COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examinati...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 10; číslo 1; s. 19549 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
11.11.2020
Nature Publishing Group |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors’ knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors’ knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most. |
|---|---|
| AbstractList | The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors’ knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors’ knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most. The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most. |
| ArticleNumber | 19549 |
| Author | Wang, Linda Wong, Alexander Lin, Zhong Qiu |
| Author_xml | – sequence: 1 givenname: Linda surname: Wang fullname: Wang, Linda email: linda.wang@uwaterloo.ca organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp – sequence: 2 givenname: Zhong Qiu surname: Lin fullname: Lin, Zhong Qiu organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp – sequence: 3 givenname: Alexander surname: Wong fullname: Wong, Alexander organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33177550$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UctuFDEQtFAQCSE_wAFZ4sJlwM95cEBCyytSRC6AuFkeT3vjMGtvbM-i5OvxZEIIOcSS1S25qtzV9RTt-eABoeeUvKaEt2-SoLJrK8JI1dRSkurqETpgRMiKccb27vT76Cilc1KOZJ2g3RO0zzltmkI6QLvV6Y_jD9VXyG-xxlm7MUQY8ACwxSb4XRin7ILXI_YwxeuSf4f4qyCSW3tsQyxtBjOjcLB40aMdNjpBwjaGDTZnkDL-WUV9id1GryE9Q4-tHhMc3dRD9P3Tx2-rL9XJ6efj1fuTykhBcmVrVrddR4ZBcqNtub3te1YL3vdaFG9SckY0dKQhg9StoIZyIoZaCwass_wQvVt0t1O_gcGAz8WE2sYyRrxUQTv1_4t3Z2oddqrstGWsKQKvbgRiuJiKDbVxycA4ag9hSoqJmpBWCiEL9OU96HmYYlndjGqolG0jZsEXdye6HeVvJAXAFoCJIaUI9hZCiZqjV0v0qkSvrqNXV4XU3iMZl_WcSXHlxoepfKGm8o9fQ_w39gOsPwQ5wwU |
| CitedBy_id | crossref_primary_10_1155_2022_3035426 crossref_primary_10_3390_electronics11152296 crossref_primary_10_1109_JBHI_2023_3247949 crossref_primary_10_1002_ima_22654 crossref_primary_10_3390_diagnostics13101806 crossref_primary_10_1016_j_patcog_2021_108055 crossref_primary_10_1109_TNNLS_2025_3565582 crossref_primary_10_1109_ACCESS_2022_3229591 crossref_primary_10_1155_2021_9952109 crossref_primary_10_3390_s22228999 crossref_primary_10_1007_s11042_025_20685_6 crossref_primary_10_1016_j_asoc_2022_108867 crossref_primary_10_1016_j_jbi_2024_104583 crossref_primary_10_1109_ACCESS_2022_3194152 crossref_primary_10_1007_s10278_024_01355_9 crossref_primary_10_1155_2022_6185013 crossref_primary_10_1007_s11042_021_11319_8 crossref_primary_10_5937_afmnai39_38354 crossref_primary_10_1080_00051144_2021_2014037 crossref_primary_10_1016_j_procs_2024_04_122 crossref_primary_10_1155_2021_3259108 crossref_primary_10_3390_bdcc5040073 crossref_primary_10_3390_electronics11213511 crossref_primary_10_1016_j_procs_2024_09_409 crossref_primary_10_3389_fpubh_2022_886958 crossref_primary_10_1088_2057_1976_ad72f8 crossref_primary_10_1016_j_eswa_2021_114832 crossref_primary_10_3390_info15010058 crossref_primary_10_3390_computers12050105 crossref_primary_10_3390_math12081254 crossref_primary_10_1016_j_compbiomed_2021_104319 crossref_primary_10_1007_s42979_022_01545_8 crossref_primary_10_1007_s11042_023_17884_4 crossref_primary_10_3233_XST_221360 crossref_primary_10_3390_app12094694 crossref_primary_10_3390_pathogens12010017 crossref_primary_10_18267_j_aip_205 crossref_primary_10_5114_pjr_2023_126717 crossref_primary_10_3389_fneur_2022_755492 crossref_primary_10_1016_j_ins_2022_07_031 crossref_primary_10_3390_diagnostics12123195 crossref_primary_10_1016_j_bspc_2023_104642 crossref_primary_10_1016_j_compeleceng_2022_108396 crossref_primary_10_1002_ima_22627 crossref_primary_10_1109_JBHI_2020_3012383 crossref_primary_10_1371_journal_pone_0320706 crossref_primary_10_1007_s00500_021_06137_x crossref_primary_10_3389_frai_2021_694875 crossref_primary_10_3390_math11204236 crossref_primary_10_1117_1_JMI_10_4_044504 crossref_primary_10_1038_s41598_022_06802_7 crossref_primary_10_3390_diagnostics12020267 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_4018_IJPADA_294122 crossref_primary_10_1002_ima_22611 crossref_primary_10_1002_ima_22613 crossref_primary_10_1109_JBHI_2021_3103839 crossref_primary_10_3389_fmed_2024_1511389 crossref_primary_10_3390_signals3020019 crossref_primary_10_1186_s12911_025_02944_6 crossref_primary_10_1007_s12553_024_00931_x crossref_primary_10_3390_diagnostics13071268 crossref_primary_10_1038_s41598_021_95561_y crossref_primary_10_3390_bioengineering10080901 crossref_primary_10_3390_diagnostics13030551 crossref_primary_10_3390_diagnostics14242800 crossref_primary_10_1057_s41599_025_04564_x crossref_primary_10_1007_s12652_021_03686_9 crossref_primary_10_1007_s10489_021_02199_4 crossref_primary_10_1049_ipr2_13074 crossref_primary_10_1016_j_eswa_2021_114883 crossref_primary_10_1007_s00521_020_05641_9 crossref_primary_10_3390_sym14051003 crossref_primary_10_1007_s11042_022_11913_4 crossref_primary_10_1155_2022_6216273 crossref_primary_10_3390_biology10111174 crossref_primary_10_3934_publichealth_2021019 crossref_primary_10_1007_s11042_024_18848_y crossref_primary_10_1007_s42979_023_02573_8 crossref_primary_10_21015_vtse_v11i2_1460 crossref_primary_10_1007_s13735_021_00204_7 crossref_primary_10_3390_math9172043 crossref_primary_10_1080_01621459_2021_1901717 crossref_primary_10_2196_36660 crossref_primary_10_1088_2057_1976_ad1e76 crossref_primary_10_1186_s42492_024_00168_5 crossref_primary_10_7717_peerj_cs_694 crossref_primary_10_1007_s00330_022_08969_z crossref_primary_10_1145_3615862 crossref_primary_10_1155_2022_2110785 crossref_primary_10_1080_21681163_2023_2187244 crossref_primary_10_1016_j_patcog_2020_107700 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1186_s43556_024_00238_3 crossref_primary_10_1155_2021_6621607 crossref_primary_10_1080_1206212X_2021_1983289 crossref_primary_10_1007_s12539_024_00683_2 crossref_primary_10_1007_s11831_021_09667_7 crossref_primary_10_1109_TMI_2024_3449690 crossref_primary_10_2196_26646 crossref_primary_10_3390_app10165683 crossref_primary_10_1155_2021_5528144 crossref_primary_10_3390_healthcare11060837 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_3390_info11090419 crossref_primary_10_3390_app112110417 crossref_primary_10_1002_ima_22829 crossref_primary_10_1016_j_imavis_2024_105405 crossref_primary_10_3390_diagnostics12010025 crossref_primary_10_3390_diagnostics12081880 crossref_primary_10_1038_s41598_020_70479_z crossref_primary_10_1007_s11227_022_04349_y crossref_primary_10_1002_ppul_25661 crossref_primary_10_1007_s11042_024_19350_1 crossref_primary_10_3389_fpubh_2021_641253 crossref_primary_10_1038_s41598_023_30941_0 crossref_primary_10_1186_s42490_025_00089_1 crossref_primary_10_1111_exsy_13378 crossref_primary_10_3389_frai_2021_612914 crossref_primary_10_1007_s00521_020_05636_6 crossref_primary_10_1007_s00607_021_00983_1 crossref_primary_10_1080_01431161_2024_2425119 crossref_primary_10_3390_electronics12051167 crossref_primary_10_3390_healthcare9091099 crossref_primary_10_1007_s10489_021_02393_4 crossref_primary_10_1155_2021_8869372 crossref_primary_10_5114_pjr_2023_132533 crossref_primary_10_3390_ai1030027 crossref_primary_10_3390_diagnostics12020237 crossref_primary_10_37511_apuntesci_v2n2a6 crossref_primary_10_1109_TCSVT_2021_3063952 crossref_primary_10_1002_cpe_8023 crossref_primary_10_3390_s22197303 crossref_primary_10_1007_s44163_024_00110_x crossref_primary_10_1109_TMI_2022_3224873 crossref_primary_10_3390_ijerph19042013 crossref_primary_10_7717_peerj_cs_2517 crossref_primary_10_1002_admt_202201662 crossref_primary_10_1371_journal_pone_0274098 crossref_primary_10_1007_s00521_021_06044_0 crossref_primary_10_1109_TCBB_2022_3184319 crossref_primary_10_1155_2024_2797320 crossref_primary_10_3390_diagnostics13122125 crossref_primary_10_1007_s10489_020_01904_z crossref_primary_10_3390_bioengineering10111314 crossref_primary_10_1109_TNNLS_2021_3114747 crossref_primary_10_3390_cancers15174228 crossref_primary_10_1007_s00354_021_00121_7 crossref_primary_10_1067_j_cpradiol_2020_06_009 crossref_primary_10_1007_s42600_020_00110_7 crossref_primary_10_1016_j_patcog_2020_107747 crossref_primary_10_1088_1741_4326_ac70e8 crossref_primary_10_1038_s41598_023_36148_7 crossref_primary_10_1016_j_compbiomed_2021_105002 crossref_primary_10_1109_JBHI_2021_3058293 crossref_primary_10_1038_s41598_023_44818_9 crossref_primary_10_1109_TNNLS_2022_3230821 crossref_primary_10_3390_diagnostics13101675 crossref_primary_10_1016_j_knosys_2022_110040 crossref_primary_10_1038_s41598_023_35922_x crossref_primary_10_1109_ACCESS_2022_3202922 crossref_primary_10_3390_healthcare8040527 crossref_primary_10_1016_j_microc_2021_106305 crossref_primary_10_1088_1361_6560_abbf9e crossref_primary_10_1063_5_0216862 crossref_primary_10_1155_2020_9121429 crossref_primary_10_1016_j_compbiomed_2023_106947 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_7717_peerj_cs_655 crossref_primary_10_1016_j_neucom_2021_10_043 crossref_primary_10_1007_s10489_020_01770_9 crossref_primary_10_47164_ijngc_v13i3_611 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_1016_j_asoc_2022_109588 crossref_primary_10_1038_s41598_023_44653_y crossref_primary_10_1016_j_compeleceng_2025_110443 crossref_primary_10_3389_fphys_2021_693448 crossref_primary_10_1155_2021_6658058 crossref_primary_10_3233_JIFS_219387 crossref_primary_10_37219_2528_8253_2023_3_2 crossref_primary_10_1016_j_patrec_2020_09_010 crossref_primary_10_1016_j_cmpbup_2021_100022 crossref_primary_10_1016_j_matpr_2021_11_388 crossref_primary_10_3390_diagnostics14101017 crossref_primary_10_3390_app12178668 crossref_primary_10_3390_make6030078 crossref_primary_10_3390_s23052621 crossref_primary_10_1016_j_artmed_2022_102427 crossref_primary_10_3390_math9020180 crossref_primary_10_1007_s40747_021_00513_8 crossref_primary_10_3390_diagnostics13030391 crossref_primary_10_1186_s12911_024_02591_3 crossref_primary_10_1016_j_neunet_2024_106182 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_1109_ACCESS_2022_3198958 crossref_primary_10_3390_diagnostics12081828 crossref_primary_10_3389_fmed_2021_729287 crossref_primary_10_1016_j_bspc_2021_103126 crossref_primary_10_1038_s41598_023_46126_8 crossref_primary_10_3390_ai1040034 crossref_primary_10_1007_s10278_023_00791_3 crossref_primary_10_1038_s41598_021_86735_9 crossref_primary_10_3390_ai1040032 crossref_primary_10_1364_AO_455628 crossref_primary_10_3233_XST_211113 crossref_primary_10_1007_s11042_024_18924_3 crossref_primary_10_1109_ACCESS_2025_3584065 crossref_primary_10_1088_1742_6596_1937_1_012002 crossref_primary_10_3390_healthcare9121614 crossref_primary_10_1109_TII_2021_3057683 crossref_primary_10_3390_su141912222 crossref_primary_10_3390_diagnostics14171984 crossref_primary_10_1007_s42979_020_00383_w crossref_primary_10_3390_bioengineering9040153 crossref_primary_10_3390_app11041424 crossref_primary_10_1016_j_cmpb_2023_107684 crossref_primary_10_1109_JBHI_2020_3023246 crossref_primary_10_1364_PRJ_513537 crossref_primary_10_1007_s00354_023_00217_2 crossref_primary_10_1080_17434440_2022_2014319 crossref_primary_10_1177_20552076241257045 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_1002_hbe2_237 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1007_s42979_021_00841_z crossref_primary_10_1016_j_media_2024_103248 crossref_primary_10_1117_1_JMI_10_6_064504 crossref_primary_10_32604_cmc_2021_013191 crossref_primary_10_1007_s13246_021_01093_0 crossref_primary_10_3390_diagnostics13172858 crossref_primary_10_1371_journal_pone_0276250 crossref_primary_10_3390_jimaging10020045 crossref_primary_10_1177_09544119241293007 crossref_primary_10_3390_technologies9040098 crossref_primary_10_1109_TNNLS_2022_3201198 crossref_primary_10_1080_21681163_2022_2140074 crossref_primary_10_3233_JIFS_210925 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_1155_2021_5058791 crossref_primary_10_1007_s10844_022_00707_7 crossref_primary_10_1007_s13755_021_00140_0 crossref_primary_10_1016_j_bspc_2022_103977 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1155_2021_3366057 crossref_primary_10_1016_j_bbe_2021_09_004 crossref_primary_10_1016_j_chaos_2021_110749 crossref_primary_10_1109_TAI_2021_3104791 crossref_primary_10_1002_int_22440 crossref_primary_10_3390_app112210528 crossref_primary_10_1007_s12652_024_04797_9 crossref_primary_10_1109_TPAMI_2025_3584902 crossref_primary_10_1109_ACCESS_2024_3515160 crossref_primary_10_1109_TNNLS_2023_3280646 crossref_primary_10_1186_s12938_024_01299_9 crossref_primary_10_1007_s41666_021_00106_7 crossref_primary_10_1109_ACCESS_2021_3085418 crossref_primary_10_1007_s11042_022_12500_3 crossref_primary_10_1002_mp_15969 crossref_primary_10_1186_s12880_024_01401_6 crossref_primary_10_3390_ijerph182212191 crossref_primary_10_3390_diagnostics13020270 crossref_primary_10_1007_s11042_024_18543_y crossref_primary_10_3390_s25154580 crossref_primary_10_3390_life12111709 crossref_primary_10_1177_00207314211017469 crossref_primary_10_3390_healthcare10020276 crossref_primary_10_1016_j_acra_2021_05_002 crossref_primary_10_3390_electronics11172682 crossref_primary_10_1007_s11227_023_05541_4 crossref_primary_10_15446_ing_investig_v42n1_88825 crossref_primary_10_1007_s11042_022_13783_2 crossref_primary_10_3390_diagnostics15030248 crossref_primary_10_1109_TETCI_2020_3046012 crossref_primary_10_1007_s13042_023_02034_x crossref_primary_10_1016_j_ijleo_2021_167780 crossref_primary_10_3390_diagnostics13020260 crossref_primary_10_7717_peerj_cs_2343 crossref_primary_10_1111_1754_9485_13648 crossref_primary_10_2174_0123520965325192240923074336 crossref_primary_10_1371_journal_pone_0243963 crossref_primary_10_1155_2021_9269173 crossref_primary_10_3390_app11209556 crossref_primary_10_1007_s10489_021_02292_8 crossref_primary_10_1109_RBME_2020_2987975 crossref_primary_10_1186_s13244_022_01250_3 crossref_primary_10_1080_07391102_2020_1767212 crossref_primary_10_1109_ACCESS_2023_3277526 crossref_primary_10_1109_JBHI_2022_3151171 crossref_primary_10_1134_S1054661821020140 crossref_primary_10_3390_diagnostics12112613 crossref_primary_10_1109_TCBB_2021_3066331 crossref_primary_10_1007_s12652_021_02979_3 crossref_primary_10_1038_s41598_021_02003_w crossref_primary_10_1117_1_JMI_11_6_064503 crossref_primary_10_1155_2021_9996737 crossref_primary_10_2196_33970 crossref_primary_10_1007_s10522_021_09946_7 crossref_primary_10_1007_s11036_023_02140_8 crossref_primary_10_1007_s10489_020_01900_3 crossref_primary_10_3390_app122412891 crossref_primary_10_1177_14604582211033017 crossref_primary_10_1007_s12559_020_09774_w crossref_primary_10_1088_2043_6262_ac2050 crossref_primary_10_3390_diagnostics12030741 crossref_primary_10_3390_electronics12010099 crossref_primary_10_32604_cmes_2023_030806 crossref_primary_10_1007_s11071_024_09563_2 crossref_primary_10_3390_diagnostics15111301 crossref_primary_10_1007_s00146_020_00978_0 crossref_primary_10_1002_wsbm_1548 crossref_primary_10_1007_s10796_021_10123_x crossref_primary_10_1016_j_neucom_2022_02_018 crossref_primary_10_1155_2022_4983174 crossref_primary_10_61453_jods_v2021no04 crossref_primary_10_1007_s00521_022_08021_7 crossref_primary_10_1007_s00330_020_07453_w crossref_primary_10_21015_vtse_v10i3_1135 crossref_primary_10_3389_fgene_2022_845305 crossref_primary_10_3390_jpm10040213 crossref_primary_10_3390_info14070370 crossref_primary_10_3390_math11051216 crossref_primary_10_3390_ijerph20032035 crossref_primary_10_1016_j_imed_2021_06_004 crossref_primary_10_3390_app13169226 crossref_primary_10_1016_j_neucom_2022_02_040 crossref_primary_10_1109_ACCESS_2020_3003810 crossref_primary_10_3390_diagnostics12030765 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_4018_IJACI_300793 crossref_primary_10_31185_ejuow_Vol11_Iss2_439 crossref_primary_10_3389_frai_2023_1235204 crossref_primary_10_1109_JTEHM_2021_3134096 crossref_primary_10_1007_s12652_024_04775_1 crossref_primary_10_1007_s12553_021_00630_x crossref_primary_10_1080_03091902_2024_2321846 crossref_primary_10_3390_make5030037 crossref_primary_10_1109_JBHI_2023_3307216 crossref_primary_10_3390_app112411902 crossref_primary_10_1007_s00521_021_06346_3 crossref_primary_10_1007_s41870_023_01538_7 crossref_primary_10_1515_pjbr_2022_0108 crossref_primary_10_1007_s00354_025_00296_3 crossref_primary_10_2196_37215 crossref_primary_10_1007_s12530_023_09541_w crossref_primary_10_1007_s41939_023_00292_4 crossref_primary_10_1155_int_6914757 crossref_primary_10_1088_1361_6501_ac8ca4 crossref_primary_10_1155_2022_5297709 crossref_primary_10_1155_2024_3249929 crossref_primary_10_3389_frai_2023_1266560 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_1038_s41598_023_49337_1 crossref_primary_10_4018_IJDWM_314155 crossref_primary_10_1038_s41598_025_00966_8 crossref_primary_10_28978_nesciences_868087 crossref_primary_10_1016_j_compbiomed_2022_106070 crossref_primary_10_3390_s20113089 crossref_primary_10_1007_s11042_022_12640_6 crossref_primary_10_1007_s12559_020_09787_5 crossref_primary_10_3389_fdata_2022_801998 crossref_primary_10_1007_s10278_023_00916_8 crossref_primary_10_1109_ACCESS_2023_3312533 crossref_primary_10_1007_s10479_022_05151_y crossref_primary_10_1007_s00530_022_00917_7 crossref_primary_10_3390_e26080645 crossref_primary_10_1007_s11042_021_11748_5 crossref_primary_10_1007_s13755_022_00174_y crossref_primary_10_3389_fmed_2023_1157000 crossref_primary_10_3390_diagnostics12030717 crossref_primary_10_1007_s11831_025_10253_4 crossref_primary_10_1038_s41598_021_95537_y crossref_primary_10_3390_diagnostics13081491 crossref_primary_10_1016_j_asoc_2022_109906 crossref_primary_10_3390_electronics11233880 crossref_primary_10_3390_math11061279 crossref_primary_10_1109_ACCESS_2021_3133338 crossref_primary_10_3390_bioengineering10010019 crossref_primary_10_1007_s11042_024_18175_2 crossref_primary_10_1016_j_csbj_2021_05_010 crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_1088_1757_899X_979_1_012016 crossref_primary_10_1007_s42979_021_00823_1 crossref_primary_10_1049_iet_ipr_2020_1127 crossref_primary_10_31083_j_fbl2707198 crossref_primary_10_3390_math10193614 crossref_primary_10_3390_s21238045 crossref_primary_10_1111_jocd_15310 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1007_s42979_022_01182_1 crossref_primary_10_1109_JBHI_2022_3205167 crossref_primary_10_3390_reports5020020 crossref_primary_10_1155_2022_2564022 crossref_primary_10_3390_s21217116 crossref_primary_10_1007_s13246_020_00888_x crossref_primary_10_1155_2022_7631271 crossref_primary_10_1177_08953996251320262 crossref_primary_10_3390_s21020455 crossref_primary_10_1002_widm_1567 crossref_primary_10_1016_j_patcog_2021_108499 crossref_primary_10_1080_09720502_2021_1884385 crossref_primary_10_1002_ima_22697 crossref_primary_10_1051_e3sconf_202129701031 crossref_primary_10_1111_1754_9485_13273 crossref_primary_10_1007_s11548_020_02305_w crossref_primary_10_1097_CM9_0000000000002058 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_1177_20552076241232882 crossref_primary_10_1007_s40031_022_00762_2 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1128_CMR_00228_20 crossref_primary_10_1007_s10462_021_10106_z crossref_primary_10_1007_s11063_022_11023_0 crossref_primary_10_1146_annurev_bioeng_110220_012203 crossref_primary_10_1007_s13755_021_00146_8 crossref_primary_10_1016_j_bbe_2022_06_005 crossref_primary_10_1109_TII_2021_3138919 crossref_primary_10_1016_j_patcog_2021_108006 crossref_primary_10_3390_electronics9091439 crossref_primary_10_3390_pharmaceutics16020260 crossref_primary_10_1038_s41598_023_45368_w crossref_primary_10_1155_2022_8729749 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_1007_s10278_022_00754_0 crossref_primary_10_1038_s41598_021_97901_4 crossref_primary_10_1371_journal_pone_0294481 crossref_primary_10_32604_cmc_2021_014956 crossref_primary_10_1007_s12652_020_02669_6 crossref_primary_10_1080_0952813X_2022_2125079 crossref_primary_10_1016_j_chaos_2020_110245 crossref_primary_10_1109_TETCI_2024_3359082 crossref_primary_10_1007_s11042_023_14960_7 crossref_primary_10_3390_ijerph19105901 crossref_primary_10_1016_j_patcog_2021_108035 crossref_primary_10_3390_diagnostics12112826 crossref_primary_10_1186_s42492_021_00078_w crossref_primary_10_1007_s00354_023_00232_3 crossref_primary_10_3390_s21175702 crossref_primary_10_1371_journal_pone_0328061 crossref_primary_10_1038_s41467_023_44383_9 crossref_primary_10_3389_frai_2022_827299 crossref_primary_10_1007_s42979_024_02941_y crossref_primary_10_1109_MCI_2020_3019873 crossref_primary_10_3390_s21175940 crossref_primary_10_1109_TIM_2025_3545983 crossref_primary_10_1007_s11760_020_01820_2 crossref_primary_10_1109_ACCESS_2022_3227798 crossref_primary_10_2196_27468 crossref_primary_10_3389_fpubh_2022_805086 crossref_primary_10_1038_s41598_022_18463_7 crossref_primary_10_1007_s10618_020_00692_x crossref_primary_10_1121_10_0006104 crossref_primary_10_1109_JIOT_2021_3126471 crossref_primary_10_1007_s13369_021_05879_y crossref_primary_10_3390_diagnostics14050500 crossref_primary_10_1002_cpe_6747 crossref_primary_10_1007_s11277_021_09076_w crossref_primary_10_3390_bioengineering11070709 crossref_primary_10_1038_s41598_024_70929_y crossref_primary_10_1177_1088467X241301698 crossref_primary_10_1007_s12553_022_00688_1 crossref_primary_10_1016_j_media_2021_102046 crossref_primary_10_1007_s13755_020_00119_3 crossref_primary_10_1109_ACCESS_2024_3409566 crossref_primary_10_1109_ACCESS_2021_3054484 crossref_primary_10_11648_j_ajai_20250901_14 crossref_primary_10_1007_s12559_020_09779_5 crossref_primary_10_1109_ACCESS_2023_3267492 crossref_primary_10_32604_cmes_2023_028018 crossref_primary_10_1109_MSP_2021_3090674 crossref_primary_10_1007_s11042_022_14316_7 crossref_primary_10_1007_s12652_021_02917_3 crossref_primary_10_7717_peerj_cs_349 crossref_primary_10_3390_app12083895 crossref_primary_10_3390_electronics14091881 crossref_primary_10_1007_s00530_022_00892_z crossref_primary_10_3390_biomimetics8050406 crossref_primary_10_1007_s10489_021_02352_z crossref_primary_10_3390_diagnostics13111968 crossref_primary_10_1016_j_compbiomed_2021_104453 crossref_primary_10_1016_j_iot_2021_100377 crossref_primary_10_1007_s42979_021_00695_5 crossref_primary_10_1016_j_scs_2021_103252 crossref_primary_10_3390_tomography11090099 crossref_primary_10_1007_s11277_022_09864_y crossref_primary_10_1007_s00521_025_11219_0 crossref_primary_10_1007_s42600_021_00181_0 crossref_primary_10_1111_exsy_13423 crossref_primary_10_1007_s11042_021_10714_5 crossref_primary_10_3233_XST_200757 crossref_primary_10_3389_fpubh_2022_875971 crossref_primary_10_1002_ima_22525 crossref_primary_10_3389_fams_2023_1133349 crossref_primary_10_3390_pathogens10081048 crossref_primary_10_1007_s00530_021_00884_5 crossref_primary_10_1038_s41598_023_46147_3 crossref_primary_10_1038_s41598_022_15013_z crossref_primary_10_1109_JBHI_2020_3037127 crossref_primary_10_1109_TCSII_2024_3377356 crossref_primary_10_1007_s00500_022_07798_y crossref_primary_10_1109_JBHI_2023_3313886 crossref_primary_10_1109_JBHI_2022_3148317 crossref_primary_10_1007_s11042_024_20327_3 crossref_primary_10_1007_s11277_024_11309_7 crossref_primary_10_1007_s11042_022_13710_5 crossref_primary_10_1007_s43938_024_00064_7 crossref_primary_10_1109_JBHI_2022_3220813 crossref_primary_10_1002_ima_22983 crossref_primary_10_1007_s11192_020_03744_7 crossref_primary_10_2196_23693 crossref_primary_10_1109_TMI_2024_3418408 crossref_primary_10_1038_s41598_023_45532_2 crossref_primary_10_1088_1742_6596_1714_1_012023 crossref_primary_10_3390_diagnostics11020315 crossref_primary_10_1002_qua_70053 crossref_primary_10_1007_s40031_021_00589_3 crossref_primary_10_1007_s42600_022_00230_2 crossref_primary_10_1007_s42979_021_00531_w crossref_primary_10_1007_s11042_024_18153_8 crossref_primary_10_1007_s42979_020_00301_0 crossref_primary_10_3390_healthcare10122443 crossref_primary_10_7717_peerj_cs_551 crossref_primary_10_1007_s11042_024_20153_7 crossref_primary_10_1038_s41598_020_78060_4 crossref_primary_10_1093_comjnl_bxac136 crossref_primary_10_3389_fphys_2025_1512835 crossref_primary_10_7717_peerj_cs_303 crossref_primary_10_1080_09720502_2020_1833443 crossref_primary_10_1109_ACCESS_2023_3253282 crossref_primary_10_2196_24572 crossref_primary_10_1371_journal_pone_0319859 crossref_primary_10_3390_jimaging6060052 crossref_primary_10_3390_diagnostics14151634 crossref_primary_10_3390_s22207977 crossref_primary_10_1109_MCI_2021_3129960 crossref_primary_10_1016_j_jbi_2021_103751 crossref_primary_10_3934_aci_2022010 crossref_primary_10_1016_j_drudis_2024_104280 crossref_primary_10_3389_fdata_2024_1489020 crossref_primary_10_31083_j_fbl2709276 crossref_primary_10_1016_j_media_2021_102225 crossref_primary_10_3390_healthcare10020403 crossref_primary_10_1007_s10916_021_01707_w crossref_primary_10_3390_bdcc9070186 crossref_primary_10_1007_s13278_021_00731_5 crossref_primary_10_7717_peerj_cs_564 crossref_primary_10_1186_s12938_020_00831_x crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_3390_app12104861 crossref_primary_10_4015_S101623722550019X crossref_primary_10_1007_s10489_020_01888_w crossref_primary_10_1109_TAI_2022_3149971 crossref_primary_10_1016_j_bbe_2021_12_001 crossref_primary_10_1109_MITP_2020_3036820 crossref_primary_10_1007_s10489_020_01862_6 crossref_primary_10_1016_j_cmpb_2020_105581 crossref_primary_10_1080_0952813X_2021_1958063 crossref_primary_10_1109_TAI_2022_3224097 crossref_primary_10_1016_j_compbiomed_2022_105405 crossref_primary_10_1007_s42979_021_00762_x crossref_primary_10_3390_s24134315 crossref_primary_10_1002_ima_22715 crossref_primary_10_1186_s12880_023_01019_0 crossref_primary_10_3390_ijerph19095099 crossref_primary_10_1016_j_eswa_2025_126660 crossref_primary_10_1007_s10044_021_00970_4 crossref_primary_10_1007_s11045_024_00897_z crossref_primary_10_3390_app13042109 crossref_primary_10_1016_j_bspc_2025_108047 crossref_primary_10_1007_s42484_025_00315_y crossref_primary_10_1007_s42979_021_00980_3 crossref_primary_10_3390_ijerph17186933 crossref_primary_10_3390_s22103728 crossref_primary_10_12688_f1000research_74839_1 crossref_primary_10_1007_s42600_020_00120_5 crossref_primary_10_3390_jpm12020310 crossref_primary_10_1186_s40537_020_00392_9 crossref_primary_10_1093_biomethods_bpaf057 crossref_primary_10_1002_bab_70020 crossref_primary_10_1109_ACCESS_2021_3136263 crossref_primary_10_1155_2021_5513679 crossref_primary_10_3389_fmed_2020_608525 crossref_primary_10_1007_s10489_020_02122_3 crossref_primary_10_1038_s41597_023_02229_5 crossref_primary_10_3389_fphys_2022_1066999 crossref_primary_10_1016_j_jmir_2024_03_046 crossref_primary_10_1109_ACCESS_2022_3208138 crossref_primary_10_1002_mef2_38 crossref_primary_10_1038_s41598_024_77386_7 crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_3390_app12104825 crossref_primary_10_1038_s41598_021_87994_2 crossref_primary_10_1007_s11042_021_11787_y crossref_primary_10_1109_TETCI_2022_3219858 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_3390_diagnostics13101783 crossref_primary_10_1016_j_asoc_2022_109205 crossref_primary_10_3390_electronics11182893 crossref_primary_10_1016_j_compgeo_2022_104733 crossref_primary_10_1088_2632_2153_abf0f7 crossref_primary_10_1049_ipr2_12474 crossref_primary_10_1371_journal_pone_0303049 crossref_primary_10_1007_s11042_023_15405_x crossref_primary_10_1016_j_matpr_2021_04_051 crossref_primary_10_1007_s00500_020_05424_3 crossref_primary_10_1109_TCE_2024_3446793 crossref_primary_10_1109_TMI_2021_3079709 crossref_primary_10_3390_diagnostics14242790 crossref_primary_10_1016_j_eswa_2021_115401 crossref_primary_10_3390_info12110471 crossref_primary_10_1109_TAI_2021_3062771 crossref_primary_10_1186_s41747_023_00386_1 crossref_primary_10_1016_j_clml_2024_11_013 crossref_primary_10_3389_fmed_2024_1505692 crossref_primary_10_3390_bdcc7010011 crossref_primary_10_1007_s10489_021_02731_6 crossref_primary_10_1109_JBHI_2023_3241439 crossref_primary_10_3390_technologies10020037 crossref_primary_10_52692_1857_0011_2024_2_79_35 crossref_primary_10_1016_j_clinimag_2021_01_019 crossref_primary_10_2147_JMDH_S482757 crossref_primary_10_3390_jimaging7050081 crossref_primary_10_1016_j_cmpb_2020_105532 crossref_primary_10_3390_s23198122 crossref_primary_10_1007_s12553_021_00609_8 crossref_primary_10_3389_fcvm_2021_638011 crossref_primary_10_1155_2023_7091301 crossref_primary_10_3233_HIS_210008 crossref_primary_10_3390_diagnostics13030441 crossref_primary_10_1109_ACCESS_2021_3079716 crossref_primary_10_1155_2022_1307944 crossref_primary_10_1088_1757_899X_1084_1_012001 crossref_primary_10_1007_s10489_020_02076_6 crossref_primary_10_3233_IDT_230222 crossref_primary_10_1186_s12880_022_00847_w crossref_primary_10_1007_s11760_021_02098_8 crossref_primary_10_3390_diagnostics12010101 crossref_primary_10_25259_IJMS_349_2020 crossref_primary_10_1155_2021_5546790 crossref_primary_10_1016_j_bspc_2022_103778 crossref_primary_10_1002_mp_15419 crossref_primary_10_1007_s13042_024_02411_0 crossref_primary_10_1016_j_chaos_2020_109947 crossref_primary_10_1080_09720510_2020_1838062 crossref_primary_10_1109_ACCESS_2025_3555619 crossref_primary_10_3390_diseases11040171 crossref_primary_10_3233_JIFS_220017 crossref_primary_10_1080_23311916_2022_2124635 crossref_primary_10_1155_2021_7265644 crossref_primary_10_1016_j_measurement_2022_111702 crossref_primary_10_3390_s21206853 crossref_primary_10_1007_s40747_020_00199_4 crossref_primary_10_1007_s10044_024_01285_w crossref_primary_10_3389_frai_2021_764047 crossref_primary_10_1007_s11390_020_0679_8 crossref_primary_10_1016_j_ins_2021_03_062 crossref_primary_10_3390_jcm10143100 crossref_primary_10_3390_s22197474 crossref_primary_10_3390_diagnostics11091712 crossref_primary_10_3390_bioengineering10050556 crossref_primary_10_1109_ACCESS_2022_3159025 crossref_primary_10_1117_1_JMI_10_5_054504 crossref_primary_10_1186_s12880_023_01039_w crossref_primary_10_1016_j_bspc_2023_104724 crossref_primary_10_1007_s11042_022_12484_0 crossref_primary_10_1155_2021_8890226 crossref_primary_10_1038_s41598_021_99986_3 crossref_primary_10_1016_j_bspc_2024_106190 crossref_primary_10_3390_healthcare11101367 crossref_primary_10_1007_s00500_021_05643_2 crossref_primary_10_3389_frai_2021_652669 crossref_primary_10_1016_j_bspc_2021_103272 crossref_primary_10_1007_s13246_020_00934_8 crossref_primary_10_1007_s12559_021_09955_1 crossref_primary_10_1080_21681163_2023_2264408 crossref_primary_10_3390_healthcare11020213 crossref_primary_10_1016_j_jksuci_2020_12_010 crossref_primary_10_1155_2022_2656818 crossref_primary_10_1063_5_0075918 crossref_primary_10_1371_journal_pone_0247839 crossref_primary_10_1007_s10489_020_01829_7 crossref_primary_10_1007_s13721_023_00437_y crossref_primary_10_1186_s12880_021_00704_2 crossref_primary_10_1038_s41598_023_40506_w crossref_primary_10_1007_s13369_021_06041_4 crossref_primary_10_1109_TETCI_2024_3371222 crossref_primary_10_1007_s11042_023_15097_3 crossref_primary_10_1007_s12553_021_00520_2 crossref_primary_10_1109_ACCESS_2023_3310400 crossref_primary_10_1038_s41586_025_09079_8 crossref_primary_10_1016_j_clinimag_2021_07_004 crossref_primary_10_1007_s12553_022_00704_4 crossref_primary_10_1155_2022_5998042 crossref_primary_10_1007_s42979_021_00720_7 crossref_primary_10_1016_j_bspc_2022_103860 crossref_primary_10_1109_ACCESS_2023_3253640 crossref_primary_10_1109_JBHI_2020_3009314 crossref_primary_10_1109_TBDATA_2021_3103458 crossref_primary_10_1016_j_eswa_2021_115141 crossref_primary_10_1016_j_mehy_2020_109761 crossref_primary_10_1007_s42979_024_02695_7 crossref_primary_10_1038_s41467_023_41703_x crossref_primary_10_1109_TMI_2021_3134270 crossref_primary_10_1109_ACCESS_2022_3172706 crossref_primary_10_1155_2022_7126259 crossref_primary_10_3390_jimaging8030065 crossref_primary_10_1111_coin_12568 crossref_primary_10_3390_diagnostics14141469 crossref_primary_10_1016_j_neucom_2021_06_100 crossref_primary_10_3390_bioengineering10070850 crossref_primary_10_1007_s10489_020_01978_9 crossref_primary_10_1007_s42600_021_00132_9 crossref_primary_10_1038_s42256_021_00338_7 crossref_primary_10_3389_fpubh_2023_1308404 crossref_primary_10_1080_13467581_2024_2373830 crossref_primary_10_1007_s00521_023_08259_9 crossref_primary_10_3390_jcm11195501 crossref_primary_10_1109_TMBMC_2021_3099367 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1016_j_chaos_2020_110337 crossref_primary_10_1109_TBDATA_2025_3556612 crossref_primary_10_3390_diagnostics12061396 crossref_primary_10_1016_j_patcog_2023_110232 crossref_primary_10_1007_s00296_024_05737_8 crossref_primary_10_18517_ijods_2_1_9_18_2021 crossref_primary_10_1038_s41598_023_30174_1 crossref_primary_10_32604_cmc_2021_015720 crossref_primary_10_1007_s11042_024_19221_9 crossref_primary_10_3390_electronics11193068 crossref_primary_10_3390_info15040189 crossref_primary_10_1080_0952813X_2021_1908431 crossref_primary_10_1007_s00371_025_04117_y crossref_primary_10_1007_s10586_025_05229_9 crossref_primary_10_2196_20756 crossref_primary_10_3390_pharmaceutics17091119 crossref_primary_10_1007_s00500_025_10853_z crossref_primary_10_1007_s00354_021_00152_0 crossref_primary_10_1080_21681163_2023_2261575 crossref_primary_10_1186_s12880_022_00871_w crossref_primary_10_1049_el_2020_1962 crossref_primary_10_1007_s00607_021_00992_0 crossref_primary_10_1038_s41598_024_71346_x crossref_primary_10_3390_jimaging10080176 crossref_primary_10_3390_jimaging8020038 crossref_primary_10_1186_s40537_023_00858_6 crossref_primary_10_1109_TCBB_2023_3294333 crossref_primary_10_1016_j_matpr_2021_05_553 crossref_primary_10_3390_bioengineering8070098 crossref_primary_10_1371_journal_pone_0276758 crossref_primary_10_1016_j_procs_2025_04_296 crossref_primary_10_3390_ijerph18031117 crossref_primary_10_1109_TCBB_2021_3102584 crossref_primary_10_1038_s41598_021_91305_0 crossref_primary_10_1007_s42979_021_00690_w crossref_primary_10_2196_42324 crossref_primary_10_3389_fmed_2022_1076184 crossref_primary_10_1016_j_compbiomed_2025_110547 crossref_primary_10_1038_s41598_024_80826_z crossref_primary_10_4329_wjr_v13_i6_171 crossref_primary_10_1109_TNNLS_2021_3086570 crossref_primary_10_1155_2021_8829829 crossref_primary_10_4329_wjr_v13_i6_172 crossref_primary_10_3390_bdcc7010036 crossref_primary_10_1155_2021_6680455 crossref_primary_10_3233_JIFS_232866 crossref_primary_10_4103_jmp_jmp_26_22 crossref_primary_10_1109_JBHI_2021_3069798 crossref_primary_10_1016_j_inffus_2021_04_008 crossref_primary_10_3390_computers12050095 crossref_primary_10_3390_v13020202 crossref_primary_10_3390_s21051908 crossref_primary_10_1016_j_ipm_2024_103900 crossref_primary_10_1038_s41598_024_76498_4 crossref_primary_10_3390_diagnostics11081317 crossref_primary_10_1038_s41598_021_88538_4 crossref_primary_10_3390_diagnostics13010131 crossref_primary_10_1007_s11036_023_02185_9 crossref_primary_10_1007_s12652_020_02688_3 crossref_primary_10_1007_s12559_022_10076_6 crossref_primary_10_1016_j_compeleceng_2022_108405 crossref_primary_10_3390_app11062884 crossref_primary_10_2478_acss_2023_0016 crossref_primary_10_1007_s12559_020_09795_5 crossref_primary_10_1186_s12880_024_01192_w crossref_primary_10_1016_j_asoc_2023_110014 crossref_primary_10_1155_2022_6786203 crossref_primary_10_3390_cancers15010314 crossref_primary_10_59176_kjcs_v4i1_2429 crossref_primary_10_1186_s12874_022_01578_w crossref_primary_10_3390_electronics9091388 crossref_primary_10_3390_app15179345 crossref_primary_10_1016_j_sciaf_2023_e01961 crossref_primary_10_3390_healthcare11152199 crossref_primary_10_3390_healthcare10010166 crossref_primary_10_2478_acss_2023_0005 crossref_primary_10_1007_s11042_025_20720_6 crossref_primary_10_1136_bmjopen_2024_094908 crossref_primary_10_3389_fmed_2022_861680 crossref_primary_10_3390_diagnostics12030652 crossref_primary_10_1088_2057_1976_adebf4 crossref_primary_10_1007_s42600_023_00302_x crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1109_JBHI_2022_3177854 crossref_primary_10_3390_diagnostics13081397 crossref_primary_10_1007_s42044_025_00231_1 crossref_primary_10_1007_s12559_020_09775_9 crossref_primary_10_1088_1361_6560_ac4316 crossref_primary_10_1515_pwp_2020_0021 crossref_primary_10_1007_s00330_021_08050_1 crossref_primary_10_1007_s13246_020_00952_6 crossref_primary_10_1007_s12539_023_00562_2 crossref_primary_10_1002_cdt3_17 crossref_primary_10_1109_ACCESS_2024_3370848 crossref_primary_10_1007_s00521_024_09484_6 crossref_primary_10_1080_0952813X_2023_2165722 crossref_primary_10_3389_frai_2022_912022 crossref_primary_10_1109_TPAMI_2024_3382009 crossref_primary_10_1007_s12599_023_00806_x crossref_primary_10_1155_2022_8026580 crossref_primary_10_1016_j_chaos_2020_110170 crossref_primary_10_28979_jarnas_952700 crossref_primary_10_1007_s00521_022_06918_x crossref_primary_10_1007_s11831_023_09882_4 crossref_primary_10_1007_s42979_021_00496_w crossref_primary_10_3390_s22218578 crossref_primary_10_3390_s23125592 crossref_primary_10_3390_math11102385 crossref_primary_10_1155_2022_8167821 crossref_primary_10_3390_jimaging9090177 crossref_primary_10_1186_s12880_024_01394_2 crossref_primary_10_1080_07391102_2023_2227726 crossref_primary_10_1111_exsy_12749 crossref_primary_10_3390_su14116785 crossref_primary_10_1155_2022_9414567 crossref_primary_10_1155_2021_8854892 crossref_primary_10_1002_cpe_6434 crossref_primary_10_1038_s44222_025_00363_w crossref_primary_10_1007_s00521_023_08788_3 crossref_primary_10_1109_TSC_2022_3142265 crossref_primary_10_3390_a14060183 crossref_primary_10_48084_etasr_10735 crossref_primary_10_1145_3457124 crossref_primary_10_1007_s11042_021_11299_9 crossref_primary_10_1109_ACCESS_2024_3424907 crossref_primary_10_3390_bioengineering9110709 crossref_primary_10_1007_s00500_023_08874_7 crossref_primary_10_3390_s21041480 crossref_primary_10_1111_exsy_12759 crossref_primary_10_1515_bmt_2021_0272 crossref_primary_10_3389_fbioe_2022_876672 crossref_primary_10_1155_2023_6341259 crossref_primary_10_1007_s10278_021_00518_2 crossref_primary_10_3390_diagnostics13081387 crossref_primary_10_1007_s11277_024_11097_0 crossref_primary_10_1038_s41598_023_42203_0 crossref_primary_10_3389_fpubh_2022_819156 crossref_primary_10_1016_j_procs_2021_10_081 crossref_primary_10_1109_JBHI_2021_3100119 crossref_primary_10_3390_app13148295 crossref_primary_10_1007_s10916_021_01745_4 crossref_primary_10_1016_j_eswa_2023_119900 crossref_primary_10_3389_fmed_2021_821120 crossref_primary_10_1038_s41598_021_00524_y crossref_primary_10_1038_s41598_024_64941_5 crossref_primary_10_1007_s10489_020_01867_1 crossref_primary_10_1016_j_compeleceng_2020_106960 crossref_primary_10_1007_s41666_023_00132_7 crossref_primary_10_1155_int_2751767 crossref_primary_10_1016_j_asoc_2024_112137 crossref_primary_10_1109_TDSC_2024_3372634 crossref_primary_10_3390_jimaging7090189 crossref_primary_10_1155_2021_3604900 crossref_primary_10_3390_sym12091526 crossref_primary_10_3390_a16100494 crossref_primary_10_1136_bmjinnov_2020_000593 crossref_primary_10_1111_exsy_12919 crossref_primary_10_1109_ACCESS_2021_3116067 crossref_primary_10_3390_healthcare10071313 crossref_primary_10_3390_s23125543 crossref_primary_10_32604_cmc_2020_013232 crossref_primary_10_1007_s41870_020_00495_9 crossref_primary_10_1186_s12911_024_02576_2 crossref_primary_10_3390_sym13010113 crossref_primary_10_1016_j_compbiomed_2021_104781 crossref_primary_10_1109_ACCESS_2022_3181605 crossref_primary_10_1016_j_bbe_2022_11_003 crossref_primary_10_3390_jpm12101707 crossref_primary_10_1016_j_jksuci_2023_101596 crossref_primary_10_3390_s21103322 crossref_primary_10_1515_geo_2022_0361 crossref_primary_10_4108_eetpht_v8i5_3352 crossref_primary_10_1016_j_bbe_2021_04_006 crossref_primary_10_1109_TMI_2022_3220706 crossref_primary_10_1038_s41598_025_00199_9 crossref_primary_10_1007_s10489_020_01943_6 crossref_primary_10_1016_j_jmir_2022_11_016 crossref_primary_10_32604_cmc_2024_051420 crossref_primary_10_3390_app12083712 crossref_primary_10_46810_tdfd_1661900 crossref_primary_10_1007_s42979_025_04041_x crossref_primary_10_1007_s11042_023_16439_x crossref_primary_10_1155_2021_8340779 crossref_primary_10_3390_e22050517 crossref_primary_10_1016_j_bspc_2021_102862 crossref_primary_10_3390_diagnostics13152583 crossref_primary_10_1007_s42979_025_04315_4 crossref_primary_10_1155_2022_3237361 crossref_primary_10_3390_app122110787 crossref_primary_10_3390_s20195665 crossref_primary_10_3390_jcm11113013 crossref_primary_10_1109_TETCI_2022_3174868 crossref_primary_10_1080_23311916_2022_2105559 crossref_primary_10_3390_math9040434 crossref_primary_10_1002_ima_22544 crossref_primary_10_1007_s41870_020_00571_0 crossref_primary_10_1002_widm_1461 crossref_primary_10_1007_s00354_023_00220_7 crossref_primary_10_1097_CM9_00000000000020S8 crossref_primary_10_3390_s21175813 crossref_primary_10_3390_electronics10172132 crossref_primary_10_3390_pathogens13110940 crossref_primary_10_1007_s11517_022_02651_8 crossref_primary_10_1007_s11042_025_20920_0 crossref_primary_10_1016_j_media_2023_102762 crossref_primary_10_3390_healthcare10122504 |
| Cites_doi | 10.1016/S0140-6736(20)30183-5 10.1148/radiol.2020200642 10.1016/j.clinimag.2020.04.001 10.1016/j.crad.2020.03.008 10.1148/ryct.2020200034 10.1016/j.chest.2020.04.003 10.1177/0846537120924606 10.1109/CVPR.2016.90 10.1109/CVPR.2009.5206848 10.1109/BIBM49941.2020.9313217 10.1016/j.mehy.2020.109761 10.1056/NEJMoa2002032 10.1007/s42600-021-00151-6 10.1148/radiol.2020200905 10.1109/BIBM49941.2020.9313304 10.1016/S2589-7500(20)30109-6 10.1101/2020.04.14.20065722 10.1038/nature14539 10.1088/1361-6560/abe838 10.1109/CVPR.2017.243 10.1016/j.mayocp.2020.04.004 10.3390/ijerph17186933 10.1016/j.media.2020.101794 10.1101/2020.02.11.20021493 10.1148/radiol.2020200432 10.1101/2020.04.05.20053355 10.1007/s13246-020-00865-4 10.1016/j.eng.2020.04.010 10.1016/j.patrec.2020.09.010 10.1109/CVPR.2017.369 10.1007/s00330-020-06918-2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1038/s41598-020-76550-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| ExternalDocumentID | PMC7658227 33177550 10_1038_s41598_020_76550_z |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-f6268990dd53caf3cabfbb2643bba432255320ae9070d5a841c1304d6a42e29f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 883 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594820700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Nov 04 01:57:15 EST 2025 Fri Sep 05 10:40:56 EDT 2025 Tue Oct 07 07:46:10 EDT 2025 Mon Jul 21 05:52:10 EDT 2025 Sat Nov 29 04:02:52 EST 2025 Tue Nov 18 22:42:29 EST 2025 Fri Feb 21 02:37:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-f6268990dd53caf3cabfbb2643bba432255320ae9070d5a841c1304d6a42e29f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2471558747?pq-origsite=%requestingapplication% |
| PMID | 33177550 |
| PQID | 2471558747 |
| PQPubID | 2041939 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658227 proquest_miscellaneous_2460085445 proquest_journals_2471558747 pubmed_primary_33177550 crossref_primary_10_1038_s41598_020_76550_z crossref_citationtrail_10_1038_s41598_020_76550_z springer_journals_10_1038_s41598_020_76550_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-11 |
| PublicationDateYYYYMMDD | 2020-11-11 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | CR19 CR18 CR17 CR39 CR16 CR38 CR15 CR37 CR14 CR36 CR35 Ng (CR6) 2020; 2 CR34 CR33 CR32 Jacobi, Chung, Bernheim, Eber (CR13) 2020 CR31 CR30 Wang (CR1) 2020; 323 CR2 Ai (CR9) 2020 CR4 CR3 CR5 CR8 CR29 CR28 CR27 Rubin (CR10) 2020 CR26 CR25 CR24 CR46 CR23 CR45 CR22 CR44 CR21 CR43 Dennie (CR12) 2020; 71 CR20 CR42 CR41 CR40 Nair (CR11) 2020; 75 Huang (CR7) 2020; 395 76550_CR16 76550_CR38 76550_CR17 76550_CR39 76550_CR14 76550_CR36 A Jacobi (76550_CR13) 2020 76550_CR15 76550_CR37 C Dennie (76550_CR12) 2020; 71 76550_CR18 M-Y Ng (76550_CR6) 2020; 2 76550_CR19 A Nair (76550_CR11) 2020; 75 GD Rubin (76550_CR10) 2020 76550_CR41 76550_CR20 76550_CR42 76550_CR40 76550_CR23 76550_CR45 76550_CR24 76550_CR46 76550_CR21 76550_CR43 76550_CR22 76550_CR44 76550_CR27 76550_CR28 76550_CR25 76550_CR26 76550_CR8 C Huang (76550_CR7) 2020; 395 76550_CR29 76550_CR5 76550_CR4 76550_CR3 76550_CR2 T Ai (76550_CR9) 2020 W Wang (76550_CR1) 2020; 323 76550_CR30 76550_CR31 76550_CR34 76550_CR35 76550_CR32 76550_CR33 |
| References_xml | – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR7 article-title: Clinical features of patients infected with 2019 Novel Coronavirus in Wuhan China publication-title: The Lancet doi: 10.1016/S0140-6736(20)30183-5 – ident: CR45 – ident: CR22 – year: 2020 ident: CR9 article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in china: a report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – ident: CR18 – ident: CR43 – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR2 – year: 2020 ident: CR13 article-title: Portable chest x-ray in coronavirus disease-19 (covid-19): a pictorial review publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.04.001 – ident: CR16 – ident: CR37 – ident: CR30 – ident: CR33 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR40 – ident: CR25 – volume: 323 start-page: 1843 issue: 18 year: 2020 end-page: 1844 ident: CR1 article-title: Detection of SARS-CoV-2 in different types of clinical specimens publication-title: JAMA – ident: CR27 – ident: CR42 – ident: CR23 – ident: CR21 – ident: CR46 – ident: CR19 – ident: CR44 – volume: 75 start-page: 329 issue: 5 year: 2020 end-page: 334 ident: CR11 article-title: A British Society of thoracic imaging statement: considerations in designing local imaging diagnostic algorithms for the COVID-19 pandemic publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.03.008 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 2 start-page: e200034 issue: 1 year: 2020 ident: CR6 article-title: Imaging profile of the COVID-19 infection: radiologic findings and literature review publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200034 – ident: CR17 – ident: CR31 – year: 2020 ident: CR10 article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society publication-title: Radiology doi: 10.1016/j.chest.2020.04.003 – ident: CR32 – volume: 71 start-page: 470 issue: 4 year: 2020 end-page: 481 ident: CR12 article-title: The Canadian Society of Thoracic Radiology (CSTR) and Canadian Association of Radiologists (CAR) consensus statement regarding chest imaging in suspected and confirmed COVID-19 publication-title: Can. Assoc. Radiol. J. doi: 10.1177/0846537120924606 – ident: CR34 – ident: CR36 – ident: CR5 – ident: CR28 – ident: CR41 – ident: CR26 – ident: CR24 – ident: CR20 – ident: 76550_CR16 – ident: 76550_CR41 – ident: 76550_CR18 – ident: 76550_CR40 doi: 10.1109/CVPR.2016.90 – ident: 76550_CR22 – ident: 76550_CR20 – volume: 395 start-page: 497 year: 2020 ident: 76550_CR7 publication-title: The Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 75 start-page: 329 issue: 5 year: 2020 ident: 76550_CR11 publication-title: Clin. Radiol. doi: 10.1016/j.crad.2020.03.008 – ident: 76550_CR37 – volume: 323 start-page: 1843 issue: 18 year: 2020 ident: 76550_CR1 publication-title: JAMA – ident: 76550_CR43 doi: 10.1109/CVPR.2009.5206848 – ident: 76550_CR26 doi: 10.1109/BIBM49941.2020.9313217 – ident: 76550_CR31 doi: 10.1016/j.mehy.2020.109761 – year: 2020 ident: 76550_CR13 publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.04.001 – ident: 76550_CR8 doi: 10.1056/NEJMoa2002032 – ident: 76550_CR33 – ident: 76550_CR29 doi: 10.1007/s42600-021-00151-6 – ident: 76550_CR24 doi: 10.1148/radiol.2020200905 – year: 2020 ident: 76550_CR10 publication-title: Radiology doi: 10.1016/j.chest.2020.04.003 – ident: 76550_CR35 doi: 10.1109/BIBM49941.2020.9313304 – ident: 76550_CR45 – ident: 76550_CR15 doi: 10.1016/S2589-7500(20)30109-6 – ident: 76550_CR30 doi: 10.1101/2020.04.14.20065722 – ident: 76550_CR21 doi: 10.1038/nature14539 – ident: 76550_CR25 doi: 10.1088/1361-6560/abe838 – ident: 76550_CR19 – ident: 76550_CR42 doi: 10.1109/CVPR.2017.243 – ident: 76550_CR44 – ident: 76550_CR2 doi: 10.1016/j.mayocp.2020.04.004 – ident: 76550_CR17 – ident: 76550_CR32 doi: 10.3390/ijerph17186933 – ident: 76550_CR27 doi: 10.1016/j.media.2020.101794 – volume: 71 start-page: 470 issue: 4 year: 2020 ident: 76550_CR12 publication-title: Can. Assoc. Radiol. J. doi: 10.1177/0846537120924606 – ident: 76550_CR4 doi: 10.1101/2020.02.11.20021493 – ident: 76550_CR34 – ident: 76550_CR38 – ident: 76550_CR3 doi: 10.1148/radiol.2020200432 – ident: 76550_CR5 doi: 10.1101/2020.04.05.20053355 – volume: 2 start-page: e200034 issue: 1 year: 2020 ident: 76550_CR6 publication-title: Radiol. Cardiothorac. Imaging doi: 10.1148/ryct.2020200034 – ident: 76550_CR36 doi: 10.1007/s13246-020-00865-4 – year: 2020 ident: 76550_CR9 publication-title: Radiology doi: 10.1148/radiol.2020200642 – ident: 76550_CR23 doi: 10.1016/j.eng.2020.04.010 – ident: 76550_CR28 doi: 10.1016/j.patrec.2020.09.010 – ident: 76550_CR39 doi: 10.1109/CVPR.2017.369 – ident: 76550_CR46 – ident: 76550_CR14 doi: 10.1007/s00330-020-06918-2 |
| SSID | ssj0000529419 |
| Score | 2.7359135 |
| Snippet | The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 19549 |
| SubjectTerms | 692/699/255/2514 692/700/139 Chest Computational Biology Coronavirus Infections - diagnostic imaging Coronaviruses COVID-19 Deep Learning Humanities and Social Sciences Humans Image Processing, Computer-Assisted multidisciplinary Neural networks Pandemics Pneumonia, Viral - diagnostic imaging Radiography Radiography, Thoracic Radiology Science Science (multidisciplinary) Tomography, X-Ray Computed Well being |
| Title | COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images |
| URI | https://link.springer.com/article/10.1038/s41598-020-76550-z https://www.ncbi.nlm.nih.gov/pubmed/33177550 https://www.proquest.com/docview/2471558747 https://www.proquest.com/docview/2460085445 https://pubmed.ncbi.nlm.nih.gov/PMC7658227 |
| Volume | 10 |
| WOSCitedRecordID | wos000594820700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvjK9B2TgFiTeI1qZpm_KCYGxiEjsqBNPxVKVNKk6C9rh2k7a_HjvtdTom9sLD9SolTRvZsX-OHRvgZWoiY0K_4MbXlkuRGJ4KIzmqk1jFka0qV4fs9FMynarZLM2GDbd2CKtcyUQnqE1T0h75vkApGkUK0e_bxW9OVaPIuzqU0NiALcqSELrQvWzcYyEvlgzS4ayMH6r9FvUVnSlDmymJEZzzy3V9dA1kXo-V_Mth6vTQ0fb_zuA-3BsQKHvXs8wDuGXrh3Cnr0l58QjODz6fHn_gU9u9YZpRfGmztIYZaxeMQtQHVsURKBWm-3OB5NiDYkEYgmC87VyEV82aivXjBSkrUWG2jM6zMFeli834Ul-w-S8Uae1j-HZ0-PXgIx-KM_ASQV7HK7SE0FbzjYnCUlf4K6qiQHgVFoWWJCao5IS2aHz7JtJKBiWqS2liLYUVaRXuwGbd1PYpsFJolQpV4VCptIlVUaTRDAtsqQ3CrdiDYEWivBwyl1MBjZ-586CHKu_JmiNZc0fW_NKDV-Mziz5vx42991Yky4c13OZX9PLgxdiMq49cKrq2zRn1iQm0Shl58KRnlPF1IUKzBIf3IFljobEDZfZeb6nnP1yGb_wsBG743tcrZrv6rH_P4tnNs9iFu4IYn2IYgz3Y7JZn9jncLs-7ebucwEYyS9xVTWDr_eE0-zJxGxR4PRHZxK0sbMmOT7LvfwAPaSeg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQhe-GYEBhgJnsBa4jiJg4QQ2phWrSt9GFN5Ck7saJUgKU021P0ofiPXzsdUJva2Bx6qVIp7E6fH1-fGx_cCvIpVoJTvplS5UlPOIkVjpjjF6SQUYaDz3NYhOxpF47GYTuPJGvzu9sIYWWXnE62jVmVm3pFvMfSiQSCQ_X6Y_6SmapRZXe1KaDSw2NfLXxiyVe-HO_j_vmZs99Ph9h5tqwrQDNlJTXOk8BhkuEoFfiZz_KR5miIv8NNUcoNvUytBaowaXRVIwb0M_TxXoeRMszj30e41WOcIdjGA9cnwYPK1f6tj1s24F7e7c1xfbFU4Q5pdbBilRSGGA_RsdQa8QGsvqjP_WqK1M9_unf_tmd2F2y3HJh-bQXEP1nRxH240VTeXD-B0-_PRcIeOdf2OSGIUtOVCK6K0nhMjwm8HI1owyT7twUrlsYVRuxCk-fi1thq2gpQ5aex5McmQElTE7Nghtg4ZmdKFXJLZD3Ta1UP4ciWdfgSDoiz0YyAZkyJmIkdTMdeRFkEgMdD0dCYVEsrQAa-DRJK1udlNiZDvidUI-CJpYJQgjBILo-TMgTf9b-ZNZpJLW292EElaL1Ul5_hw4GV_Gv2LWTSShS5PTJvQ0HLOAwc2GmD2l_ORfEZo3oFoBbJ9A5O7fPVMMTu2OczxtpCa4nXfduA-v61_9-LJ5b14ATf3Dg9GyWg43n8Kt5gZdEax6W3CoF6c6GdwPTutZ9XieTtuCXy7atj_AfAlfl4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g9DgUWCE6xir9cvJIRQQ0TUKuQAVW5m7V2LSK0dYrco_Wn8OmbWdqpQ0VsPHCJH8mbsdb6d_cb77QzAq0QHWvtuxrWrDJci0jwRWnKcTsI4DExR2DpkB_vRZBLPZsl0C373e2FIVtn7ROuodZXTO_KBQC8aBDGy30HRySKmw9GHxU9OFaRopbUvp9FCZM-sfmH4Vr8fD_G_fi3E6NPX3c-8qzDAc2QqDS-QzmPA4Wod-Lkq8JMVWYYcwc8yJQnrVDdBGYwgXR2oWHo5-nypQyWFEUnho90rcDWipOVWNjhdv9-hFTTpJd0-HdePBzXOlbSfDeO1KMTAgJ9uzoXnCO55neZfi7V2Dhzd_p-f3h241TFv9rEdKndhy5T34Hpbi3N1H052vxyMh3ximndMMdLVVkujmTZmwUia3w1RtEApQO3BCuixBWlgGJJ__NpYZVvJqoK19ryE5UgUakb7eJitTsZmfKlWbH6Errx-AN8updMPYbusSvMYWC5UnIi4QFOJNJGJg0Bh-OmZXGmkmaEDXg-PNO8ytlPhkMPUKgf8OG0hlSKkUgup9NSBN-vfLNp8JRe23unhkna-q07PsOLAy_Vp9Dq0lKRKUx1Tm5DIupSBA49akK4v5yMljdC8A9EGfNcNKKP55ply_sNmNsfbQsKK133bA_3stv7diycX9-IF3ECsp_vjyd5TuClo_JGM09uB7WZ5bJ7BtfykmdfL53YAM_h-2Zj_A7c0hZ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-Net%3A+a+tailored+deep+convolutional+neural+network+design+for+detection+of+COVID-19+cases+from+chest+X-ray+images&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Linda&rft.au=Lin%2C+Zhong+Qiu&rft.au=Wong%2C+Alexander&rft.date=2020-11-11&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76550-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_76550_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |