Multi-level feature encoding algorithm based on FBPSI for heart sound classification

Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is emp...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 29132 - 12
Main Authors: Fang, Yu, Leng, Hongxia, Wang, Weibo, Liu, Dongbo
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 25.11.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.
AbstractList Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.
Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.
Abstract Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding algorithm based on frequency-balanced power spectral intensity for heart sound signal classification. Firstly, a wavelet threshold function is employed to denoise the heart sound signals. Then, the frequency-balanced power spectral intensity envelope is calculated, and an encoder is utilized to extract multi-level features based on the envelope. Finally, an ensemble bagging tree classifier is selected for classification. The experimental data includes binary classification data from the 2016 PhysioNet/CinC Challenge and ternary classification data from the self-collected hypertrophic cardiomyopathy dataset. Results demonstrate that the proposed algorithm performs well, achieving an average classification accuracy of 98.73% for normal and abnormal heart sounds, and 98.12% for normal and two types of hypertrophic cardiomyopathy heart sounds. The proposed method holds significant reference value for the early diagnosis of heart diseases.
ArticleNumber 29132
Author Liu, Dongbo
Leng, Hongxia
Wang, Weibo
Fang, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Fang
  fullname: Fang, Yu
  organization: School of Electrical and Electronic Information, Xihua University
– sequence: 2
  givenname: Hongxia
  surname: Leng
  fullname: Leng, Hongxia
  organization: School of Electrical and Electronic Information, Xihua University
– sequence: 3
  givenname: Weibo
  surname: Wang
  fullname: Wang, Weibo
  organization: School of Electrical and Electronic Information, Xihua University
– sequence: 4
  givenname: Dongbo
  surname: Liu
  fullname: Liu, Dongbo
  email: liudb@mail.xhu.edu.cn
  organization: School of Electrical and Electronic Information, Xihua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39587136$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFSEUxYmpsbX2C7gwJG7cTOXvDLMy2lj7khpNrGvCMHfm8cKDCjNN3reXvqm17aJsIPA7hwP3vkYHIQZA6C0lp5Rw9TELKltVESaqhjBOqt0LdMSIkBXjjB08WB-ik5w3pAzJWkHbV-iQt1I1lNdH6Or77CdXebgBjwcw05wAQ7Cxd2HExo8xuWm9xZ3J0OMY8PmXn79WeIgJr8GkCec4hx5bb3J2g7NmcjG8QS8H4zOc3M3H6Pf516uzi-ryx7fV2efLykpBp4qSljJJmK1tz4RUHbNEGCONkLVqgTW3WGNtYwntiQCowaqu6VTXdaB64Mdotfj20Wz0dXJbk3Y6Gqf3GzGNukR01oPuazVwy5RRqhaDqpVikoElXcstUNoUr0-L1_XcbaG3EKZk_CPTxyfBrfUYbzSlUrWNoMXhw51Din9myJPeumzBexMgzllzypkSpQRtQd8_QTdxTqH81Z5qysfwulDvHka6z_KvegVgC2BTzDnBcI9Qom-7RC9dokuX6H2X6F0RqSci66Z92cqznH9eyhdpLveEEdL_2M-o_gJoZtEW
CitedBy_id crossref_primary_10_3390_technologies13040147
Cites_doi 10.1007/s00521-019-04547-5
10.3390/bioengineering10010045
10.1161/CIRCULATIONAHA.106.644682
10.3390/app132111942
10.1142/S0219519423500173
10.1016/j.bspc.2023.105186
10.1016/j.apacoust.2020.107242
10.3390/en15207762
10.1016/j.measurement.2023.114022
10.1111/psyp.14544
10.1109/JBHI.2020.3016831
10.3390/s22072547
10.3390/s23198168
10.1016/j.health.2023.100286
10.1186/s12889-024-17651-6
10.1016/j.bspc.2020.102173
10.1016/j.parkreldis.2020.08.001
10.1161/CIR.0000000000000945
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-70230-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_d68f3c28a8864f8688252ec0b93ce117
PMC11589741
39587136
10_1038_s41598_024_70230_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-10912502c6cd2458b2c04aa5a45689e27c5417cc7c01d04ee6ec8b7b8bbbe8de3
IEDL.DBID M2P
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364088200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 18:18:31 EDT 2025
Tue Nov 04 02:04:43 EST 2025
Thu Sep 04 20:10:11 EDT 2025
Tue Oct 07 08:23:05 EDT 2025
Wed Feb 19 02:04:24 EST 2025
Sat Nov 29 03:21:50 EST 2025
Tue Nov 18 22:36:16 EST 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heart sound classification
Hypertrophic cardiomyopathy
Balanced power spectrum intensity
Multi-level feature encoding
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-10912502c6cd2458b2c04aa5a45689e27c5417cc7c01d04ee6ec8b7b8bbbe8de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3132709136?pq-origsite=%requestingapplication%
PMID 39587136
PQID 3132709136
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d68f3c28a8864f8688252ec0b93ce117
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11589741
proquest_miscellaneous_3132842949
proquest_journals_3132709136
pubmed_primary_39587136
crossref_primary_10_1038_s41598_024_70230_y
crossref_citationtrail_10_1038_s41598_024_70230_y
springer_journals_10_1038_s41598_024_70230_y
PublicationCentury 2000
PublicationDate 2024-11-25
PublicationDateYYYYMMDD 2024-11-25
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Zhang, Fang, Liu, Wang, Wang (CR8) 2020; 33
Wang, Wang, Liu (CR26) 2010; 08
Nur, Adnan, Moo (CR17) 2023; 10
Daniel (CR23) 2023; 86
Turker, Erhan, Sengul (CR25) 2021; 63
Abdelhakim, Amine, Fadia (CR27) 2023
Shah, Daniel, Anup, Elmaghraby (CR30) 2022; 22
Pathak, Samanta, Mandana, Saha (CR11) 2020; 164
Wang (CR12) 2022; 39
Yang, Meng, Zhang, Chao (CR14) 2022; 49
Luo (CR13) 2022; 39
Wang (CR22) 2024; 225
Zhang, Zhang (CR7) 2022; 44
CR2
Wang (CR10) 2023; 40
CR4
CR3
Maron (CR6) 2006; 114
CR5
Cheng, Sun (CR21) 2023; 23
Caracuel (CR19) 2024; 61
Tsai (CR20) 2020; 24
Baikai (CR1) 2024; 24
Xu, Xing, Zhou, Ying (CR9) 2021; 57
Lee, Kwak (CR15) 2023; 13
Fahim (CR24) 2020; 79
Yadav, Singh, Dutta, Travieso (CR18) 2020; 32
Nsaif (CR28) 2022; 15
Ajay (CR29) 2024; 05
Hu, Hu, Yu, Liu (CR16) 2023; 40
70230_CR3
70230_CR2
JW Cheng (70230_CR21) 2023; 23
Y Wang (70230_CR26) 2010; 08
MS Maron (70230_CR6) 2006; 114
70230_CR5
70230_CR4
MM Caracuel (70230_CR19) 2024; 61
S Abdelhakim (70230_CR27) 2023
R Daniel (70230_CR23) 2023; 86
JF Zhang (70230_CR7) 2022; 44
AM Fahim (70230_CR24) 2020; 79
KH Tsai (70230_CR20) 2020; 24
LY Yang (70230_CR14) 2022; 49
A Pathak (70230_CR11) 2020; 164
Q Wang (70230_CR10) 2023; 40
AS Shah (70230_CR30) 2022; 22
AJ Lee (70230_CR15) 2023; 13
T Turker (70230_CR25) 2021; 63
JM Wang (70230_CR12) 2022; 39
JL Wang (70230_CR22) 2024; 225
CD Xu (70230_CR9) 2021; 57
MJO Baikai (70230_CR1) 2024; 24
G Luo (70230_CR13) 2022; 39
YF Nur (70230_CR17) 2023; 10
D Ajay (70230_CR29) 2024; 05
A Yadav (70230_CR18) 2020; 32
MY Nsaif (70230_CR28) 2022; 15
QL Hu (70230_CR16) 2023; 40
XL Zhang (70230_CR8) 2020; 33
References_xml – volume: 32
  start-page: 17843
  year: 2020
  end-page: 17856
  ident: CR18
  article-title: Machine learning-based classification of cardiac diseases from PCG recorded heart sounds
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04547-5
– volume: 10
  start-page: 45
  year: 2023
  ident: CR17
  article-title: An optimal approach for heart sound classification using grid search in hyperparameter optimization of machine learning
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10010045
– ident: CR4
– volume: 114
  start-page: 2232
  year: 2006
  end-page: 2239
  ident: CR6
  article-title: Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.644682
– ident: CR2
– volume: 13
  start-page: 11942
  year: 2023
  ident: CR15
  article-title: Heart sound classification using wavelet analysis approaches and ensemble of deep learning models
  publication-title: Appl. Sci.
  doi: 10.3390/app132111942
– year: 2023
  ident: CR27
  article-title: Maximal overlap discrete wavelet transform-based abrupt changes detection for heart sounds segmentation
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519423500173
– volume: 86
  year: 2023
  ident: CR23
  article-title: CNN-based classification of phonocardiograms using fractal techniques
  publication-title: J. Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105186
– volume: 44
  start-page: 1514
  year: 2022
  end-page: 1520
  ident: CR7
  article-title: An improved residual neural network for heart sound classification
  publication-title: Comput. Eng. Sci.
– volume: 164
  year: 2020
  ident: CR11
  article-title: An improved method to detect coronary artery disease using phonocardiogram signals in noisy environment
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107242
– volume: 39
  start-page: 349
  year: 2022
  end-page: 356
  ident: CR13
  article-title: Feature extraction method based on enhanced power spectral density for emotion analysis using EEG
  publication-title: Chin. J. Med. Phys.
– volume: 15
  start-page: 7762
  year: 2022
  ident: CR28
  article-title: A new voltage based fault detection technique for distribution network connected to photovoltaic sources using variational mode decomposition integrated ensemble bagged trees approach
  publication-title: J. Energies.
  doi: 10.3390/en15207762
– volume: 40
  start-page: 1152
  year: 2023
  end-page: 1159
  ident: CR10
  article-title: Heart sound classification algorithm based on time-frequency combination feature and adaptive fuzzy neural network
  publication-title: J. Biomed. Eng.
– volume: 39
  start-page: 1401
  year: 2022
  end-page: 1406
  ident: CR12
  article-title: Optimum heart sound signal selection based on the similarity of power spectral density
  publication-title: Chin. J. Med. Phys.
– volume: 225
  year: 2024
  ident: CR22
  article-title: Multiclassification for heart sound signals under multiple networks and multi-view feature
  publication-title: J. Meas.
  doi: 10.1016/j.measurement.2023.114022
– volume: 61
  start-page: 14544
  year: 2024
  ident: CR19
  article-title: Systemic neurophysiological signals of auditory predictive coding
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14544
– volume: 57
  start-page: 125
  year: 2021
  end-page: 132
  ident: CR9
  article-title: Classification of heart sounds using power spectral density and convolutional neural networks
  publication-title: Comput. Eng. Appl.
– volume: 08
  start-page: 303
  year: 2010
  end-page: 307
  ident: CR26
  article-title: Noise reduction for heart sound based on wavelet transform
  publication-title: J. Inform. Electron. Eng.
– volume: 49
  start-page: 95
  year: 2022
  end-page: 102
  ident: CR14
  article-title: Implementation of EEG emotion analysis via feature fusion
  publication-title: J. Xidian Univ.
– ident: CR3
– volume: 24
  start-page: 3203
  year: 2020
  end-page: 3214
  ident: CR20
  article-title: Blind monaural source separation on heart and lung sounds based on periodic-coded deep autoencoder
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3016831
– volume: 22
  start-page: 2547
  year: 2022
  ident: CR30
  article-title: A deep convolutional neural network-XGB for direction and severity aware fall detection and activity recognition
  publication-title: J. Sensors
  doi: 10.3390/s22072547
– volume: 23
  start-page: 8168
  year: 2023
  ident: CR21
  article-title: Heart sound classification network based on convolution and transformer
  publication-title: J. Sensors
  doi: 10.3390/s23198168
– volume: 05
  year: 2024
  ident: CR29
  article-title: A flexible analytic wavelet transform and ensemble bagged tree model for electroencephalogram-based meditative mind-wandering detection
  publication-title: J. Healthcare Anal.
  doi: 10.1016/j.health.2023.100286
– volume: 33
  start-page: 59
  year: 2020
  end-page: 65
  ident: CR8
  article-title: Research on feature extraction algorithm of HCM heart murmur sound based on WER-PCA
  publication-title: Space Med. Med. Eng.
– volume: 24
  start-page: 198
  year: 2024
  ident: CR1
  article-title: Self-reported cardiovascular disease risk factor screening among people living with HIV vs. members of the general population in Botswana: A community-based study
  publication-title: J. BMC Public Health
  doi: 10.1186/s12889-024-17651-6
– ident: CR5
– volume: 63
  year: 2021
  ident: CR25
  article-title: An automated snoring sound classification method based on local dual octal pattern and iterative hybrid feature selector
  publication-title: J. Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102173
– volume: 79
  start-page: 79
  year: 2020
  end-page: 85
  ident: CR24
  article-title: Linear predictive coding distinguishes the spectral EEG features of Parkinson's disease
  publication-title: J. Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2020.08.001
– volume: 40
  start-page: 154
  year: 2023
  end-page: 159
  ident: CR16
  article-title: Automatic classification of heart sounds built on deep separable conversion
  publication-title: Comput. Appl. Softw.
– volume: 05
  year: 2024
  ident: 70230_CR29
  publication-title: J. Healthcare Anal.
  doi: 10.1016/j.health.2023.100286
– volume: 79
  start-page: 79
  year: 2020
  ident: 70230_CR24
  publication-title: J. Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2020.08.001
– volume: 57
  start-page: 125
  year: 2021
  ident: 70230_CR9
  publication-title: Comput. Eng. Appl.
– volume: 49
  start-page: 95
  year: 2022
  ident: 70230_CR14
  publication-title: J. Xidian Univ.
– ident: 70230_CR5
  doi: 10.1161/CIR.0000000000000945
– volume: 86
  year: 2023
  ident: 70230_CR23
  publication-title: J. Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105186
– volume: 32
  start-page: 17843
  year: 2020
  ident: 70230_CR18
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04547-5
– volume: 164
  year: 2020
  ident: 70230_CR11
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107242
– volume: 114
  start-page: 2232
  year: 2006
  ident: 70230_CR6
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.644682
– volume: 39
  start-page: 349
  year: 2022
  ident: 70230_CR13
  publication-title: Chin. J. Med. Phys.
– ident: 70230_CR2
– volume: 40
  start-page: 1152
  year: 2023
  ident: 70230_CR10
  publication-title: J. Biomed. Eng.
– volume: 13
  start-page: 11942
  year: 2023
  ident: 70230_CR15
  publication-title: Appl. Sci.
  doi: 10.3390/app132111942
– ident: 70230_CR4
– volume: 15
  start-page: 7762
  year: 2022
  ident: 70230_CR28
  publication-title: J. Energies.
  doi: 10.3390/en15207762
– volume: 24
  start-page: 198
  year: 2024
  ident: 70230_CR1
  publication-title: J. BMC Public Health
  doi: 10.1186/s12889-024-17651-6
– volume: 40
  start-page: 154
  year: 2023
  ident: 70230_CR16
  publication-title: Comput. Appl. Softw.
– volume: 39
  start-page: 1401
  year: 2022
  ident: 70230_CR12
  publication-title: Chin. J. Med. Phys.
– year: 2023
  ident: 70230_CR27
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519423500173
– volume: 22
  start-page: 2547
  year: 2022
  ident: 70230_CR30
  publication-title: J. Sensors
  doi: 10.3390/s22072547
– volume: 44
  start-page: 1514
  year: 2022
  ident: 70230_CR7
  publication-title: Comput. Eng. Sci.
– volume: 24
  start-page: 3203
  year: 2020
  ident: 70230_CR20
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.3016831
– volume: 23
  start-page: 8168
  year: 2023
  ident: 70230_CR21
  publication-title: J. Sensors
  doi: 10.3390/s23198168
– volume: 61
  start-page: 14544
  year: 2024
  ident: 70230_CR19
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14544
– volume: 33
  start-page: 59
  year: 2020
  ident: 70230_CR8
  publication-title: Space Med. Med. Eng.
– volume: 08
  start-page: 303
  year: 2010
  ident: 70230_CR26
  publication-title: J. Inform. Electron. Eng.
– ident: 70230_CR3
– volume: 10
  start-page: 45
  year: 2023
  ident: 70230_CR17
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10010045
– volume: 63
  year: 2021
  ident: 70230_CR25
  publication-title: J. Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102173
– volume: 225
  year: 2024
  ident: 70230_CR22
  publication-title: J. Meas.
  doi: 10.1016/j.measurement.2023.114022
SSID ssj0000529419
Score 2.4417706
Snippet Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature encoding...
Abstract Analysis of heart sound signals plays an essential role in preventing and diagnosing cardiac diseases. This study proposes a multi-level feature...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29132
SubjectTerms 631/1647
639/166
692/700
Accuracy
Algorithms
Balanced power spectrum intensity
Cardiomyopathy
Cardiomyopathy, Hypertrophic - diagnosis
Cardiomyopathy, Hypertrophic - physiopathology
Cardiovascular disease
Cardiovascular diseases
Classification
Coronary artery disease
Datasets
Electroencephalography
Heart
Heart diseases
Heart sound classification
Heart Sounds - physiology
Humanities and Social Sciences
Humans
Hypertrophic cardiomyopathy
Image coding
Multi-level feature encoding
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Signal Processing, Computer-Assisted
Sound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yKHgR37auEsGbhk3SSTo5uuKgl2XBFfYW8mp3YOxZZnqF-femkp5xx-fFa3cFikoV9RWp-gqhV161IaheEmMiJ0DZTbz2kriMxZ1xQMEVy7KJ7uREn5-b02urvqAnrNIDV8MdRaX7NnDttFai1yojQslToN60ITFW5shpZ64VU5XVmxvBzDQlQ1t9tM6ZCqbJuCAd4G6y2ctEhbD_dyjz12bJn15MSyKa3UV3JgSJ31bN76EbabiPbtWdkpsH6KyM1JIFNAPhPhXeTgxslZCksFt8Wa7m48VXDOkr4uWAZ8ennz7ijF0xLLce8RoWLeEAqBraiMrNPUSfZ-_P3n0g0-oEEqRgIwG6zwxueFAhciG154EK56TLeEmbxDsQ60LoAmWRipRUCtp3-Zq8Tzqm9hE6GJZDeoKw8r5XJubKiDnReup8T3tOY58BrxJSNohtzWjDxCsO6y0Wtrxvt9pW09tseltMbzcNer07c1lZNf4qfQy3s5MERuzyIfuJnfzE_stPGnS4vVs7henaAm9lB8yoqkEvd79zgMGriRvS8qrK6Jy1hWnQ4-oKO01aI3PBCaf1npPsqbr_Z5hfFBLvjMR1ruVYg95s_emHXn-2xdP_YYtn6DaHQGCMcHmIDsbVVXqOboZv43y9elEi6TvrnB_g
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-level feature encoding algorithm based on FBPSI for heart sound classification
URI https://link.springer.com/article/10.1038/s41598-024-70230-y
https://www.ncbi.nlm.nih.gov/pubmed/39587136
https://www.proquest.com/docview/3132709136
https://www.proquest.com/docview/3132842949
https://pubmed.ncbi.nlm.nih.gov/PMC11589741
https://doaj.org/article/d68f3c28a8864f8688252ec0b93ce117
Volume 14
WOSCitedRecordID wos001364088200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLkhceD8CZWUkbmA1dhLbOSEWdUUPXUVQpOUU2Y7TVlqSstki7b_H42S3Wh69cPEhcSI7M5P57Bl_A_DGiMRaUWc0zytOkbKbGmUyqj0W17lGCq4qFJuQs5maz_Ni2HDrhrTKzT8x_Kir1uIe-SFSDEoksRTvL39QrBqF0dWhhMYejDyyYZjSdcKL7R4LRrFSlg9nZeJEHXbeX-GZMp5Sieibrnf8UaDt_xvW_DNl8re4aXBH0_v_O5EHcG8AouRDrzkP4ZZrHsGdvjTl-jGchpO5dIE5RaR2gf6TIOkl-jqiF2f-lavz7wS9YEXahkwnxZdj4iEwwRrZK9JhvSZiEZxjNlJQgCfwdXp0-vETHSowUJulbEWRNdRjJG6FrXiaKcNtnGqdaQ-7VO64xG7SWmljVsWpc8JZZaSXtjFOVS55CvtN27jnQIQxtcgrv8BiOk1MrE0d1zyuao-bRZplEbCNHEo70JNjlYxFGcLkiSp72ZVedmWQXbmO4O32mcuenOPG3hMU77YnEmuHC-3yrBzstKyEqhPLlVZKpLUSfgGScWdjkyfWMSYjONhItRysvSuvRRrB6-1tb6cYfNGNa6_6Pso7_zSP4FmvS9uRJHnm1634tNrRsp2h7t5pLs4DF7hXe-WXhCyCdxuFvB7Xv7_Fi5un8RLucrQRxijPDmB_tbxyr-C2_bm66JZj2JNzGVo1htHkaFZ8Hoe9jHEwP2ylb0fF8Unx7Rf5sDVZ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwQv3BmBAUaCJ7CWOI7jPCDEgGrVRlWJIu3Nsx1nm9Slo-1A_VP8RnycpFO57G0PvDZOZSffucXH3wfw0ojUWlFltChKRpGymxppMqp9Lq4LjRRcZRCbyAcDub9fDNfgZ3cWBtsqO58YHHU5sfiNfAspBnMksRTvTr9RVI3C3dVOQqOBxa5b_PAl2-xt_6N_v68Y630afdihraoAtRlP5hSZMH3cZ1bYkvFMGmZjrnWmfSohC8dyHJZbm9s4KWPunHBWmtyvwBgnS5f6_70CVzkyi2GrIBsuv-ngrhlPivZsTpzKrZmPj3iGjXGaY7ZPFyvxL8gE_C23_bNF87d92hD-erf_twd3B261iTZ531jGXVhz9T243khvLu7DKJw8pmPsmSKVC_SmBEk9MZYTPT70S5gfnRCM8iWZ1KS3PfzSJz7FJ6gBPicz1KMiFosP7LYKAH8AXy9lSQ9hvZ7U7hEQYUwlitIXkInmqYm1qeKKxWXl6wLBsyyCpHvvyrb066gCMlahDSCVqsGK8lhRAStqEcHr5T2nDfnIhaO3EU7LkUgcHn6YTA9V64dUKWSVWia1lIJXUvgCK2POxqZIrUuSPILNDkWq9WYzdQ6hCF4sL3s_hJtLunaTs2aM9MkNLyLYaLC7nElaZL4ux7vlCqpXprp6pT4-ClznvmCRvuRNInjTGcD5vP79LB5fvIzncGNn9HlP7fUHu0_gJkP7TBLKsk1Yn0_P3FO4Zr_Pj2fTZ8HACRxctmH8Au2Vi9U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHSBeuF8CA4wET2A1cRzHeUCIMSqqQVWJIY0nYzvONqmko-1A_Wv8OnycpFO57G0PvDZOZSffOec78fF3AJ4akVorqowWRckoSnZTI01GtefiutAowVWGZhP5aCT394vxBvzszsJgWWXnE4OjLqcWv5H3UWIwRxFL0a_asojxzuDV8TeKHaRwp7Vrp9FAZNctf_j0bf5yuOPf9TPGBm_33ryjbYcBajOeLCiqYnoOwKywJeOZNMzGXOtMe1ohC8dyHJZbm9s4KWPunHBWmtyvxhgnS5f6_70Am56Sc9aDzfHww_jz6gsP7qHxpGhP6sSp7M99tMQTbYzTHLk_Xa5Fw9A04G9M98-Czd92bUMwHFz7nx_jdbjaUnDyurGZG7Dh6ptwqWnKubwFe-FMMp1gNRWpXBA-JSj3iVGe6MmBX8Li8CvB-F-SaU0G2-OPQ-LJP8Hu4Asyx05VxGJagnVYAfq34dO5LOkO9Opp7e4BEcZUoih9aplonppYmyquWFxWPmMQPMsiSDoMKNsKs2N_kIkKBQKpVA1ulMeNCrhRywier-45bmRJzhy9jdBajURJ8fDDdHagWg-lSiGr1DKppRS8ksKnXhlzNjZFal2S5BFsdYhSrZ-bq1M4RfBkddl7KNx20rWbnjRjpKc9vIjgboPj1UzSIvMZO94t1xC-NtX1K_XRYVBB96mM9MlwEsGLzhhO5_XvZ3H_7GU8hsveHtT74Wj3AVxhaKpJQlm2Bb3F7MQ9hIv2--JoPnvUWjuBL-dtGb8AE1GWHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+feature+encoding+algorithm+based+on+FBPSI+for+heart+sound+classification&rft.jtitle=Scientific+reports&rft.au=Fang%2C+Yu&rft.au=Leng%2C+Hongxia&rft.au=Wang%2C+Weibo&rft.au=Liu%2C+Dongbo&rft.date=2024-11-25&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29132&rft_id=info:doi/10.1038%2Fs41598-024-70230-y&rft_id=info%3Apmid%2F39587136&rft.externalDocID=39587136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon