Multi-level feature encoding algorithm based on FBPSI for heart sound classification
Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is emp...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 29132 - 12 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
25.11.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases. |
|---|---|
| AbstractList | Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases. Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases. Abstract Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases. |
| ArticleNumber | 29132 |
| Author | Liu, Dongbo Leng, Hongxia Wang, Weibo Fang, Yu |
| Author_xml | – sequence: 1 givenname: Yu surname: Fang fullname: Fang, Yu organization: School of Electrical and Electronic Information, Xihua University – sequence: 2 givenname: Hongxia surname: Leng fullname: Leng, Hongxia organization: School of Electrical and Electronic Information, Xihua University – sequence: 3 givenname: Weibo surname: Wang fullname: Wang, Weibo organization: School of Electrical and Electronic Information, Xihua University – sequence: 4 givenname: Dongbo surname: Liu fullname: Liu, Dongbo email: liudb@mail.xhu.edu.cn organization: School of Electrical and Electronic Information, Xihua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39587136$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9vFSEUxYmpsbX2C7gwJG7cTOXvDLMy2lj7khpNrGvCMHfm8cKDCjNN3reXvqm17aJsIPA7hwP3vkYHIQZA6C0lp5Rw9TELKltVESaqhjBOqt0LdMSIkBXjjB08WB-ik5w3pAzJWkHbV-iQt1I1lNdH6Or77CdXebgBjwcw05wAQ7Cxd2HExo8xuWm9xZ3J0OMY8PmXn79WeIgJr8GkCec4hx5bb3J2g7NmcjG8QS8H4zOc3M3H6Pf516uzi-ryx7fV2efLykpBp4qSljJJmK1tz4RUHbNEGCONkLVqgTW3WGNtYwntiQCowaqu6VTXdaB64Mdotfj20Wz0dXJbk3Y6Gqf3GzGNukR01oPuazVwy5RRqhaDqpVikoElXcstUNoUr0-L1_XcbaG3EKZk_CPTxyfBrfUYbzSlUrWNoMXhw51Din9myJPeumzBexMgzllzypkSpQRtQd8_QTdxTqH81Z5qysfwulDvHka6z_KvegVgC2BTzDnBcI9Qom-7RC9dokuX6H2X6F0RqSci66Z92cqznH9eyhdpLveEEdL_2M-o_gJoZtEW |
| CitedBy_id | crossref_primary_10_3390_technologies13040147 |
| Cites_doi | 10.1007/s00521-019-04547-5 10.3390/bioengineering10010045 10.1161/CIRCULATIONAHA.106.644682 10.3390/app132111942 10.1142/S0219519423500173 10.1016/j.bspc.2023.105186 10.1016/j.apacoust.2020.107242 10.3390/en15207762 10.1016/j.measurement.2023.114022 10.1111/psyp.14544 10.1109/JBHI.2020.3016831 10.3390/s22072547 10.3390/s23198168 10.1016/j.health.2023.100286 10.1186/s12889-024-17651-6 10.1016/j.bspc.2020.102173 10.1016/j.parkreldis.2020.08.001 10.1161/CIR.0000000000000945 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-70230-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_d68f3c28a8864f8688252ec0b93ce117 PMC11589741 39587136 10_1038_s41598_024_70230_y |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-10912502c6cd2458b2c04aa5a45689e27c5417cc7c01d04ee6ec8b7b8bbbe8de3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364088200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:18:31 EDT 2025 Tue Nov 04 02:04:43 EST 2025 Thu Sep 04 20:10:11 EDT 2025 Tue Oct 07 08:23:05 EDT 2025 Wed Feb 19 02:04:24 EST 2025 Sat Nov 29 03:21:50 EST 2025 Tue Nov 18 22:36:16 EST 2025 Fri Feb 21 02:38:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Heart sound classification Hypertrophic cardiomyopathy Balanced power spectrum intensity Multi-level feature encoding |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-10912502c6cd2458b2c04aa5a45689e27c5417cc7c01d04ee6ec8b7b8bbbe8de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3132709136?pq-origsite=%requestingapplication% |
| PMID | 39587136 |
| PQID | 3132709136 |
| PQPubID | 2041939 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d68f3c28a8864f8688252ec0b93ce117 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589741 proquest_miscellaneous_3132842949 proquest_journals_3132709136 pubmed_primary_39587136 crossref_primary_10_1038_s41598_024_70230_y crossref_citationtrail_10_1038_s41598_024_70230_y springer_journals_10_1038_s41598_024_70230_y |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-25 |
| PublicationDateYYYYMMDD | 2024-11-25 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Zhang, Fang, Liu, Wang, Wang (CR8) 2020; 33 Wang, Wang, Liu (CR26) 2010; 08 Nur, Adnan, Moo (CR17) 2023; 10 Daniel (CR23) 2023; 86 Turker, Erhan, Sengul (CR25) 2021; 63 Abdelhakim, Amine, Fadia (CR27) 2023 Shah, Daniel, Anup, Elmaghraby (CR30) 2022; 22 Pathak, Samanta, Mandana, Saha (CR11) 2020; 164 Wang (CR12) 2022; 39 Yang, Meng, Zhang, Chao (CR14) 2022; 49 Luo (CR13) 2022; 39 Wang (CR22) 2024; 225 Zhang, Zhang (CR7) 2022; 44 CR2 Wang (CR10) 2023; 40 CR4 CR3 Maron (CR6) 2006; 114 CR5 Cheng, Sun (CR21) 2023; 23 Caracuel (CR19) 2024; 61 Tsai (CR20) 2020; 24 Baikai (CR1) 2024; 24 Xu, Xing, Zhou, Ying (CR9) 2021; 57 Lee, Kwak (CR15) 2023; 13 Fahim (CR24) 2020; 79 Yadav, Singh, Dutta, Travieso (CR18) 2020; 32 Nsaif (CR28) 2022; 15 Ajay (CR29) 2024; 05 Hu, Hu, Yu, Liu (CR16) 2023; 40 70230_CR3 70230_CR2 JW Cheng (70230_CR21) 2023; 23 Y Wang (70230_CR26) 2010; 08 MS Maron (70230_CR6) 2006; 114 70230_CR5 70230_CR4 MM Caracuel (70230_CR19) 2024; 61 S Abdelhakim (70230_CR27) 2023 R Daniel (70230_CR23) 2023; 86 JF Zhang (70230_CR7) 2022; 44 AM Fahim (70230_CR24) 2020; 79 KH Tsai (70230_CR20) 2020; 24 LY Yang (70230_CR14) 2022; 49 A Pathak (70230_CR11) 2020; 164 Q Wang (70230_CR10) 2023; 40 AS Shah (70230_CR30) 2022; 22 AJ Lee (70230_CR15) 2023; 13 T Turker (70230_CR25) 2021; 63 JM Wang (70230_CR12) 2022; 39 JL Wang (70230_CR22) 2024; 225 CD Xu (70230_CR9) 2021; 57 MJO Baikai (70230_CR1) 2024; 24 G Luo (70230_CR13) 2022; 39 YF Nur (70230_CR17) 2023; 10 D Ajay (70230_CR29) 2024; 05 A Yadav (70230_CR18) 2020; 32 MY Nsaif (70230_CR28) 2022; 15 QL Hu (70230_CR16) 2023; 40 XL Zhang (70230_CR8) 2020; 33 |
| References_xml | – volume: 32 start-page: 17843 year: 2020 end-page: 17856 ident: CR18 article-title: Machine learning-based classification of cardiac diseases from PCG recorded heart sounds publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04547-5 – volume: 10 start-page: 45 year: 2023 ident: CR17 article-title: An optimal approach for heart sound classification using grid search in hyperparameter optimization of machine learning publication-title: Bioengineering doi: 10.3390/bioengineering10010045 – ident: CR4 – volume: 114 start-page: 2232 year: 2006 end-page: 2239 ident: CR6 article-title: Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.644682 – ident: CR2 – volume: 13 start-page: 11942 year: 2023 ident: CR15 article-title: Heart sound classification using wavelet analysis approaches and ensemble of deep learning models publication-title: Appl. Sci. doi: 10.3390/app132111942 – year: 2023 ident: CR27 article-title: Maximal overlap discrete wavelet transform-based abrupt changes detection for heart sounds segmentation publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519423500173 – volume: 86 year: 2023 ident: CR23 article-title: CNN-based classification of phonocardiograms using fractal techniques publication-title: J. Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.105186 – volume: 44 start-page: 1514 year: 2022 end-page: 1520 ident: CR7 article-title: An improved residual neural network for heart sound classification publication-title: Comput. Eng. Sci. – volume: 164 year: 2020 ident: CR11 article-title: An improved method to detect coronary artery disease using phonocardiogram signals in noisy environment publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107242 – volume: 39 start-page: 349 year: 2022 end-page: 356 ident: CR13 article-title: Feature extraction method based on enhanced power spectral density for emotion analysis using EEG publication-title: Chin. J. Med. Phys. – volume: 15 start-page: 7762 year: 2022 ident: CR28 article-title: A new voltage based fault detection technique for distribution network connected to photovoltaic sources using variational mode decomposition integrated ensemble bagged trees approach publication-title: J. Energies. doi: 10.3390/en15207762 – volume: 40 start-page: 1152 year: 2023 end-page: 1159 ident: CR10 article-title: Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network publication-title: J. Biomed. Eng. – volume: 39 start-page: 1401 year: 2022 end-page: 1406 ident: CR12 article-title: Optimum heart sound signal selection based on the similarity of power spectral density publication-title: Chin. J. Med. Phys. – volume: 225 year: 2024 ident: CR22 article-title: Multiclassification for heart sound signals under multiple networks and multi-view feature publication-title: J. Meas. doi: 10.1016/j.measurement.2023.114022 – volume: 61 start-page: 14544 year: 2024 ident: CR19 article-title: Systemic neurophysiological signals of auditory predictive coding publication-title: Psychophysiology doi: 10.1111/psyp.14544 – volume: 57 start-page: 125 year: 2021 end-page: 132 ident: CR9 article-title: Classification of heart sounds using power spectral density and convolutional neural networks publication-title: Comput. Eng. Appl. – volume: 08 start-page: 303 year: 2010 end-page: 307 ident: CR26 article-title: Noise reduction for heart sound based on wavelet transform publication-title: J. Inform. Electron. Eng. – volume: 49 start-page: 95 year: 2022 end-page: 102 ident: CR14 article-title: Implementation of EEG emotion analysis via feature fusion publication-title: J. Xidian Univ. – ident: CR3 – volume: 24 start-page: 3203 year: 2020 end-page: 3214 ident: CR20 article-title: Blind monaural source separation on heart and lung sounds based on periodic-coded deep autoencoder publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3016831 – volume: 22 start-page: 2547 year: 2022 ident: CR30 article-title: A deep convolutional neural network-XGB for direction and severity aware fall detection and activity recognition publication-title: J. Sensors doi: 10.3390/s22072547 – volume: 23 start-page: 8168 year: 2023 ident: CR21 article-title: Heart sound classification network based on convolution and transformer publication-title: J. Sensors doi: 10.3390/s23198168 – volume: 05 year: 2024 ident: CR29 article-title: A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection publication-title: J. Healthcare Anal. doi: 10.1016/j.health.2023.100286 – volume: 33 start-page: 59 year: 2020 end-page: 65 ident: CR8 article-title: Research on feature extraction algorithm of HCM heart murmur sound based on WER-PCA publication-title: Space Med. Med. Eng. – volume: 24 start-page: 198 year: 2024 ident: CR1 article-title: Self-reported cardiovascular disease risk factor screening among people living with HIV vs. members of the general population in Botswana: A community-based study publication-title: J. BMC Public Health doi: 10.1186/s12889-024-17651-6 – ident: CR5 – volume: 63 year: 2021 ident: CR25 article-title: An automated snoring sound classification method based on local dual octal pattern and iterative hybrid feature selector publication-title: J. Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102173 – volume: 79 start-page: 79 year: 2020 end-page: 85 ident: CR24 article-title: Linear predictive coding distinguishes the spectral EEG features of Parkinson's disease publication-title: J. Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2020.08.001 – volume: 40 start-page: 154 year: 2023 end-page: 159 ident: CR16 article-title: Automatic classification of heart sounds built on deep separable conversion publication-title: Comput. Appl. Softw. – volume: 05 year: 2024 ident: 70230_CR29 publication-title: J. Healthcare Anal. doi: 10.1016/j.health.2023.100286 – volume: 79 start-page: 79 year: 2020 ident: 70230_CR24 publication-title: J. Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2020.08.001 – volume: 57 start-page: 125 year: 2021 ident: 70230_CR9 publication-title: Comput. Eng. Appl. – volume: 49 start-page: 95 year: 2022 ident: 70230_CR14 publication-title: J. Xidian Univ. – ident: 70230_CR5 doi: 10.1161/CIR.0000000000000945 – volume: 86 year: 2023 ident: 70230_CR23 publication-title: J. Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.105186 – volume: 32 start-page: 17843 year: 2020 ident: 70230_CR18 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04547-5 – volume: 164 year: 2020 ident: 70230_CR11 publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107242 – volume: 114 start-page: 2232 year: 2006 ident: 70230_CR6 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.644682 – volume: 39 start-page: 349 year: 2022 ident: 70230_CR13 publication-title: Chin. J. Med. Phys. – ident: 70230_CR2 – volume: 40 start-page: 1152 year: 2023 ident: 70230_CR10 publication-title: J. Biomed. Eng. – volume: 13 start-page: 11942 year: 2023 ident: 70230_CR15 publication-title: Appl. Sci. doi: 10.3390/app132111942 – ident: 70230_CR4 – volume: 15 start-page: 7762 year: 2022 ident: 70230_CR28 publication-title: J. Energies. doi: 10.3390/en15207762 – volume: 24 start-page: 198 year: 2024 ident: 70230_CR1 publication-title: J. BMC Public Health doi: 10.1186/s12889-024-17651-6 – volume: 40 start-page: 154 year: 2023 ident: 70230_CR16 publication-title: Comput. Appl. Softw. – volume: 39 start-page: 1401 year: 2022 ident: 70230_CR12 publication-title: Chin. J. Med. Phys. – year: 2023 ident: 70230_CR27 publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519423500173 – volume: 22 start-page: 2547 year: 2022 ident: 70230_CR30 publication-title: J. Sensors doi: 10.3390/s22072547 – volume: 44 start-page: 1514 year: 2022 ident: 70230_CR7 publication-title: Comput. Eng. Sci. – volume: 24 start-page: 3203 year: 2020 ident: 70230_CR20 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.3016831 – volume: 23 start-page: 8168 year: 2023 ident: 70230_CR21 publication-title: J. Sensors doi: 10.3390/s23198168 – volume: 61 start-page: 14544 year: 2024 ident: 70230_CR19 publication-title: Psychophysiology doi: 10.1111/psyp.14544 – volume: 33 start-page: 59 year: 2020 ident: 70230_CR8 publication-title: Space Med. Med. Eng. – volume: 08 start-page: 303 year: 2010 ident: 70230_CR26 publication-title: J. Inform. Electron. Eng. – ident: 70230_CR3 – volume: 10 start-page: 45 year: 2023 ident: 70230_CR17 publication-title: Bioengineering doi: 10.3390/bioengineering10010045 – volume: 63 year: 2021 ident: 70230_CR25 publication-title: J. Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2020.102173 – volume: 225 year: 2024 ident: 70230_CR22 publication-title: J. Meas. doi: 10.1016/j.measurement.2023.114022 |
| SSID | ssj0000529419 |
| Score | 2.4417706 |
| Snippet | Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding... Abstract Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 29132 |
| SubjectTerms | 631/1647 639/166 692/700 Accuracy Algorithms Balanced power spectrum intensity Cardiomyopathy Cardiomyopathy, Hypertrophic - diagnosis Cardiomyopathy, Hypertrophic - physiopathology Cardiovascular disease Cardiovascular diseases Classification Coronary artery disease Datasets Electroencephalography Heart Heart diseases Heart sound classification Heart Sounds - physiology Humanities and Social Sciences Humans Hypertrophic cardiomyopathy Image coding Multi-level feature encoding multidisciplinary Neural networks Science Science (multidisciplinary) Signal Processing, Computer-Assisted Sound |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37auEsGbhk3SSTo5uuKgl2XBFfYW8mp3YOxZZnqF-femkp5xx-fFa3cFikoV9RWp-gqhV161IaheEmMiJ0DZTbz2kriMxZ1xQMEVy7KJ7uREn5-b02urvqAnrNIDV8MdRaX7NnDttFai1yojQslToN60ITFW5shpZ64VU5XVmxvBzDQlQ1t9tM6ZCqbJuCAd4G6y2ctEhbD_dyjz12bJn15MSyKa3UV3JgSJ31bN76EbabiPbtWdkpsH6KyM1JIFNAPhPhXeTgxslZCksFt8Wa7m48VXDOkr4uWAZ8ennz7ijF0xLLce8RoWLeEAqBraiMrNPUSfZ-_P3n0g0-oEEqRgIwG6zwxueFAhciG154EK56TLeEmbxDsQ60LoAmWRipRUCtp3-Zq8Tzqm9hE6GJZDeoKw8r5XJubKiDnReup8T3tOY58BrxJSNohtzWjDxCsO6y0Wtrxvt9pW09tseltMbzcNer07c1lZNf4qfQy3s5MERuzyIfuJnfzE_stPGnS4vVs7henaAm9lB8yoqkEvd79zgMGriRvS8qrK6Jy1hWnQ4-oKO01aI3PBCaf1npPsqbr_Z5hfFBLvjMR1ruVYg95s_emHXn-2xdP_YYtn6DaHQGCMcHmIDsbVVXqOboZv43y9elEi6TvrnB_g priority: 102 providerName: Directory of Open Access Journals |
| Title | Multi-level feature encoding algorithm based on FBPSI for heart sound classification |
| URI | https://link.springer.com/article/10.1038/s41598-024-70230-y https://www.ncbi.nlm.nih.gov/pubmed/39587136 https://www.proquest.com/docview/3132709136 https://www.proquest.com/docview/3132842949 https://pubmed.ncbi.nlm.nih.gov/PMC11589741 https://doaj.org/article/d68f3c28a8864f8688252ec0b93ce117 |
| Volume | 14 |
| WOSCitedRecordID | wos001364088200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhceD8CZWUkbmA1dhLbOSEWdUUPXUVQpOUU2Y7TVlqSstki7b_H42S3Wh69cPEhcSI7M5P57Bl_A_DGiMRaUWc0zytOkbKbGmUyqj0W17lGCq4qFJuQs5maz_Ni2HDrhrTKzT8x_Kir1uIe-SFSDEoksRTvL39QrBqF0dWhhMYejDyyYZjSdcKL7R4LRrFSlg9nZeJEHXbeX-GZMp5Sieibrnf8UaDt_xvW_DNl8re4aXBH0_v_O5EHcG8AouRDrzkP4ZZrHsGdvjTl-jGchpO5dIE5RaR2gf6TIOkl-jqiF2f-lavz7wS9YEXahkwnxZdj4iEwwRrZK9JhvSZiEZxjNlJQgCfwdXp0-vETHSowUJulbEWRNdRjJG6FrXiaKcNtnGqdaQ-7VO64xG7SWmljVsWpc8JZZaSXtjFOVS55CvtN27jnQIQxtcgrv8BiOk1MrE0d1zyuao-bRZplEbCNHEo70JNjlYxFGcLkiSp72ZVedmWQXbmO4O32mcuenOPG3hMU77YnEmuHC-3yrBzstKyEqhPLlVZKpLUSfgGScWdjkyfWMSYjONhItRysvSuvRRrB6-1tb6cYfNGNa6_6Pso7_zSP4FmvS9uRJHnm1634tNrRsp2h7t5pLs4DF7hXe-WXhCyCdxuFvB7Xv7_Fi5un8RLucrQRxijPDmB_tbxyr-C2_bm66JZj2JNzGVo1htHkaFZ8Hoe9jHEwP2ylb0fF8Unx7Rf5sDVZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwQv3BmBAUaCJ7CWOI7jPCDEgGrVRlWJIu3Nsx1nm9Slo-1A_VP8RnycpFO57G0PvDZOZSffucXH3wfw0ojUWlFltChKRpGymxppMqp9Lq4LjRRcZRCbyAcDub9fDNfgZ3cWBtsqO58YHHU5sfiNfAspBnMksRTvTr9RVI3C3dVOQqOBxa5b_PAl2-xt_6N_v68Y630afdihraoAtRlP5hSZMH3cZ1bYkvFMGmZjrnWmfSohC8dyHJZbm9s4KWPunHBWmtyvwBgnS5f6_70CVzkyi2GrIBsuv-ngrhlPivZsTpzKrZmPj3iGjXGaY7ZPFyvxL8gE_C23_bNF87d92hD-erf_twd3B261iTZ531jGXVhz9T243khvLu7DKJw8pmPsmSKVC_SmBEk9MZYTPT70S5gfnRCM8iWZ1KS3PfzSJz7FJ6gBPicz1KMiFosP7LYKAH8AXy9lSQ9hvZ7U7hEQYUwlitIXkInmqYm1qeKKxWXl6wLBsyyCpHvvyrb066gCMlahDSCVqsGK8lhRAStqEcHr5T2nDfnIhaO3EU7LkUgcHn6YTA9V64dUKWSVWia1lIJXUvgCK2POxqZIrUuSPILNDkWq9WYzdQ6hCF4sL3s_hJtLunaTs2aM9MkNLyLYaLC7nElaZL4ux7vlCqpXprp6pT4-ClznvmCRvuRNInjTGcD5vP79LB5fvIzncGNn9HlP7fUHu0_gJkP7TBLKsk1Yn0_P3FO4Zr_Pj2fTZ8HACRxctmH8Au2Vi9U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuF8CA4wET2A1cRzHeUCIMSqqQVWJIY0nYzvONqmko-1A_Wv8OnycpFO57G0PvDZOZSffOec78fF3AJ4akVorqowWRckoSnZTI01GtefiutAowVWGZhP5aCT394vxBvzszsJgWWXnE4OjLqcWv5H3UWIwRxFL0a_asojxzuDV8TeKHaRwp7Vrp9FAZNctf_j0bf5yuOPf9TPGBm_33ryjbYcBajOeLCiqYnoOwKywJeOZNMzGXOtMe1ohC8dyHJZbm9s4KWPunHBWmtyvxhgnS5f6_70Am56Sc9aDzfHww_jz6gsP7qHxpGhP6sSp7M99tMQTbYzTHLk_Xa5Fw9A04G9M98-Czd92bUMwHFz7nx_jdbjaUnDyurGZG7Dh6ptwqWnKubwFe-FMMp1gNRWpXBA-JSj3iVGe6MmBX8Li8CvB-F-SaU0G2-OPQ-LJP8Hu4Asyx05VxGJagnVYAfq34dO5LOkO9Opp7e4BEcZUoih9aplonppYmyquWFxWPmMQPMsiSDoMKNsKs2N_kIkKBQKpVA1ulMeNCrhRywier-45bmRJzhy9jdBajURJ8fDDdHagWg-lSiGr1DKppRS8ksKnXhlzNjZFal2S5BFsdYhSrZ-bq1M4RfBkddl7KNx20rWbnjRjpKc9vIjgboPj1UzSIvMZO94t1xC-NtX1K_XRYVBB96mM9MlwEsGLzhhO5_XvZ3H_7GU8hsveHtT74Wj3AVxhaKpJQlm2Bb3F7MQ9hIv2--JoPnvUWjuBL-dtGb8AE1GWHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+feature+encoding+algorithm+based+on+FBPSI+for+heart+sound+classification&rft.jtitle=Scientific+reports&rft.au=Fang%2C+Yu&rft.au=Leng%2C+Hongxia&rft.au=Wang%2C+Weibo&rft.au=Liu%2C+Dongbo&rft.date=2024-11-25&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29132&rft_id=info:doi/10.1038%2Fs41598-024-70230-y&rft_id=info%3Apmid%2F39587136&rft.externalDocID=39587136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |