Python algorithm package for automated Estimation of major legume root traits using two dimensional images

A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 15; číslo 1; s. 7341 - 15
Hlavní autoři: Ghimire, Amit, Chung, Yong Suk, Jeong, Sungmoon, Kim, Yoonha
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.03.2025
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 ( p < 0.001 ) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.
AbstractList A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 (p < 0.001) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.
A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 (p < 0.001) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 (p < 0.001) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.
A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 ( p < 0.001 ) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.
Abstract A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume (RV) of legumes (adzuki bean, mung bean, cowpea, and soybean) based on two-dimensional images. Four different thresholding methods; Otsu, Gaussian adaptive, mean adaptive and triangle threshold were used to know the effect of thresholding in root trait estimation and to optimize the accuracy of root trait estimation. The results generated by the algorithm applied to 400 legume root images were compared with those generated by two separate software (WinRHIZO and RhizoVision), and the algorithm was validated using ground truth data. Distance transform method was used for estimating SA, AD, and RV and ConnectedComponentsWithStat function for TRL estimation. Among the thresholding methods, Otsu thresholding worked well for distance transform, while triangle threshold was effective for TRL. All the traits showed a high correlation with an R² ≥0.98 (p < 0.001) with the ground truth data. The root mean square error (RMSE) and mean bias error (MBE) were also minimal when comparing the algorithm-derived values to the ground truth values, with RMSE and MBE both < 10 for TRL, < 6 for SA, and < 0.5 for AD and RV. This lower value of error metrics indicates smaller differences between the algorithm-derived values and software-derived values. Although the observed error metrics were minimal for both software, the algorithm-derived root traits were closely aligned with those derived from WinRHIZO. We provided a simple Python algorithm for easy estimation of legume root traits where the images can be analyzed without any incurring expenses, and being open source; it can be modified by an expert based on their requirements.
ArticleNumber 7341
Author Ghimire, Amit
Jeong, Sungmoon
Kim, Yoonha
Chung, Yong Suk
Author_xml – sequence: 1
  givenname: Amit
  surname: Ghimire
  fullname: Ghimire, Amit
  organization: Department of Applied Biosciences, Kyungpook National University, Department of Integrative Biology, Kyungpook National University
– sequence: 2
  givenname: Yong Suk
  surname: Chung
  fullname: Chung, Yong Suk
  organization: Department of Plant Resources and Environment, Jeju National University
– sequence: 3
  givenname: Sungmoon
  surname: Jeong
  fullname: Jeong, Sungmoon
  organization: Bio-medical Research Institute, Research Center for AI in Medicine, Kyungpook National University Hospital, Department of Medical Informatics, School of Medicine, Kyungpook National University
– sequence: 4
  givenname: Yoonha
  surname: Kim
  fullname: Kim, Yoonha
  email: kyh1229@knu.ac.kr
  organization: Department of Applied Biosciences, Kyungpook National University, Department of Integrative Biology, Kyungpook National University, Upland Field Machinery Research Center, Kyungpook National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40025179$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBnEp8QqgpUqgQHOFuOM8l6SeLFdor23zPdtND2UF9seZ739XhmXhZHc5ihKF4z-p5R0XxIkindlJSrUjOtRbl_VpxwKlXJBedH987HxVlKW4pLcS2ZflEcS4o6VuuTYvt9nzdhJnYcQvR5M5Gddb_sAKQPkdglh8lm6MhFyh5PHtHQk8luMTrCsExAYgiZ5Gh9TmRJfh5I_hNI5yeYE_J2JKgcIL0qnvd2THB2u58WPz9f_Dj_Wl59-3J5_umqdEqyXDIGotfScQXC4eq5YBZY1_De2korSnXXNKppkOPKVqx30NeOylqptoNanBaXq28X7NbsIr4e9yZYbw4XIQ7GxuzdCIZKcK3DsljJpVW0qa2rbNtqC3UrKoVeH1ev3dJO0DmY8aPjA9OHkdlvzBCuDWNNLZhm6PDu1iGG3wukbCafHIyjnSEsyQhWC8orXUtE3z5Ct2GJWMADxSv8bkWRenM_pX-53PUUgWYFXAwpReiN8_nQupsmjYZRczNBZp0ggypzmCCzRyl_JL1zf1IkVlFCeB4g_k_7CdVfcUHbLg
CitedBy_id crossref_primary_10_1007_s12892_025_00285_4
Cites_doi 10.1016/j.eja.2020.126172
10.1094/PDIS-01-11-0026
10.3390/plants11030405
10.1109/TSMC.1979.4310076
10.1109/ISMS.2012.33
10.3390/ijms21041513
10.1016/j.fcr.2011.01.015
10.3390/s141120078
10.1371/journal.pone.0196671
10.1007/s12892-020-00052-7
10.1094/CCHEM.2001.78.3.217
10.1016/j.tplants.2017.05.002
10.1094/CM-2003-0702-01-RS
10.1109/BICTA.2010.5645146
10.1111/j.1365-313X.2008.03739.x
10.1186/s13007-018-0316-5
10.1016/j.patrec.2011.01.021
10.1371/journal.pone.0108255
10.1002/cppb.20044
10.3390/plants12173078
10.1109/ACCESS.2019.2891673
10.1111/2041-210X.13156
10.1038/s41598-019-55876-3
10.1007/s11104-013-1795-9
10.1007/978-0-387-68413-0_2
10.1007/s40998-019-00251-1
10.1038/s41598-021-95480-y
10.1007/s11104-009-0005-2
10.1007/s11104-013-1874-y
10.9790/0661-16151016
10.1109/TIP.2019.2946979
10.1007/978-1-4471-6684-9
10.1016/j.chnaes.2009.05.007
10.1007/s12892-021-00126-0
10.3390/plants12040901
10.1080/2151237X.2007.10129236
10.1007/s11104-014-2071-3
10.3389/fpls.2017.00898
10.1016/j.compag.2020.105903
10.1109/CCPR.2009.5344078
10.1109/ICCSP.2019.8698056
10.1093/aobpla/plab056
10.3390/agronomy10091287
10.1109/ACCT.2015.63
10.1117/1.1631315
10.1016/j.compag.2023.108465
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-91993-y
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_04ecbc529a424a5087ac6abb9ae7b365
PMC11873191
40025179
10_1038_s41598_025_91993_y
Genre Journal Article
GrantInformation_xml – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
  grantid: 2021R1I1A3040280
– fundername: Whole Genome Analysis, KNU NGS center (Daegu, South Korea)
– fundername: Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education
  grantid: 2021R1A6C101A416
– fundername: Biological Materials Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI), funded by the Ministry of Environment (MOE)
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-11e3f94c25e3ccccf231ae1d82faa695009d885881e325a61fcef7c04755bde73
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001435489800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:47:45 EDT 2025
Tue Nov 04 02:04:58 EST 2025
Thu Oct 02 10:23:17 EDT 2025
Tue Oct 07 09:13:22 EDT 2025
Mon May 12 02:38:48 EDT 2025
Sat Nov 29 08:10:08 EST 2025
Tue Nov 18 21:31:48 EST 2025
Sun Mar 02 01:13:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Root traits
Legumes
Image processing
Python algorithm
Threshold
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-11e3f94c25e3ccccf231ae1d82faa695009d885881e325a61fcef7c04755bde73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/04ecbc529a424a5087ac6abb9ae7b365
PMID 40025179
PQID 3172632560
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_04ecbc529a424a5087ac6abb9ae7b365
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11873191
proquest_miscellaneous_3173026974
proquest_journals_3172632560
pubmed_primary_40025179
crossref_citationtrail_10_1038_s41598_025_91993_y
crossref_primary_10_1038_s41598_025_91993_y
springer_journals_10_1038_s41598_025_91993_y
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 91993_CR29
Y Kim (91993_CR22) 2020; 21
91993_CR27
J Cai (91993_CR13) 2018; 13
L Rose (91993_CR40) 2019; 10
P Novaro (91993_CR2) 2001; 78
H Liang (91993_CR34) 2019; 7
D Woo (91993_CR25) 2023; 215
91993_CR24
P Tripathi (91993_CR42) 2021; 122
L Li (91993_CR1) 2014; 14
D Bradley (91993_CR30) 2007; 12
L Rose (91993_CR49) 2017; 8
91993_CR17
91993_CR16
P Kumar (91993_CR12) 2014; 380
A Ghimire (91993_CR15) 2023; 12
S Pare (91993_CR18) 2020; 44
M Sezgin (91993_CR19) 2004; 13
KR Gavhale (91993_CR8) 2014; 16
G Lobet (91993_CR32) 2017; 22
R Tajima (91993_CR36) 2011; 121
A Pierret (91993_CR46) 2013; 373
E Agnew (91993_CR11) 2017; 2
P Armengaud (91993_CR23) 2009; 57
N Otsu (91993_CR26) 1979; 9
AL Smit (91993_CR21) 2013
91993_CR6
91993_CR7
D Stajnko (91993_CR3) 2009; 74
L Lay (91993_CR10) 2023; 12
MB Wang (91993_CR47) 2009; 29
91993_CR41
A Seethepalli (91993_CR39) 2021; 13
YS Chung (91993_CR43) 2020; 23
LM Ortiz-Ribbing (91993_CR48) 2003; 2
J Le Bot (91993_CR20) 2010; 326
X Xu (91993_CR28) 2011; 32
W Pang (91993_CR51) 2011; 95
F Bolelli (91993_CR37) 2019; 29
91993_CR38
M Birouste (91993_CR50) 2014; 374
CS Bekkering (91993_CR14) 2020; 10
91993_CR33
N Narisetti (91993_CR44) 2019; 9
N Narisetti (91993_CR45) 2021; 11
J Wu (91993_CR5) 2018; 14
91993_CR35
E Vamsidhar (91993_CR9) 2019; 8
SV Dnyandeo (91993_CR31) 2016; 5
KC Sumesh (91993_CR4) 2021; 180
References_xml – volume: 122
  start-page: 126172
  year: 2021
  ident: 91993_CR42
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126172
– volume: 95
  start-page: 1308
  year: 2011
  ident: 91993_CR51
  publication-title: Plant. Dis.
  doi: 10.1094/PDIS-01-11-0026
– volume-title: Root methods: a handbook
  year: 2013
  ident: 91993_CR21
– ident: 91993_CR41
  doi: 10.3390/plants11030405
– volume: 9
  start-page: 62
  year: 1979
  ident: 91993_CR26
  publication-title: IEEE Trans. Syst. Man. Cybern
  doi: 10.1109/TSMC.1979.4310076
– ident: 91993_CR7
  doi: 10.1109/ISMS.2012.33
– volume: 5
  start-page: 944
  year: 2016
  ident: 91993_CR31
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– volume: 21
  start-page: 1513
  year: 2020
  ident: 91993_CR22
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041513
– volume: 121
  start-page: 460
  year: 2011
  ident: 91993_CR36
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2011.01.015
– volume: 14
  start-page: 20078
  year: 2014
  ident: 91993_CR1
  publication-title: Sensors
  doi: 10.3390/s141120078
– volume: 13
  start-page: e0196671
  year: 2018
  ident: 91993_CR13
  publication-title: PloS One
  doi: 10.1371/journal.pone.0196671
– volume: 23
  start-page: 445
  year: 2020
  ident: 91993_CR43
  publication-title: J. Crop Sci. Biotechnol.
  doi: 10.1007/s12892-020-00052-7
– volume: 78
  start-page: 217
  year: 2001
  ident: 91993_CR2
  publication-title: Cereal Chem.
  doi: 10.1094/CCHEM.2001.78.3.217
– volume: 22
  start-page: 559
  year: 2017
  ident: 91993_CR32
  publication-title: Trends Plant. Sci.
  doi: 10.1016/j.tplants.2017.05.002
– volume: 2
  start-page: 1
  year: 2003
  ident: 91993_CR48
  publication-title: Crop Manag
  doi: 10.1094/CM-2003-0702-01-RS
– ident: 91993_CR35
  doi: 10.1109/BICTA.2010.5645146
– volume: 57
  start-page: 945
  year: 2009
  ident: 91993_CR23
  publication-title: Plant. J.
  doi: 10.1111/j.1365-313X.2008.03739.x
– volume: 14
  start-page: 1
  year: 2018
  ident: 91993_CR5
  publication-title: Plant. Methods
  doi: 10.1186/s13007-018-0316-5
– volume: 32
  start-page: 956
  year: 2011
  ident: 91993_CR28
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.01.021
– ident: 91993_CR24
  doi: 10.1371/journal.pone.0108255
– volume: 2
  start-page: 1
  year: 2017
  ident: 91993_CR11
  publication-title: Curr. Protoc. Plant. Biol.
  doi: 10.1002/cppb.20044
– volume: 12
  start-page: 3078
  year: 2023
  ident: 91993_CR15
  publication-title: Plants
  doi: 10.3390/plants12173078
– volume: 7
  start-page: 11258
  year: 2019
  ident: 91993_CR34
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2891673
– volume: 10
  start-page: 702
  year: 2019
  ident: 91993_CR40
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13156
– volume: 9
  start-page: 1
  year: 2019
  ident: 91993_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55876-3
– volume: 373
  start-page: 531
  year: 2013
  ident: 91993_CR46
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-013-1795-9
– ident: 91993_CR38
  doi: 10.1007/978-0-387-68413-0_2
– volume: 8
  start-page: 442
  year: 2019
  ident: 91993_CR9
  publication-title: Int. J. Eng. Adv. Technol.
– volume: 44
  start-page: 1
  year: 2020
  ident: 91993_CR18
  publication-title: Iran. J. Sci. Technol. Trans. Electron. Eng.
  doi: 10.1007/s40998-019-00251-1
– volume: 11
  start-page: 1
  year: 2021
  ident: 91993_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95480-y
– volume: 326
  start-page: 261
  year: 2010
  ident: 91993_CR20
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-009-0005-2
– volume: 374
  start-page: 299
  year: 2014
  ident: 91993_CR50
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-013-1874-y
– volume: 16
  start-page: 10
  year: 2014
  ident: 91993_CR8
  publication-title: IOSR J. Comput. Eng.
  doi: 10.9790/0661-16151016
– volume: 29
  start-page: 1999
  year: 2019
  ident: 91993_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2946979
– volume: 74
  start-page: 260
  year: 2009
  ident: 91993_CR3
  publication-title: Eur. J. Hortic. Sci.
– ident: 91993_CR16
  doi: 10.1007/978-1-4471-6684-9
– volume: 29
  start-page: 136
  year: 2009
  ident: 91993_CR47
  publication-title: Acta Ecol. Sin
  doi: 10.1016/j.chnaes.2009.05.007
– ident: 91993_CR33
  doi: 10.1007/s12892-021-00126-0
– volume: 12
  start-page: 901
  year: 2023
  ident: 91993_CR10
  publication-title: Plants
  doi: 10.3390/plants12040901
– volume: 12
  start-page: 13
  year: 2007
  ident: 91993_CR30
  publication-title: J. Graph Tools
  doi: 10.1080/2151237X.2007.10129236
– volume: 380
  start-page: 193
  year: 2014
  ident: 91993_CR12
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-014-2071-3
– volume: 8
  start-page: 898
  year: 2017
  ident: 91993_CR49
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2017.00898
– volume: 180
  start-page: 105903
  year: 2021
  ident: 91993_CR4
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105903
– ident: 91993_CR27
  doi: 10.1109/CCPR.2009.5344078
– ident: 91993_CR6
  doi: 10.1109/ICCSP.2019.8698056
– volume: 13
  start-page: plab056
  year: 2021
  ident: 91993_CR39
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plab056
– volume: 10
  start-page: 1287
  year: 2020
  ident: 91993_CR14
  publication-title: Agron
  doi: 10.3390/agronomy10091287
– ident: 91993_CR17
  doi: 10.1109/ACCT.2015.63
– volume: 13
  start-page: 146
  year: 2004
  ident: 91993_CR19
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.1631315
– volume: 215
  start-page: 108465
  year: 2023
  ident: 91993_CR25
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108465
– ident: 91993_CR29
SSID ssj0000529419
Score 2.4496887
Snippet A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root volume...
Abstract A simple Python algorithm was used to estimate the four major root traits: total root length (TRL), surface area (SA), average diameter (AD), and root...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7341
SubjectTerms 631/1647
631/449
Algorithms
Fabaceae - anatomy & histology
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Legumes
multidisciplinary
Plant Roots - anatomy & histology
Python algorithm
Root traits
Science
Science (multidisciplinary)
Software
Soybeans
Threshold
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNzRQkJG4QdTEjzg5IUCtuFDtAaTeLMcepy3bpN1kQfvvGTvZrZZHL-QY25KTGc989oy_IeSNchxU7SHFrYNPEYHL1PAKUsiUUYUxDoSLxSbU0VF5fFzNpgO3fkqrXNvEaKhdZ8MZ-T76uUAtjg76_cVlGqpGhejqVELjJrmFyCYPKV1f2GxzxhKiWCKvprsyGS_3e_RX4U4ZCwUKQ-raassfRdr-v2HNP1Mmf4ubRnd0eP9_P-QBuTcBUfph1JyH5Aa0j8idsTTl6jE5m60CqwA18wYHDyfnFDfX39H4UES51CyHDqEuOHqAJmK8_Ug7T8_NGbbOoUGLRxGTDzSUoBh6GtLrGzr87KgL5QRGKhCKIxvon5BvhwdfP31Op7oMqZUiH9I8B-4rYZkEbvHxiBEN5K5k3piikgjbXFnKssR-TJoi9xa8splQUtYOFH9KdtquhV1CGQNeGG8dBCAkXM28lJ4Ll0FdFJVKSL6WjrYTaXmY-FzH4Dkv9ShRjRLVUaJ6lZC3mzEXI2XHtb0_BqFvega67fiiWzR6Wr06E2Bri9pkBBMGMa0ytjB1XRlUdF7IhOytZa0nG9DrK0En5PWmGVdvCMmYFrpl7MNxF4ybuoQ8GzVsMxMx8cklpNzSva2pbre0pyeRITzUkEfbmifk3VpNr-b173_x_PrPeEHusrByYgbeHtkZFkt4SW7bH8Npv3gVl94vwFM5RA
  priority: 102
  providerName: ProQuest
Title Python algorithm package for automated Estimation of major legume root traits using two dimensional images
URI https://link.springer.com/article/10.1038/s41598-025-91993-y
https://www.ncbi.nlm.nih.gov/pubmed/40025179
https://www.proquest.com/docview/3172632560
https://www.proquest.com/docview/3173026974
https://pubmed.ncbi.nlm.nih.gov/PMC11873191
https://doaj.org/article/04ecbc529a424a5087ac6abb9ae7b365
Volume 15
WOSCitedRecordID wos001435489800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBYkL4k2grIzEDaImfsTJkaKt4NBVhEBaTpFjj7ct2wQ1WdD-e8ZOdunyvJCDD7GjjDwz9jfy-BtCXijLQdUOYgwdXIwIXMaaFxBDorTKtLYgbCg2oWazfD4vyiulvnxO2EAPPEzcYSLA1EayQgsmNMIJpU2m67rQ-A-eBfbSRBVXgqmB1ZsVIi3GWzIJzw873Kn8bTLmSxP6pLX1zk4UCPt_hzJ_TZb86cQ0bETHd8jtEUHS14Pkd8k1aO6Rm0NNyfV9cl6uPR0A1ctFi4H_6QXFqPgzrhoU4SnVq75FjAqWTtG3h2uLtHX0Qp9j7xIWuFRRBNM99bUj-o76vPgF7b-11Po6AAOHB8UvF9A9IB-Ppx_evI3HggqxkSLt4zQF7gphmARu8HEI7jSkNmdO66yQiLdsnss8x3FM6ix1BpwyiVBS1hYUf0j2mraBx4QyBjzTzljwCEbYmjkpHRc2gTrLChWRdDO5lRnZxr3gyyqcevO8GhRSoUKqoJBqHZGX22--DFwbfx195HW2Hel5ssMLtJ5qtJ7qX9YTkYONxqvRebsKIZVnsUcsGJHn2250O3-WohtoV2EMx_AVo7GIPBoMZCuJGIngIpLvmM6OqLs9zdlpoPb2xd9xUUwj8mpjZT_k-vNcPPkfc_GU3GLePUKC3QHZ6y9X8IzcMF_7s-5yQq6ruQptPiH7R9NZ-X4SfA7bE1b6VmG7X747KT99ByyrMw4
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAoILb4qhwCLBCazG610_DgjxaNWqJcqhSL25693Z9JHGIXao8qf4jcz6kSo8euuBHLPraOx88_LOfAPwOjYhxrlFn1IH61MELn0VpuhjL1ZxpJRBYephE3G_nxwcpIMV-Nn1wriyys4m1obaFNq9I98gP-eoxclBf5h8993UKHe62o3QaGCxi_NzStnK9ztf6P99w_nW5v7nbb-dKuBrKYLKDwIMbSo0lxhq-liKcBQGJuFWqSiVFHSYJJFJQvu4VFFgNdpY90QsZW4wDul3r8F14ZjFXKkgHyze6bhTMxGkbW9OL0w2SvKProeNu4GIrlRuvuT_6jEBf4tt_yzR_O2ctnZ_W3f_twd3D-60gTb72GjGfVjB8QO42YzenD-Ek8HcsSYwNRqSsNXRGZsofUrGlVEUz9SsKiiUR8M2yQQ23Z2ssOxMndDqCIdk0RnlHBVzIzaqkrn2gSGrzgtm3LiEhuqE0ZVDLB_Btyu50cewOi7G-AQY5xhGymqDLtATJudWShsK08M8itLYg6BDQ6ZbUnYn-CiriwPCJGsQlBGCshpB2dyDt4trJg0lyaW7PzmQLXY6OvH6i2I6zFrrlPUE6lwTepXgQlHMHisdqTxPFSlyGEkP1jtsZa2NK7MLYHnwarFM1skdOakxFrN6T0hZPiWtHqw1iF5IIlq-PA-SJawvibq8Mj4-qhnQKSuOyXcEHrzr1OJCrn8_i6eX38ZLuLW9_3Uv29vp7z6D29xpbV1tuA6r1XSGz-GG_lEdl9MXtdozOLxqdfkFg9WW_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7BRDgUGCE1iJZ_FyQAhoI6JClANI5eSOZ0mXNA6xQ5W_xq_jjZdUYemtB3LMjKNn53vvfc_zFoAXkWYmyqzxMXSwPjJw4UuWGN_0IhmFUmrDdTVsIhoO4_39ZLQBP9taGJdW2drEylDrXLl35F30c661ODrorm3SIkY7_bez776bIOVOWttxGjVE9szyDMO34s1gB__rl5T2d798-Og3EwZ8JXhQ-kFgmE24osIwhR-LbEeaQMfUShkmAgmIjmMRx7iPChkGVhkbqR6PhMi0iRj-7hXYRErOaQc2R4PPo2-rNzzuDI0HSVOp02Nxt0Bv6SraqBuP6BLnlmvesBoa8Dem-2fC5m-ntpUz7N_6nx_jbbjZUHDyrtaZO7BhpnfhWj2Uc3kPjkdL10-ByMkYhS0PT8lMqhM0uwT5PZGLMkeSbzTZReNY132S3JJTeYyrEzNGW08wGimJG75RFsQVFoxJeZYT7QYp1E1QCF45NsV9-HopN_oAOtN8ah4CodSwUFqljaOAXGfUCmEZ1z2ThWESeRC0yEhV067dCT5Jq7QBFqc1mlJEU1qhKV168Gp1zaxuVnLh7vcOcKudrtF49UU-H6eN3Up73KhMIZIlp1wim4-kCmWWJRJVnIXCg-0WZ2lj_Yr0HGQePF8to91yh1FyavJFtYdh_I_hrAdbNbpXkvCmk54H8Rru10RdX5keHVa90TFejtCrBB68blXkXK5_P4tHF9_GM7iOWpJ-Ggz3HsMN6hS4SkPchk45X5gncFX9KI-K-dPGBhA4uGx9-QWjn6FH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python+algorithm+package+for+automated+Estimation+of+major+legume+root+traits+using+two+dimensional+images&rft.jtitle=Scientific+reports&rft.au=Ghimire%2C+Amit&rft.au=Chung%2C+Yong+Suk&rft.au=Jeong%2C+Sungmoon&rft.au=Kim%2C+Yoonha&rft.date=2025-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-91993-y&rft_id=info%3Apmid%2F40025179&rft.externalDocID=PMC11873191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon