023 ident: 88135_CR48 publication-title: Int. J. Inf. Technol. – volume: 10 start-page: 4102 year: 2020 ident: 88135_CR9 publication-title: Appl. Sci. doi: 10.3390/app10124102 – volume: 8 start-page: 1627 year: 2021 ident: 88135_CR54 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004129 – ident: 88135_CR70 doi: 10.1007/978-981-97-1488-9_26 – volume: 12 start-page: 266 year: 2023 ident: 88135_CR68 publication-title: Axioms doi: 10.3390/axioms12030266 – volume: 62 start-page: 156 year: 2023 ident: 88135_CR11 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.018.2300095 – volume: 36 start-page: 5757 year: 2024 ident: 88135_CR26 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09366-3 – volume: 5 start-page: 448 year: 2013 ident: 88135_CR82 publication-title: WIREs Comput. Stat. doi: 10.1002/wics.1278 – volume: 6 start-page: 110 year: 2020 ident: 88135_CR40 publication-title: J. Imaging doi: 10.3390/jimaging6100110 – volume: 15 start-page: 12563 year: 2023 ident: 88135_CR76 publication-title: Sustainability doi: 10.3390/su151612563 – volume: 45 year: 2024 ident: 88135_CR27 publication-title: Int. J. Crit. Infrastruct. Prot. doi: 10.1016/j.ijcip.2024.100674 – volume: 1 start-page: 67 year: 1997 ident: 88135_CR16 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume-title: In Encyclopedia of Biostatistics year: 2005 ident: 88135_CR91 doi: 10.1002/0470011815.b2a15177 – ident: 88135_CR41 doi: 10.21037/atm.2020.02.44 – ident: 88135_CR64 doi: 10.7717/peerj-cs.1795 – volume: 6 start-page: 234 year: 2023 ident: 88135_CR12 publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2022.9020047 – volume: 22 start-page: 1646 year: 2020 ident: 88135_CR14 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2988293 – ident: 88135_CR74 doi: 10.1007/s10586-024-04351-4 – volume: 45 start-page: 5 year: 2001 ident: 88135_CR83 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 29 start-page: 82 year: 2012 ident: 88135_CR38 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 24 start-page: 1097 year: 1997 ident: 88135_CR58 publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(97)00031-2 – volume: 6 year: 2025 ident: 88135_CR33 publication-title: Sens. Int. doi: 10.1016/j.sintl.2024.100297 – volume: 24 year: 2024 ident: 88135_CR92 publication-title: Results Eng. doi: 10.1016/j.rineng.2024.103171 – volume: 3 start-page: 27 year: 2001 ident: 88135_CR45 publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/507533.507538 – volume: 1705 start-page: 07874 year: 2017 ident: 88135_CR93 publication-title: A unified approach to interpreting model predictions – volume: 34 start-page: 449 year: 1985 ident: 88135_CR89 publication-title: Syst. Biol. doi: 10.1093/sysbio/34.4.449 – volume: 13 start-page: 12687 year: 2023 ident: 88135_CR19 publication-title: Appl. Sci. doi: 10.3390/app132312687 – volume: 31 start-page: 061815 year: 2022 ident: 88135_CR44 publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.31.6.061815 – volume: 31 start-page: 125 year: 2024 ident: 88135_CR69 publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-023-09975-0 – volume: 191 year: 2022 ident: 88135_CR24 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: 166 year: 2021 ident: 88135_CR23 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114107 – volume: 10 start-page: 4148 year: 2022 ident: 88135_CR6 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3232845 – volume: 146 year: 2023 ident: 88135_CR65 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110659 – volume: 80 start-page: 4997 year: 2024 ident: 88135_CR72 publication-title: Comput. Mater. Contin. – ident: 88135_CR56 doi: 10.1109/ICNN.1995.488968 – volume: 2018 start-page: 6973103 year: 2018 ident: 88135_CR36 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/6973103 – volume: 27 start-page: 8867 year: 2023 ident: 88135_CR53 publication-title: Soft. Comput. doi: 10.1007/s00500-022-07780-8 – volume: 25 start-page: 319 year: 2022 ident: 88135_CR7 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2022.3202047 – ident: 88135_CR29 doi: 10.1109/ACCESS.2023.3299589 – volume: 621 year: 2023 ident: 88135_CR49 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129599 – volume: 95 start-page: 51 year: 2016 ident: 88135_CR81 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – start-page: 43 volume-title: Genetic Algorithm year: 2019 ident: 88135_CR57 – volume: 11 start-page: 3798 year: 2022 ident: 88135_CR18 publication-title: Electronics doi: 10.3390/electronics11223798 – volume: 100 year: 2021 ident: 88135_CR55 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104210 – volume: 57 start-page: 45 year: 2024 ident: 88135_CR71 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10678-y – volume: 10 start-page: 6620 year: 2020 ident: 88135_CR28 publication-title: Appl. Sci. doi: 10.3390/app10196620 – ident: 88135_CR79 doi: 10.1109/CEC.2007.4424748 – volume: 37 year: 2024 ident: 88135_CR75 publication-title: Int. J. Commun Syst. doi: 10.1002/dac.5886 – volume: 56 start-page: 1919 year: 2023 ident: 88135_CR22 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10567-4 – volume: 14 start-page: 22884 year: 2024 ident: 88135_CR77 publication-title: Sci. Rep. doi: 10.1038/s41598-024-73932-5 – volume: 21 start-page: 1 year: 2020 ident: 88135_CR80 publication-title: BMC Genom. doi: 10.1186/s12864-019-6413-7 – volume: 1 start-page: 36 year: 2013 ident: 88135_CR60 publication-title: Int. J. Swarm Intell. – start-page: 13 volume-title: K-Nearest Neighbors year: 2013 ident: 88135_CR84 – volume: 53 start-page: 1 year: 2020 ident: 88135_CR25 publication-title: In Conference: Midwest Instruction and Computing Symposium (MICS) – volume: 10 start-page: 2249 year: 2024 ident: 88135_CR66 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-023-01265-3 – start-page: 14 volume-title: Overview of Artificial Neural Networks year: 2009 ident: 88135_CR87 – ident: 88135_CR39 doi: 10.1109/FG.2017.137 – volume: 39 start-page: 459 year: 2007 ident: 88135_CR59 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – volume: 22 start-page: 1686 year: 2020 ident: 88135_CR15 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2020.2986444 – volume: 10 start-page: 1317 year: 2020 ident: 88135_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-020-57897-9 |
| SSID | ssj0000529419 |
| Score | 2.5210397 |
| Snippet | Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data transfer among... Abstract Internet of Things (IoT) is one of the most important emerging technologies that supports Metaverse integrating process, by enabling smooth data... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3555 |
| SubjectTerms | 631/114/2164 631/114/2397 631/114/2400 631/114/2401 Artificial intelligence CatBoost Chimp optimization algorithm Classification Data collection Datasets Decision making Electrical engineering Humanities and Social Sciences Internet Internet of Things LightGBM Machine learning Metaheuristics algorithms Metaverse multidisciplinary Neural networks Optimization Optimization algorithms Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: ProQuest Science Database (NC LIVE) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELaggNQLOzRQkJG4gdU4dmL7hABRwYGqB5B6ixx7TJ9UktLkgfrvGTtLeSy9cI1tyc4sHs_yDSHPubE5OFFFzz0wabxkFnhghXcF-MpA0GOzCXVwoI-OzOHkcOuntMpZJyZF7TsXfeR7gqOprSI6-KvTbyx2jYrR1amFxlVyDS0bHlO6PhaHi48lRrEkN1OtTC70Xo_3VawpK0qmNRclMxv3UYLt_5ut-WfK5G9x03Qd7d_634PcJjcnQ5S-HjnnDrkC7V1yY2xNeX6P9B_aWI6BVKMehpSv1dJVS7_CYGMmB9BfSuToKvkVYaBdoEPqBEpHiOieNudpzTGsJ0xoOqxRtdPhR0dPYsYSDXN-2H3yef_dp7fv2dSggblS8oHxIi9c5aUVwaOiMoGHYALaNGj0BKFQdRktGxkcoNkRgWACBKu94gGUD1qKB2Sr7VrYIbSsjBaVVVY1QVa6tKVyOYRGgwi5UzYjfCZT7Sb08thE46ROUXSh65G0NZK2TqStTUZeLGtOR-yOS2e_idRfZkbc7fShO_tST2JcS-EhvusbKCU-hVH74WmM8AbNOlSXTUZ2Z6LXkzLo6wuKZ-TZMoxiHGMztoVuPc4xAq01kZGHI6stO8G_qPDhV2REbzDhxlY3R9rVcYIKjyF5FAJc-nLm14t9_ftfPLr8GI_JdhFFKOes0LtkC_kRnpDr7vuw6s-eJhn8CdXoOtU priority: 102 providerName: ProQuest |
| Title | Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework |
| URI | https://link.springer.com/article/10.1038/s41598-025-88135-9 https://www.ncbi.nlm.nih.gov/pubmed/39875592 https://www.proquest.com/docview/3160674610 https://www.proquest.com/docview/3160938223 https://pubmed.ncbi.nlm.nih.gov/PMC11775292 https://doaj.org/article/43de0713be54407488d7193d9397030b |
| Volume | 15 |
| WOSCitedRecordID | wos001409657900029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBakXxLuBsjISN4gaPxLbR4pa0UNXEQJpOVlOMlZXKlnEZkH994zt7LLL88LFh8SWrJnP9oxn_A0hL5hxBbSiCjf3kEvTydwB8znvWg5dZcDrVGxCTad6NjP1VqmvkBOW6IGT4I6l6CB4Ug2UEp0PxFun0OjoDB6kCNAm7L6FMlvOVGL15kYyM76SKYQ-XuJJFV6T8TLXmokyNzsnUSTs_52V-Wuy5E8R03gQnd0ld0YLkr5OM79HbkB_n9xONSWvH5DleR_eUaC4aQdDTLTq6bynn2BwIQUD6NbbNjqPF4Iw0IWnQyzhSRO385I213HMJaxGMmc6rHBPpsO3Bb0KqUbUrxO7HpIPZ6fv37zNx8oKeVtKNuSMF7ytOumE73CHMZ55bzwaI2iteKFwzzFaNtK3gPZCYHDx4F0QvAfVeS3FI7LXL3o4JLSsjBaVU041Xla6dKVqC_CNBuGLVrmMsLWUbTvSjofqF1c2hr-FtkkzFjVjo2asycjLzZjPiXTjr71PgvI2PQNhdvyAMLIjjOy_YJSRo7Xq7biKl1YwdO9UYKTPyPPNb1x_IajielisUh8j0MwSGXmckLKZCUpRocfGM6J3MLQz1d0__fwycnyHWDpiGIe-WsPtx7z-LIsn_0MWT8kBD-ukYDnXR2QPUQvPyK326zBffpmQm2qmYqsnZP_kdFq_m8TFh-0Fr0OrsN2vzy_qj98B9EQyJA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKAcGFnRIoYCQ4QdRJ7CT2ASG2qqOWUQ9F6s0k8TMdqU1Kk6GaP8Vv5D0nmTIsvfXANbEj2_ne4rcy9jzS-QhKkZLlHkKprQxziFwY2zIGm2pwqms2kU0man9f766wH0MuDIVVDjzRM2pbl2Qj3xARqtoZVQd_c_wtpK5R5F0dWmh0sNiG-Sle2ZrX4w_4f1_E8ebHvfdbYd9VICwTGbVhhNf9MrUyF84idWkXOacdCmKU1E5kSG9ayUK6ElBWUvUSBy5XNoscZNYpKfC7l9hlSZXFKFQw3l3YdMhrJiPd5-aMhNpoUD5SDluchEpFIgn1kvzzbQL-ptv-GaL5m5_Wi7_Nm__bwd1iN3pFm7_tKOM2W4HqDrvatd6c32XNuKJ0E0Qlt9D6eLSKTyt-BG1OkSrAf0kB5FNvN4WW1463vtMp70pgN7yY-zkHMOtrXvN2hqKLt6c1P6SILO6G-Ld77POF7Pg-W63qCh4wnqRaiTTP8qxwMlVJnmTlCFyhQLhRmeUBiwZYmLKvzk5NQg6NjxIQynRQMggl46FkdMBeLuYcd7VJzh39jtC2GEl1xf2D-uSr6dmUkcIC2S0KSAjgyN1xN1pYjWorioMiYOsDyEzP7BpzhrCAPVu8RjZFvqe8gnrWjdECtVERsLUO2ouV4ClmeLGNA6aWQL-01OU31fTAl0KnkAMkOpz6aqCPs3X9-ywenr-Np-za1t6nHbMznmw_YtdjIt9RFMZqna0iNuExu1J-b6fNyRNP_5x9uWi6-Qk8L5eH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80OkBceDMCA4wEJ4hax05iHxACRkU1qHoAaZxMEtus0paMJWXqv8Zfx2cn6SiP3XbgmtiR7fy-h78nwBMqs5EpWOIs9ybkUvMwM9SGkS4ioxNprGibTaTTqdjbk7MN-NHnwriwyp4nekatq8LZyIeMoqqduurgQ9uFRcx2xi-PvoWug5TztPbtNFqI7JrlCV7f6heTHfzXT6No_Pbjm3dh12EgLGJOm5Di1b9INM-Y1Uhp0lJrpUWhjFLbshRpTwqec1sYlJuukok1NhM6pdak2grO8LsXYBNVch4NYHM2-TD7vLLwOB8ap7LL1BkxMaxRWrqMtigOhaAsDuWaNPRNA_6m6f4ZsPmb19YLw_G1__kYr8PVTgUnr1qauQEbprwJl9qmnMtbUE9Kl4iCeCXaND5SrSTzkhyaJnMxLIb8khxI5t6iahpSWdL4HqikLY5dk3zp5-ybRVcNmzQLFGqkOanIgYvVIraPjLsNn85lx3dgUFaluQskTqRgSZZmaW55IuIsTouRsbkwzI6KNAuA9hBRRVe33bUPOVA-foAJ1cJKIayUh5WSATxbzTlqq5acOfq1Q95qpKs47h9Ux19Vx8AUZ9o4i0ZuYs5R7xRuN5JpiQotCoo8gO0ecKpjg7U6RVsAj1evkYE5r1RWmmrRjpEM9VQWwFYL89VK8BRTvPJGAYg1Alhb6vqbcr7vi6S7YAQkQJz6vKeV03X9-yzunb2NR3AZyUW9n0x378OVyFHyiIaR2IYBQtM8gIvF92ZeHz_smAGBL-dNOD8Bpx6h0A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrusion+detection+in+metaverse+environment+internet+of+things+systems+by+metaheuristics+tuned+two+level+framework&rft.jtitle=Scientific+reports&rft.au=Antonijevic%2C+Milos&rft.au=Zivkovic%2C+Miodrag&rft.au=Djuric+Jovicic%2C+Milica&rft.au=Nikolic%2C+Bosko&rft.date=2025-01-28&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=3555&rft_id=info:doi/10.1038%2Fs41598-025-88135-9&rft_id=info%3Apmid%2F39875592&rft.externalDocID=39875592 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |