COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images

The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examinati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 10; číslo 1; s. 19549
Hlavní autoři: Wang, Linda, Lin, Zhong Qiu, Wong, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 11.11.2020
Nature Publishing Group
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors’ knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors’ knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
AbstractList The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors’ knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors’ knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiology examination using chest radiography. It was found in early studies that patients present abnormalities in chest radiography images that are characteristic of those infected with COVID-19. Motivated by this and inspired by the open source efforts of the research community, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images that is open source and available to the general public. To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, with the largest number of publicly available COVID-19 positive cases to the best of the authors' knowledge. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that it is making decisions based on relevant information from the CXR images. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.
ArticleNumber 19549
Author Wang, Linda
Wong, Alexander
Lin, Zhong Qiu
Author_xml – sequence: 1
  givenname: Linda
  surname: Wang
  fullname: Wang, Linda
  email: linda.wang@uwaterloo.ca
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp
– sequence: 2
  givenname: Zhong Qiu
  surname: Lin
  fullname: Lin, Zhong Qiu
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp
– sequence: 3
  givenname: Alexander
  surname: Wong
  fullname: Wong, Alexander
  organization: Department of Systems Design Engineering, University of Waterloo, Waterloo Artificial Intelligence Institute, DarwinAI Corp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33177550$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQCSE_wAFZ4sJlwM95cEBCyytSRC6AuFkeT3vjMGtvbM-i5OvxZEIIOcSS1S25qtzV9RTt-eABoeeUvKaEt2-SoLJrK8JI1dRSkurqETpgRMiKccb27vT76Cilc1KOZJ2g3RO0zzltmkI6QLvV6Y_jD9VXyG-xxlm7MUQY8ACwxSb4XRin7ILXI_YwxeuSf4f4qyCSW3tsQyxtBjOjcLB40aMdNjpBwjaGDTZnkDL-WUV9id1GryE9Q4-tHhMc3dRD9P3Tx2-rL9XJ6efj1fuTykhBcmVrVrddR4ZBcqNtub3te1YL3vdaFG9SckY0dKQhg9StoIZyIoZaCwass_wQvVt0t1O_gcGAz8WE2sYyRrxUQTv1_4t3Z2oddqrstGWsKQKvbgRiuJiKDbVxycA4ag9hSoqJmpBWCiEL9OU96HmYYlndjGqolG0jZsEXdye6HeVvJAXAFoCJIaUI9hZCiZqjV0v0qkSvrqNXV4XU3iMZl_WcSXHlxoepfKGm8o9fQ_w39gOsPwQ5wwU
CitedBy_id crossref_primary_10_1155_2022_3035426
crossref_primary_10_3390_electronics11152296
crossref_primary_10_1109_JBHI_2023_3247949
crossref_primary_10_1002_ima_22654
crossref_primary_10_3390_diagnostics13101806
crossref_primary_10_1016_j_patcog_2021_108055
crossref_primary_10_1109_TNNLS_2025_3565582
crossref_primary_10_1109_ACCESS_2022_3229591
crossref_primary_10_1155_2021_9952109
crossref_primary_10_3390_s22228999
crossref_primary_10_1007_s11042_025_20685_6
crossref_primary_10_1016_j_asoc_2022_108867
crossref_primary_10_1016_j_jbi_2024_104583
crossref_primary_10_1109_ACCESS_2022_3194152
crossref_primary_10_1007_s10278_024_01355_9
crossref_primary_10_1155_2022_6185013
crossref_primary_10_1007_s11042_021_11319_8
crossref_primary_10_5937_afmnai39_38354
crossref_primary_10_1080_00051144_2021_2014037
crossref_primary_10_1016_j_procs_2024_04_122
crossref_primary_10_1155_2021_3259108
crossref_primary_10_3390_bdcc5040073
crossref_primary_10_3390_electronics11213511
crossref_primary_10_1016_j_procs_2024_09_409
crossref_primary_10_3389_fpubh_2022_886958
crossref_primary_10_1088_2057_1976_ad72f8
crossref_primary_10_1016_j_eswa_2021_114832
crossref_primary_10_3390_info15010058
crossref_primary_10_3390_computers12050105
crossref_primary_10_3390_math12081254
crossref_primary_10_1016_j_compbiomed_2021_104319
crossref_primary_10_1007_s42979_022_01545_8
crossref_primary_10_1007_s11042_023_17884_4
crossref_primary_10_3233_XST_221360
crossref_primary_10_3390_app12094694
crossref_primary_10_3390_pathogens12010017
crossref_primary_10_18267_j_aip_205
crossref_primary_10_5114_pjr_2023_126717
crossref_primary_10_3389_fneur_2022_755492
crossref_primary_10_1016_j_ins_2022_07_031
crossref_primary_10_3390_diagnostics12123195
crossref_primary_10_1016_j_bspc_2023_104642
crossref_primary_10_1016_j_compeleceng_2022_108396
crossref_primary_10_1002_ima_22627
crossref_primary_10_1109_JBHI_2020_3012383
crossref_primary_10_1371_journal_pone_0320706
crossref_primary_10_1007_s00500_021_06137_x
crossref_primary_10_3389_frai_2021_694875
crossref_primary_10_3390_math11204236
crossref_primary_10_1117_1_JMI_10_4_044504
crossref_primary_10_1038_s41598_022_06802_7
crossref_primary_10_3390_diagnostics12020267
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_4018_IJPADA_294122
crossref_primary_10_1002_ima_22611
crossref_primary_10_1002_ima_22613
crossref_primary_10_1109_JBHI_2021_3103839
crossref_primary_10_3389_fmed_2024_1511389
crossref_primary_10_3390_signals3020019
crossref_primary_10_1186_s12911_025_02944_6
crossref_primary_10_1007_s12553_024_00931_x
crossref_primary_10_3390_diagnostics13071268
crossref_primary_10_1038_s41598_021_95561_y
crossref_primary_10_3390_bioengineering10080901
crossref_primary_10_3390_diagnostics13030551
crossref_primary_10_3390_diagnostics14242800
crossref_primary_10_1057_s41599_025_04564_x
crossref_primary_10_1007_s12652_021_03686_9
crossref_primary_10_1007_s10489_021_02199_4
crossref_primary_10_1049_ipr2_13074
crossref_primary_10_1016_j_eswa_2021_114883
crossref_primary_10_1007_s00521_020_05641_9
crossref_primary_10_3390_sym14051003
crossref_primary_10_1007_s11042_022_11913_4
crossref_primary_10_1155_2022_6216273
crossref_primary_10_3390_biology10111174
crossref_primary_10_3934_publichealth_2021019
crossref_primary_10_1007_s11042_024_18848_y
crossref_primary_10_1007_s42979_023_02573_8
crossref_primary_10_21015_vtse_v11i2_1460
crossref_primary_10_1007_s13735_021_00204_7
crossref_primary_10_3390_math9172043
crossref_primary_10_1080_01621459_2021_1901717
crossref_primary_10_2196_36660
crossref_primary_10_1088_2057_1976_ad1e76
crossref_primary_10_1186_s42492_024_00168_5
crossref_primary_10_7717_peerj_cs_694
crossref_primary_10_1007_s00330_022_08969_z
crossref_primary_10_1145_3615862
crossref_primary_10_1155_2022_2110785
crossref_primary_10_1080_21681163_2023_2187244
crossref_primary_10_1016_j_patcog_2020_107700
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_1186_s43556_024_00238_3
crossref_primary_10_1155_2021_6621607
crossref_primary_10_1080_1206212X_2021_1983289
crossref_primary_10_1007_s12539_024_00683_2
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_1109_TMI_2024_3449690
crossref_primary_10_2196_26646
crossref_primary_10_3390_app10165683
crossref_primary_10_1155_2021_5528144
crossref_primary_10_3390_healthcare11060837
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_3390_info11090419
crossref_primary_10_3390_app112110417
crossref_primary_10_1002_ima_22829
crossref_primary_10_1016_j_imavis_2024_105405
crossref_primary_10_3390_diagnostics12010025
crossref_primary_10_3390_diagnostics12081880
crossref_primary_10_1038_s41598_020_70479_z
crossref_primary_10_1007_s11227_022_04349_y
crossref_primary_10_1002_ppul_25661
crossref_primary_10_1007_s11042_024_19350_1
crossref_primary_10_3389_fpubh_2021_641253
crossref_primary_10_1038_s41598_023_30941_0
crossref_primary_10_1186_s42490_025_00089_1
crossref_primary_10_1111_exsy_13378
crossref_primary_10_3389_frai_2021_612914
crossref_primary_10_1007_s00521_020_05636_6
crossref_primary_10_1007_s00607_021_00983_1
crossref_primary_10_1080_01431161_2024_2425119
crossref_primary_10_3390_electronics12051167
crossref_primary_10_3390_healthcare9091099
crossref_primary_10_1007_s10489_021_02393_4
crossref_primary_10_1155_2021_8869372
crossref_primary_10_5114_pjr_2023_132533
crossref_primary_10_3390_ai1030027
crossref_primary_10_3390_diagnostics12020237
crossref_primary_10_37511_apuntesci_v2n2a6
crossref_primary_10_1109_TCSVT_2021_3063952
crossref_primary_10_1002_cpe_8023
crossref_primary_10_3390_s22197303
crossref_primary_10_1007_s44163_024_00110_x
crossref_primary_10_1109_TMI_2022_3224873
crossref_primary_10_3390_ijerph19042013
crossref_primary_10_7717_peerj_cs_2517
crossref_primary_10_1002_admt_202201662
crossref_primary_10_1371_journal_pone_0274098
crossref_primary_10_1007_s00521_021_06044_0
crossref_primary_10_1109_TCBB_2022_3184319
crossref_primary_10_1155_2024_2797320
crossref_primary_10_3390_diagnostics13122125
crossref_primary_10_1007_s10489_020_01904_z
crossref_primary_10_3390_bioengineering10111314
crossref_primary_10_1109_TNNLS_2021_3114747
crossref_primary_10_3390_cancers15174228
crossref_primary_10_1007_s00354_021_00121_7
crossref_primary_10_1067_j_cpradiol_2020_06_009
crossref_primary_10_1007_s42600_020_00110_7
crossref_primary_10_1016_j_patcog_2020_107747
crossref_primary_10_1088_1741_4326_ac70e8
crossref_primary_10_1038_s41598_023_36148_7
crossref_primary_10_1016_j_compbiomed_2021_105002
crossref_primary_10_1109_JBHI_2021_3058293
crossref_primary_10_1038_s41598_023_44818_9
crossref_primary_10_1109_TNNLS_2022_3230821
crossref_primary_10_3390_diagnostics13101675
crossref_primary_10_1016_j_knosys_2022_110040
crossref_primary_10_1038_s41598_023_35922_x
crossref_primary_10_1109_ACCESS_2022_3202922
crossref_primary_10_3390_healthcare8040527
crossref_primary_10_1016_j_microc_2021_106305
crossref_primary_10_1088_1361_6560_abbf9e
crossref_primary_10_1063_5_0216862
crossref_primary_10_1155_2020_9121429
crossref_primary_10_1016_j_compbiomed_2023_106947
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_7717_peerj_cs_655
crossref_primary_10_1016_j_neucom_2021_10_043
crossref_primary_10_1007_s10489_020_01770_9
crossref_primary_10_47164_ijngc_v13i3_611
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_1016_j_asoc_2022_109588
crossref_primary_10_1038_s41598_023_44653_y
crossref_primary_10_1016_j_compeleceng_2025_110443
crossref_primary_10_3389_fphys_2021_693448
crossref_primary_10_1155_2021_6658058
crossref_primary_10_3233_JIFS_219387
crossref_primary_10_37219_2528_8253_2023_3_2
crossref_primary_10_1016_j_patrec_2020_09_010
crossref_primary_10_1016_j_cmpbup_2021_100022
crossref_primary_10_1016_j_matpr_2021_11_388
crossref_primary_10_3390_diagnostics14101017
crossref_primary_10_3390_app12178668
crossref_primary_10_3390_make6030078
crossref_primary_10_3390_s23052621
crossref_primary_10_1016_j_artmed_2022_102427
crossref_primary_10_3390_math9020180
crossref_primary_10_1007_s40747_021_00513_8
crossref_primary_10_3390_diagnostics13030391
crossref_primary_10_1186_s12911_024_02591_3
crossref_primary_10_1016_j_neunet_2024_106182
crossref_primary_10_1080_23080477_2023_2246285
crossref_primary_10_1109_ACCESS_2022_3198958
crossref_primary_10_3390_diagnostics12081828
crossref_primary_10_3389_fmed_2021_729287
crossref_primary_10_1016_j_bspc_2021_103126
crossref_primary_10_1038_s41598_023_46126_8
crossref_primary_10_3390_ai1040034
crossref_primary_10_1007_s10278_023_00791_3
crossref_primary_10_1038_s41598_021_86735_9
crossref_primary_10_3390_ai1040032
crossref_primary_10_1364_AO_455628
crossref_primary_10_3233_XST_211113
crossref_primary_10_1007_s11042_024_18924_3
crossref_primary_10_1109_ACCESS_2025_3584065
crossref_primary_10_1088_1742_6596_1937_1_012002
crossref_primary_10_3390_healthcare9121614
crossref_primary_10_1109_TII_2021_3057683
crossref_primary_10_3390_su141912222
crossref_primary_10_3390_diagnostics14171984
crossref_primary_10_1007_s42979_020_00383_w
crossref_primary_10_3390_bioengineering9040153
crossref_primary_10_3390_app11041424
crossref_primary_10_1016_j_cmpb_2023_107684
crossref_primary_10_1109_JBHI_2020_3023246
crossref_primary_10_1364_PRJ_513537
crossref_primary_10_1007_s00354_023_00217_2
crossref_primary_10_1080_17434440_2022_2014319
crossref_primary_10_1177_20552076241257045
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_1002_hbe2_237
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1007_s42979_021_00841_z
crossref_primary_10_1016_j_media_2024_103248
crossref_primary_10_1117_1_JMI_10_6_064504
crossref_primary_10_32604_cmc_2021_013191
crossref_primary_10_1007_s13246_021_01093_0
crossref_primary_10_3390_diagnostics13172858
crossref_primary_10_1371_journal_pone_0276250
crossref_primary_10_3390_jimaging10020045
crossref_primary_10_1177_09544119241293007
crossref_primary_10_3390_technologies9040098
crossref_primary_10_1109_TNNLS_2022_3201198
crossref_primary_10_1080_21681163_2022_2140074
crossref_primary_10_3233_JIFS_210925
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_1155_2021_5058791
crossref_primary_10_1007_s10844_022_00707_7
crossref_primary_10_1007_s13755_021_00140_0
crossref_primary_10_1016_j_bspc_2022_103977
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1155_2021_3366057
crossref_primary_10_1016_j_bbe_2021_09_004
crossref_primary_10_1016_j_chaos_2021_110749
crossref_primary_10_1109_TAI_2021_3104791
crossref_primary_10_1002_int_22440
crossref_primary_10_3390_app112210528
crossref_primary_10_1007_s12652_024_04797_9
crossref_primary_10_1109_TPAMI_2025_3584902
crossref_primary_10_1109_ACCESS_2024_3515160
crossref_primary_10_1109_TNNLS_2023_3280646
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1007_s41666_021_00106_7
crossref_primary_10_1109_ACCESS_2021_3085418
crossref_primary_10_1007_s11042_022_12500_3
crossref_primary_10_1002_mp_15969
crossref_primary_10_1186_s12880_024_01401_6
crossref_primary_10_3390_ijerph182212191
crossref_primary_10_3390_diagnostics13020270
crossref_primary_10_1007_s11042_024_18543_y
crossref_primary_10_3390_s25154580
crossref_primary_10_3390_life12111709
crossref_primary_10_1177_00207314211017469
crossref_primary_10_3390_healthcare10020276
crossref_primary_10_1016_j_acra_2021_05_002
crossref_primary_10_3390_electronics11172682
crossref_primary_10_1007_s11227_023_05541_4
crossref_primary_10_15446_ing_investig_v42n1_88825
crossref_primary_10_1007_s11042_022_13783_2
crossref_primary_10_3390_diagnostics15030248
crossref_primary_10_1109_TETCI_2020_3046012
crossref_primary_10_1007_s13042_023_02034_x
crossref_primary_10_1016_j_ijleo_2021_167780
crossref_primary_10_3390_diagnostics13020260
crossref_primary_10_7717_peerj_cs_2343
crossref_primary_10_1111_1754_9485_13648
crossref_primary_10_2174_0123520965325192240923074336
crossref_primary_10_1371_journal_pone_0243963
crossref_primary_10_1155_2021_9269173
crossref_primary_10_3390_app11209556
crossref_primary_10_1007_s10489_021_02292_8
crossref_primary_10_1109_RBME_2020_2987975
crossref_primary_10_1186_s13244_022_01250_3
crossref_primary_10_1080_07391102_2020_1767212
crossref_primary_10_1109_ACCESS_2023_3277526
crossref_primary_10_1109_JBHI_2022_3151171
crossref_primary_10_1134_S1054661821020140
crossref_primary_10_3390_diagnostics12112613
crossref_primary_10_1109_TCBB_2021_3066331
crossref_primary_10_1007_s12652_021_02979_3
crossref_primary_10_1038_s41598_021_02003_w
crossref_primary_10_1117_1_JMI_11_6_064503
crossref_primary_10_1155_2021_9996737
crossref_primary_10_2196_33970
crossref_primary_10_1007_s10522_021_09946_7
crossref_primary_10_1007_s11036_023_02140_8
crossref_primary_10_1007_s10489_020_01900_3
crossref_primary_10_3390_app122412891
crossref_primary_10_1177_14604582211033017
crossref_primary_10_1007_s12559_020_09774_w
crossref_primary_10_1088_2043_6262_ac2050
crossref_primary_10_3390_diagnostics12030741
crossref_primary_10_3390_electronics12010099
crossref_primary_10_32604_cmes_2023_030806
crossref_primary_10_1007_s11071_024_09563_2
crossref_primary_10_3390_diagnostics15111301
crossref_primary_10_1007_s00146_020_00978_0
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1007_s10796_021_10123_x
crossref_primary_10_1016_j_neucom_2022_02_018
crossref_primary_10_1155_2022_4983174
crossref_primary_10_61453_jods_v2021no04
crossref_primary_10_1007_s00521_022_08021_7
crossref_primary_10_1007_s00330_020_07453_w
crossref_primary_10_21015_vtse_v10i3_1135
crossref_primary_10_3389_fgene_2022_845305
crossref_primary_10_3390_jpm10040213
crossref_primary_10_3390_info14070370
crossref_primary_10_3390_math11051216
crossref_primary_10_3390_ijerph20032035
crossref_primary_10_1016_j_imed_2021_06_004
crossref_primary_10_3390_app13169226
crossref_primary_10_1016_j_neucom_2022_02_040
crossref_primary_10_1109_ACCESS_2020_3003810
crossref_primary_10_3390_diagnostics12030765
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_4018_IJACI_300793
crossref_primary_10_31185_ejuow_Vol11_Iss2_439
crossref_primary_10_3389_frai_2023_1235204
crossref_primary_10_1109_JTEHM_2021_3134096
crossref_primary_10_1007_s12652_024_04775_1
crossref_primary_10_1007_s12553_021_00630_x
crossref_primary_10_1080_03091902_2024_2321846
crossref_primary_10_3390_make5030037
crossref_primary_10_1109_JBHI_2023_3307216
crossref_primary_10_3390_app112411902
crossref_primary_10_1007_s00521_021_06346_3
crossref_primary_10_1007_s41870_023_01538_7
crossref_primary_10_1515_pjbr_2022_0108
crossref_primary_10_1007_s00354_025_00296_3
crossref_primary_10_2196_37215
crossref_primary_10_1007_s12530_023_09541_w
crossref_primary_10_1007_s41939_023_00292_4
crossref_primary_10_1155_int_6914757
crossref_primary_10_1088_1361_6501_ac8ca4
crossref_primary_10_1155_2022_5297709
crossref_primary_10_1155_2024_3249929
crossref_primary_10_3389_frai_2023_1266560
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1038_s41598_023_49337_1
crossref_primary_10_4018_IJDWM_314155
crossref_primary_10_1038_s41598_025_00966_8
crossref_primary_10_28978_nesciences_868087
crossref_primary_10_1016_j_compbiomed_2022_106070
crossref_primary_10_3390_s20113089
crossref_primary_10_1007_s11042_022_12640_6
crossref_primary_10_1007_s12559_020_09787_5
crossref_primary_10_3389_fdata_2022_801998
crossref_primary_10_1007_s10278_023_00916_8
crossref_primary_10_1109_ACCESS_2023_3312533
crossref_primary_10_1007_s10479_022_05151_y
crossref_primary_10_1007_s00530_022_00917_7
crossref_primary_10_3390_e26080645
crossref_primary_10_1007_s11042_021_11748_5
crossref_primary_10_1007_s13755_022_00174_y
crossref_primary_10_3389_fmed_2023_1157000
crossref_primary_10_3390_diagnostics12030717
crossref_primary_10_1007_s11831_025_10253_4
crossref_primary_10_1038_s41598_021_95537_y
crossref_primary_10_3390_diagnostics13081491
crossref_primary_10_1016_j_asoc_2022_109906
crossref_primary_10_3390_electronics11233880
crossref_primary_10_3390_math11061279
crossref_primary_10_1109_ACCESS_2021_3133338
crossref_primary_10_3390_bioengineering10010019
crossref_primary_10_1007_s11042_024_18175_2
crossref_primary_10_1016_j_csbj_2021_05_010
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_1088_1757_899X_979_1_012016
crossref_primary_10_1007_s42979_021_00823_1
crossref_primary_10_1049_iet_ipr_2020_1127
crossref_primary_10_31083_j_fbl2707198
crossref_primary_10_3390_math10193614
crossref_primary_10_3390_s21238045
crossref_primary_10_1111_jocd_15310
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1007_s42979_022_01182_1
crossref_primary_10_1109_JBHI_2022_3205167
crossref_primary_10_3390_reports5020020
crossref_primary_10_1155_2022_2564022
crossref_primary_10_3390_s21217116
crossref_primary_10_1007_s13246_020_00888_x
crossref_primary_10_1155_2022_7631271
crossref_primary_10_1177_08953996251320262
crossref_primary_10_3390_s21020455
crossref_primary_10_1002_widm_1567
crossref_primary_10_1016_j_patcog_2021_108499
crossref_primary_10_1080_09720502_2021_1884385
crossref_primary_10_1002_ima_22697
crossref_primary_10_1051_e3sconf_202129701031
crossref_primary_10_1111_1754_9485_13273
crossref_primary_10_1007_s11548_020_02305_w
crossref_primary_10_1097_CM9_0000000000002058
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_1177_20552076241232882
crossref_primary_10_1007_s40031_022_00762_2
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1128_CMR_00228_20
crossref_primary_10_1007_s10462_021_10106_z
crossref_primary_10_1007_s11063_022_11023_0
crossref_primary_10_1146_annurev_bioeng_110220_012203
crossref_primary_10_1007_s13755_021_00146_8
crossref_primary_10_1016_j_bbe_2022_06_005
crossref_primary_10_1109_TII_2021_3138919
crossref_primary_10_1016_j_patcog_2021_108006
crossref_primary_10_3390_electronics9091439
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1038_s41598_023_45368_w
crossref_primary_10_1155_2022_8729749
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_1007_s10278_022_00754_0
crossref_primary_10_1038_s41598_021_97901_4
crossref_primary_10_1371_journal_pone_0294481
crossref_primary_10_32604_cmc_2021_014956
crossref_primary_10_1007_s12652_020_02669_6
crossref_primary_10_1080_0952813X_2022_2125079
crossref_primary_10_1016_j_chaos_2020_110245
crossref_primary_10_1109_TETCI_2024_3359082
crossref_primary_10_1007_s11042_023_14960_7
crossref_primary_10_3390_ijerph19105901
crossref_primary_10_1016_j_patcog_2021_108035
crossref_primary_10_3390_diagnostics12112826
crossref_primary_10_1186_s42492_021_00078_w
crossref_primary_10_1007_s00354_023_00232_3
crossref_primary_10_3390_s21175702
crossref_primary_10_1371_journal_pone_0328061
crossref_primary_10_1038_s41467_023_44383_9
crossref_primary_10_3389_frai_2022_827299
crossref_primary_10_1007_s42979_024_02941_y
crossref_primary_10_1109_MCI_2020_3019873
crossref_primary_10_3390_s21175940
crossref_primary_10_1109_TIM_2025_3545983
crossref_primary_10_1007_s11760_020_01820_2
crossref_primary_10_1109_ACCESS_2022_3227798
crossref_primary_10_2196_27468
crossref_primary_10_3389_fpubh_2022_805086
crossref_primary_10_1038_s41598_022_18463_7
crossref_primary_10_1007_s10618_020_00692_x
crossref_primary_10_1121_10_0006104
crossref_primary_10_1109_JIOT_2021_3126471
crossref_primary_10_1007_s13369_021_05879_y
crossref_primary_10_3390_diagnostics14050500
crossref_primary_10_1002_cpe_6747
crossref_primary_10_1007_s11277_021_09076_w
crossref_primary_10_3390_bioengineering11070709
crossref_primary_10_1038_s41598_024_70929_y
crossref_primary_10_1177_1088467X241301698
crossref_primary_10_1007_s12553_022_00688_1
crossref_primary_10_1016_j_media_2021_102046
crossref_primary_10_1007_s13755_020_00119_3
crossref_primary_10_1109_ACCESS_2024_3409566
crossref_primary_10_1109_ACCESS_2021_3054484
crossref_primary_10_11648_j_ajai_20250901_14
crossref_primary_10_1007_s12559_020_09779_5
crossref_primary_10_1109_ACCESS_2023_3267492
crossref_primary_10_32604_cmes_2023_028018
crossref_primary_10_1109_MSP_2021_3090674
crossref_primary_10_1007_s11042_022_14316_7
crossref_primary_10_1007_s12652_021_02917_3
crossref_primary_10_7717_peerj_cs_349
crossref_primary_10_3390_app12083895
crossref_primary_10_3390_electronics14091881
crossref_primary_10_1007_s00530_022_00892_z
crossref_primary_10_3390_biomimetics8050406
crossref_primary_10_1007_s10489_021_02352_z
crossref_primary_10_3390_diagnostics13111968
crossref_primary_10_1016_j_compbiomed_2021_104453
crossref_primary_10_1016_j_iot_2021_100377
crossref_primary_10_1007_s42979_021_00695_5
crossref_primary_10_1016_j_scs_2021_103252
crossref_primary_10_3390_tomography11090099
crossref_primary_10_1007_s11277_022_09864_y
crossref_primary_10_1007_s00521_025_11219_0
crossref_primary_10_1007_s42600_021_00181_0
crossref_primary_10_1111_exsy_13423
crossref_primary_10_1007_s11042_021_10714_5
crossref_primary_10_3233_XST_200757
crossref_primary_10_3389_fpubh_2022_875971
crossref_primary_10_1002_ima_22525
crossref_primary_10_3389_fams_2023_1133349
crossref_primary_10_3390_pathogens10081048
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1038_s41598_023_46147_3
crossref_primary_10_1038_s41598_022_15013_z
crossref_primary_10_1109_JBHI_2020_3037127
crossref_primary_10_1109_TCSII_2024_3377356
crossref_primary_10_1007_s00500_022_07798_y
crossref_primary_10_1109_JBHI_2023_3313886
crossref_primary_10_1109_JBHI_2022_3148317
crossref_primary_10_1007_s11042_024_20327_3
crossref_primary_10_1007_s11277_024_11309_7
crossref_primary_10_1007_s11042_022_13710_5
crossref_primary_10_1007_s43938_024_00064_7
crossref_primary_10_1109_JBHI_2022_3220813
crossref_primary_10_1002_ima_22983
crossref_primary_10_1007_s11192_020_03744_7
crossref_primary_10_2196_23693
crossref_primary_10_1109_TMI_2024_3418408
crossref_primary_10_1038_s41598_023_45532_2
crossref_primary_10_1088_1742_6596_1714_1_012023
crossref_primary_10_3390_diagnostics11020315
crossref_primary_10_1002_qua_70053
crossref_primary_10_1007_s40031_021_00589_3
crossref_primary_10_1007_s42600_022_00230_2
crossref_primary_10_1007_s42979_021_00531_w
crossref_primary_10_1007_s11042_024_18153_8
crossref_primary_10_1007_s42979_020_00301_0
crossref_primary_10_3390_healthcare10122443
crossref_primary_10_7717_peerj_cs_551
crossref_primary_10_1007_s11042_024_20153_7
crossref_primary_10_1038_s41598_020_78060_4
crossref_primary_10_1093_comjnl_bxac136
crossref_primary_10_3389_fphys_2025_1512835
crossref_primary_10_7717_peerj_cs_303
crossref_primary_10_1080_09720502_2020_1833443
crossref_primary_10_1109_ACCESS_2023_3253282
crossref_primary_10_2196_24572
crossref_primary_10_1371_journal_pone_0319859
crossref_primary_10_3390_jimaging6060052
crossref_primary_10_3390_diagnostics14151634
crossref_primary_10_3390_s22207977
crossref_primary_10_1109_MCI_2021_3129960
crossref_primary_10_1016_j_jbi_2021_103751
crossref_primary_10_3934_aci_2022010
crossref_primary_10_1016_j_drudis_2024_104280
crossref_primary_10_3389_fdata_2024_1489020
crossref_primary_10_31083_j_fbl2709276
crossref_primary_10_1016_j_media_2021_102225
crossref_primary_10_3390_healthcare10020403
crossref_primary_10_1007_s10916_021_01707_w
crossref_primary_10_3390_bdcc9070186
crossref_primary_10_1007_s13278_021_00731_5
crossref_primary_10_7717_peerj_cs_564
crossref_primary_10_1186_s12938_020_00831_x
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_3390_app12104861
crossref_primary_10_4015_S101623722550019X
crossref_primary_10_1007_s10489_020_01888_w
crossref_primary_10_1109_TAI_2022_3149971
crossref_primary_10_1016_j_bbe_2021_12_001
crossref_primary_10_1109_MITP_2020_3036820
crossref_primary_10_1007_s10489_020_01862_6
crossref_primary_10_1016_j_cmpb_2020_105581
crossref_primary_10_1080_0952813X_2021_1958063
crossref_primary_10_1109_TAI_2022_3224097
crossref_primary_10_1016_j_compbiomed_2022_105405
crossref_primary_10_1007_s42979_021_00762_x
crossref_primary_10_3390_s24134315
crossref_primary_10_1002_ima_22715
crossref_primary_10_1186_s12880_023_01019_0
crossref_primary_10_3390_ijerph19095099
crossref_primary_10_1016_j_eswa_2025_126660
crossref_primary_10_1007_s10044_021_00970_4
crossref_primary_10_1007_s11045_024_00897_z
crossref_primary_10_3390_app13042109
crossref_primary_10_1016_j_bspc_2025_108047
crossref_primary_10_1007_s42484_025_00315_y
crossref_primary_10_1007_s42979_021_00980_3
crossref_primary_10_3390_ijerph17186933
crossref_primary_10_3390_s22103728
crossref_primary_10_12688_f1000research_74839_1
crossref_primary_10_1007_s42600_020_00120_5
crossref_primary_10_3390_jpm12020310
crossref_primary_10_1186_s40537_020_00392_9
crossref_primary_10_1093_biomethods_bpaf057
crossref_primary_10_1002_bab_70020
crossref_primary_10_1109_ACCESS_2021_3136263
crossref_primary_10_1155_2021_5513679
crossref_primary_10_3389_fmed_2020_608525
crossref_primary_10_1007_s10489_020_02122_3
crossref_primary_10_1038_s41597_023_02229_5
crossref_primary_10_3389_fphys_2022_1066999
crossref_primary_10_1016_j_jmir_2024_03_046
crossref_primary_10_1109_ACCESS_2022_3208138
crossref_primary_10_1002_mef2_38
crossref_primary_10_1038_s41598_024_77386_7
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_3390_app12104825
crossref_primary_10_1038_s41598_021_87994_2
crossref_primary_10_1007_s11042_021_11787_y
crossref_primary_10_1109_TETCI_2022_3219858
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_3390_diagnostics13101783
crossref_primary_10_1016_j_asoc_2022_109205
crossref_primary_10_3390_electronics11182893
crossref_primary_10_1016_j_compgeo_2022_104733
crossref_primary_10_1088_2632_2153_abf0f7
crossref_primary_10_1049_ipr2_12474
crossref_primary_10_1371_journal_pone_0303049
crossref_primary_10_1007_s11042_023_15405_x
crossref_primary_10_1016_j_matpr_2021_04_051
crossref_primary_10_1007_s00500_020_05424_3
crossref_primary_10_1109_TCE_2024_3446793
crossref_primary_10_1109_TMI_2021_3079709
crossref_primary_10_3390_diagnostics14242790
crossref_primary_10_1016_j_eswa_2021_115401
crossref_primary_10_3390_info12110471
crossref_primary_10_1109_TAI_2021_3062771
crossref_primary_10_1186_s41747_023_00386_1
crossref_primary_10_1016_j_clml_2024_11_013
crossref_primary_10_3389_fmed_2024_1505692
crossref_primary_10_3390_bdcc7010011
crossref_primary_10_1007_s10489_021_02731_6
crossref_primary_10_1109_JBHI_2023_3241439
crossref_primary_10_3390_technologies10020037
crossref_primary_10_52692_1857_0011_2024_2_79_35
crossref_primary_10_1016_j_clinimag_2021_01_019
crossref_primary_10_2147_JMDH_S482757
crossref_primary_10_3390_jimaging7050081
crossref_primary_10_1016_j_cmpb_2020_105532
crossref_primary_10_3390_s23198122
crossref_primary_10_1007_s12553_021_00609_8
crossref_primary_10_3389_fcvm_2021_638011
crossref_primary_10_1155_2023_7091301
crossref_primary_10_3233_HIS_210008
crossref_primary_10_3390_diagnostics13030441
crossref_primary_10_1109_ACCESS_2021_3079716
crossref_primary_10_1155_2022_1307944
crossref_primary_10_1088_1757_899X_1084_1_012001
crossref_primary_10_1007_s10489_020_02076_6
crossref_primary_10_3233_IDT_230222
crossref_primary_10_1186_s12880_022_00847_w
crossref_primary_10_1007_s11760_021_02098_8
crossref_primary_10_3390_diagnostics12010101
crossref_primary_10_25259_IJMS_349_2020
crossref_primary_10_1155_2021_5546790
crossref_primary_10_1016_j_bspc_2022_103778
crossref_primary_10_1002_mp_15419
crossref_primary_10_1007_s13042_024_02411_0
crossref_primary_10_1016_j_chaos_2020_109947
crossref_primary_10_1080_09720510_2020_1838062
crossref_primary_10_1109_ACCESS_2025_3555619
crossref_primary_10_3390_diseases11040171
crossref_primary_10_3233_JIFS_220017
crossref_primary_10_1080_23311916_2022_2124635
crossref_primary_10_1155_2021_7265644
crossref_primary_10_1016_j_measurement_2022_111702
crossref_primary_10_3390_s21206853
crossref_primary_10_1007_s40747_020_00199_4
crossref_primary_10_1007_s10044_024_01285_w
crossref_primary_10_3389_frai_2021_764047
crossref_primary_10_1007_s11390_020_0679_8
crossref_primary_10_1016_j_ins_2021_03_062
crossref_primary_10_3390_jcm10143100
crossref_primary_10_3390_s22197474
crossref_primary_10_3390_diagnostics11091712
crossref_primary_10_3390_bioengineering10050556
crossref_primary_10_1109_ACCESS_2022_3159025
crossref_primary_10_1117_1_JMI_10_5_054504
crossref_primary_10_1186_s12880_023_01039_w
crossref_primary_10_1016_j_bspc_2023_104724
crossref_primary_10_1007_s11042_022_12484_0
crossref_primary_10_1155_2021_8890226
crossref_primary_10_1038_s41598_021_99986_3
crossref_primary_10_1016_j_bspc_2024_106190
crossref_primary_10_3390_healthcare11101367
crossref_primary_10_1007_s00500_021_05643_2
crossref_primary_10_3389_frai_2021_652669
crossref_primary_10_1016_j_bspc_2021_103272
crossref_primary_10_1007_s13246_020_00934_8
crossref_primary_10_1007_s12559_021_09955_1
crossref_primary_10_1080_21681163_2023_2264408
crossref_primary_10_3390_healthcare11020213
crossref_primary_10_1016_j_jksuci_2020_12_010
crossref_primary_10_1155_2022_2656818
crossref_primary_10_1063_5_0075918
crossref_primary_10_1371_journal_pone_0247839
crossref_primary_10_1007_s10489_020_01829_7
crossref_primary_10_1007_s13721_023_00437_y
crossref_primary_10_1186_s12880_021_00704_2
crossref_primary_10_1038_s41598_023_40506_w
crossref_primary_10_1007_s13369_021_06041_4
crossref_primary_10_1109_TETCI_2024_3371222
crossref_primary_10_1007_s11042_023_15097_3
crossref_primary_10_1007_s12553_021_00520_2
crossref_primary_10_1109_ACCESS_2023_3310400
crossref_primary_10_1038_s41586_025_09079_8
crossref_primary_10_1016_j_clinimag_2021_07_004
crossref_primary_10_1007_s12553_022_00704_4
crossref_primary_10_1155_2022_5998042
crossref_primary_10_1007_s42979_021_00720_7
crossref_primary_10_1016_j_bspc_2022_103860
crossref_primary_10_1109_ACCESS_2023_3253640
crossref_primary_10_1109_JBHI_2020_3009314
crossref_primary_10_1109_TBDATA_2021_3103458
crossref_primary_10_1016_j_eswa_2021_115141
crossref_primary_10_1016_j_mehy_2020_109761
crossref_primary_10_1007_s42979_024_02695_7
crossref_primary_10_1038_s41467_023_41703_x
crossref_primary_10_1109_TMI_2021_3134270
crossref_primary_10_1109_ACCESS_2022_3172706
crossref_primary_10_1155_2022_7126259
crossref_primary_10_3390_jimaging8030065
crossref_primary_10_1111_coin_12568
crossref_primary_10_3390_diagnostics14141469
crossref_primary_10_1016_j_neucom_2021_06_100
crossref_primary_10_3390_bioengineering10070850
crossref_primary_10_1007_s10489_020_01978_9
crossref_primary_10_1007_s42600_021_00132_9
crossref_primary_10_1038_s42256_021_00338_7
crossref_primary_10_3389_fpubh_2023_1308404
crossref_primary_10_1080_13467581_2024_2373830
crossref_primary_10_1007_s00521_023_08259_9
crossref_primary_10_3390_jcm11195501
crossref_primary_10_1109_TMBMC_2021_3099367
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1016_j_chaos_2020_110337
crossref_primary_10_1109_TBDATA_2025_3556612
crossref_primary_10_3390_diagnostics12061396
crossref_primary_10_1016_j_patcog_2023_110232
crossref_primary_10_1007_s00296_024_05737_8
crossref_primary_10_18517_ijods_2_1_9_18_2021
crossref_primary_10_1038_s41598_023_30174_1
crossref_primary_10_32604_cmc_2021_015720
crossref_primary_10_1007_s11042_024_19221_9
crossref_primary_10_3390_electronics11193068
crossref_primary_10_3390_info15040189
crossref_primary_10_1080_0952813X_2021_1908431
crossref_primary_10_1007_s00371_025_04117_y
crossref_primary_10_1007_s10586_025_05229_9
crossref_primary_10_2196_20756
crossref_primary_10_3390_pharmaceutics17091119
crossref_primary_10_1007_s00500_025_10853_z
crossref_primary_10_1007_s00354_021_00152_0
crossref_primary_10_1080_21681163_2023_2261575
crossref_primary_10_1186_s12880_022_00871_w
crossref_primary_10_1049_el_2020_1962
crossref_primary_10_1007_s00607_021_00992_0
crossref_primary_10_1038_s41598_024_71346_x
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_3390_jimaging8020038
crossref_primary_10_1186_s40537_023_00858_6
crossref_primary_10_1109_TCBB_2023_3294333
crossref_primary_10_1016_j_matpr_2021_05_553
crossref_primary_10_3390_bioengineering8070098
crossref_primary_10_1371_journal_pone_0276758
crossref_primary_10_1016_j_procs_2025_04_296
crossref_primary_10_3390_ijerph18031117
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_1038_s41598_021_91305_0
crossref_primary_10_1007_s42979_021_00690_w
crossref_primary_10_2196_42324
crossref_primary_10_3389_fmed_2022_1076184
crossref_primary_10_1016_j_compbiomed_2025_110547
crossref_primary_10_1038_s41598_024_80826_z
crossref_primary_10_4329_wjr_v13_i6_171
crossref_primary_10_1109_TNNLS_2021_3086570
crossref_primary_10_1155_2021_8829829
crossref_primary_10_4329_wjr_v13_i6_172
crossref_primary_10_3390_bdcc7010036
crossref_primary_10_1155_2021_6680455
crossref_primary_10_3233_JIFS_232866
crossref_primary_10_4103_jmp_jmp_26_22
crossref_primary_10_1109_JBHI_2021_3069798
crossref_primary_10_1016_j_inffus_2021_04_008
crossref_primary_10_3390_computers12050095
crossref_primary_10_3390_v13020202
crossref_primary_10_3390_s21051908
crossref_primary_10_1016_j_ipm_2024_103900
crossref_primary_10_1038_s41598_024_76498_4
crossref_primary_10_3390_diagnostics11081317
crossref_primary_10_1038_s41598_021_88538_4
crossref_primary_10_3390_diagnostics13010131
crossref_primary_10_1007_s11036_023_02185_9
crossref_primary_10_1007_s12652_020_02688_3
crossref_primary_10_1007_s12559_022_10076_6
crossref_primary_10_1016_j_compeleceng_2022_108405
crossref_primary_10_3390_app11062884
crossref_primary_10_2478_acss_2023_0016
crossref_primary_10_1007_s12559_020_09795_5
crossref_primary_10_1186_s12880_024_01192_w
crossref_primary_10_1016_j_asoc_2023_110014
crossref_primary_10_1155_2022_6786203
crossref_primary_10_3390_cancers15010314
crossref_primary_10_59176_kjcs_v4i1_2429
crossref_primary_10_1186_s12874_022_01578_w
crossref_primary_10_3390_electronics9091388
crossref_primary_10_3390_app15179345
crossref_primary_10_1016_j_sciaf_2023_e01961
crossref_primary_10_3390_healthcare11152199
crossref_primary_10_3390_healthcare10010166
crossref_primary_10_2478_acss_2023_0005
crossref_primary_10_1007_s11042_025_20720_6
crossref_primary_10_1136_bmjopen_2024_094908
crossref_primary_10_3389_fmed_2022_861680
crossref_primary_10_3390_diagnostics12030652
crossref_primary_10_1088_2057_1976_adebf4
crossref_primary_10_1007_s42600_023_00302_x
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1109_JBHI_2022_3177854
crossref_primary_10_3390_diagnostics13081397
crossref_primary_10_1007_s42044_025_00231_1
crossref_primary_10_1007_s12559_020_09775_9
crossref_primary_10_1088_1361_6560_ac4316
crossref_primary_10_1515_pwp_2020_0021
crossref_primary_10_1007_s00330_021_08050_1
crossref_primary_10_1007_s13246_020_00952_6
crossref_primary_10_1007_s12539_023_00562_2
crossref_primary_10_1002_cdt3_17
crossref_primary_10_1109_ACCESS_2024_3370848
crossref_primary_10_1007_s00521_024_09484_6
crossref_primary_10_1080_0952813X_2023_2165722
crossref_primary_10_3389_frai_2022_912022
crossref_primary_10_1109_TPAMI_2024_3382009
crossref_primary_10_1007_s12599_023_00806_x
crossref_primary_10_1155_2022_8026580
crossref_primary_10_1016_j_chaos_2020_110170
crossref_primary_10_28979_jarnas_952700
crossref_primary_10_1007_s00521_022_06918_x
crossref_primary_10_1007_s11831_023_09882_4
crossref_primary_10_1007_s42979_021_00496_w
crossref_primary_10_3390_s22218578
crossref_primary_10_3390_s23125592
crossref_primary_10_3390_math11102385
crossref_primary_10_1155_2022_8167821
crossref_primary_10_3390_jimaging9090177
crossref_primary_10_1186_s12880_024_01394_2
crossref_primary_10_1080_07391102_2023_2227726
crossref_primary_10_1111_exsy_12749
crossref_primary_10_3390_su14116785
crossref_primary_10_1155_2022_9414567
crossref_primary_10_1155_2021_8854892
crossref_primary_10_1002_cpe_6434
crossref_primary_10_1038_s44222_025_00363_w
crossref_primary_10_1007_s00521_023_08788_3
crossref_primary_10_1109_TSC_2022_3142265
crossref_primary_10_3390_a14060183
crossref_primary_10_48084_etasr_10735
crossref_primary_10_1145_3457124
crossref_primary_10_1007_s11042_021_11299_9
crossref_primary_10_1109_ACCESS_2024_3424907
crossref_primary_10_3390_bioengineering9110709
crossref_primary_10_1007_s00500_023_08874_7
crossref_primary_10_3390_s21041480
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1515_bmt_2021_0272
crossref_primary_10_3389_fbioe_2022_876672
crossref_primary_10_1155_2023_6341259
crossref_primary_10_1007_s10278_021_00518_2
crossref_primary_10_3390_diagnostics13081387
crossref_primary_10_1007_s11277_024_11097_0
crossref_primary_10_1038_s41598_023_42203_0
crossref_primary_10_3389_fpubh_2022_819156
crossref_primary_10_1016_j_procs_2021_10_081
crossref_primary_10_1109_JBHI_2021_3100119
crossref_primary_10_3390_app13148295
crossref_primary_10_1007_s10916_021_01745_4
crossref_primary_10_1016_j_eswa_2023_119900
crossref_primary_10_3389_fmed_2021_821120
crossref_primary_10_1038_s41598_021_00524_y
crossref_primary_10_1038_s41598_024_64941_5
crossref_primary_10_1007_s10489_020_01867_1
crossref_primary_10_1016_j_compeleceng_2020_106960
crossref_primary_10_1007_s41666_023_00132_7
crossref_primary_10_1155_int_2751767
crossref_primary_10_1016_j_asoc_2024_112137
crossref_primary_10_1109_TDSC_2024_3372634
crossref_primary_10_3390_jimaging7090189
crossref_primary_10_1155_2021_3604900
crossref_primary_10_3390_sym12091526
crossref_primary_10_3390_a16100494
crossref_primary_10_1136_bmjinnov_2020_000593
crossref_primary_10_1111_exsy_12919
crossref_primary_10_1109_ACCESS_2021_3116067
crossref_primary_10_3390_healthcare10071313
crossref_primary_10_3390_s23125543
crossref_primary_10_32604_cmc_2020_013232
crossref_primary_10_1007_s41870_020_00495_9
crossref_primary_10_1186_s12911_024_02576_2
crossref_primary_10_3390_sym13010113
crossref_primary_10_1016_j_compbiomed_2021_104781
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_1016_j_bbe_2022_11_003
crossref_primary_10_3390_jpm12101707
crossref_primary_10_1016_j_jksuci_2023_101596
crossref_primary_10_3390_s21103322
crossref_primary_10_1515_geo_2022_0361
crossref_primary_10_4108_eetpht_v8i5_3352
crossref_primary_10_1016_j_bbe_2021_04_006
crossref_primary_10_1109_TMI_2022_3220706
crossref_primary_10_1038_s41598_025_00199_9
crossref_primary_10_1007_s10489_020_01943_6
crossref_primary_10_1016_j_jmir_2022_11_016
crossref_primary_10_32604_cmc_2024_051420
crossref_primary_10_3390_app12083712
crossref_primary_10_46810_tdfd_1661900
crossref_primary_10_1007_s42979_025_04041_x
crossref_primary_10_1007_s11042_023_16439_x
crossref_primary_10_1155_2021_8340779
crossref_primary_10_3390_e22050517
crossref_primary_10_1016_j_bspc_2021_102862
crossref_primary_10_3390_diagnostics13152583
crossref_primary_10_1007_s42979_025_04315_4
crossref_primary_10_1155_2022_3237361
crossref_primary_10_3390_app122110787
crossref_primary_10_3390_s20195665
crossref_primary_10_3390_jcm11113013
crossref_primary_10_1109_TETCI_2022_3174868
crossref_primary_10_1080_23311916_2022_2105559
crossref_primary_10_3390_math9040434
crossref_primary_10_1002_ima_22544
crossref_primary_10_1007_s41870_020_00571_0
crossref_primary_10_1002_widm_1461
crossref_primary_10_1007_s00354_023_00220_7
crossref_primary_10_1097_CM9_00000000000020S8
crossref_primary_10_3390_s21175813
crossref_primary_10_3390_electronics10172132
crossref_primary_10_3390_pathogens13110940
crossref_primary_10_1007_s11517_022_02651_8
crossref_primary_10_1007_s11042_025_20920_0
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_3390_healthcare10122504
Cites_doi 10.1016/S0140-6736(20)30183-5
10.1148/radiol.2020200642
10.1016/j.clinimag.2020.04.001
10.1016/j.crad.2020.03.008
10.1148/ryct.2020200034
10.1016/j.chest.2020.04.003
10.1177/0846537120924606
10.1109/CVPR.2016.90
10.1109/CVPR.2009.5206848
10.1109/BIBM49941.2020.9313217
10.1016/j.mehy.2020.109761
10.1056/NEJMoa2002032
10.1007/s42600-021-00151-6
10.1148/radiol.2020200905
10.1109/BIBM49941.2020.9313304
10.1016/S2589-7500(20)30109-6
10.1101/2020.04.14.20065722
10.1038/nature14539
10.1088/1361-6560/abe838
10.1109/CVPR.2017.243
10.1016/j.mayocp.2020.04.004
10.3390/ijerph17186933
10.1016/j.media.2020.101794
10.1101/2020.02.11.20021493
10.1148/radiol.2020200432
10.1101/2020.04.05.20053355
10.1007/s13246-020-00865-4
10.1016/j.eng.2020.04.010
10.1016/j.patrec.2020.09.010
10.1109/CVPR.2017.369
10.1007/s00330-020-06918-2
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-020-76550-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7658227
33177550
10_1038_s41598_020_76550_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-f6268990dd53caf3cabfbb2643bba432255320ae9070d5a841c1304d6a42e29f3
IEDL.DBID M7P
ISICitedReferencesCount 883
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594820700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:57:15 EST 2025
Fri Sep 05 10:40:56 EDT 2025
Tue Oct 07 07:46:10 EDT 2025
Mon Jul 21 05:52:10 EDT 2025
Sat Nov 29 04:02:52 EST 2025
Tue Nov 18 22:42:29 EST 2025
Fri Feb 21 02:37:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f6268990dd53caf3cabfbb2643bba432255320ae9070d5a841c1304d6a42e29f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2471558747?pq-origsite=%requestingapplication%
PMID 33177550
PQID 2471558747
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7658227
proquest_miscellaneous_2460085445
proquest_journals_2471558747
pubmed_primary_33177550
crossref_primary_10_1038_s41598_020_76550_z
crossref_citationtrail_10_1038_s41598_020_76550_z
springer_journals_10_1038_s41598_020_76550_z
PublicationCentury 2000
PublicationDate 2020-11-11
PublicationDateYYYYMMDD 2020-11-11
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CR19
CR18
CR17
CR39
CR16
CR38
CR15
CR37
CR14
CR36
CR35
Ng (CR6) 2020; 2
CR34
CR33
CR32
Jacobi, Chung, Bernheim, Eber (CR13) 2020
CR31
CR30
Wang (CR1) 2020; 323
CR2
Ai (CR9) 2020
CR4
CR3
CR5
CR8
CR29
CR28
CR27
Rubin (CR10) 2020
CR26
CR25
CR24
CR46
CR23
CR45
CR22
CR44
CR21
CR43
Dennie (CR12) 2020; 71
CR20
CR42
CR41
CR40
Nair (CR11) 2020; 75
Huang (CR7) 2020; 395
76550_CR16
76550_CR38
76550_CR17
76550_CR39
76550_CR14
76550_CR36
A Jacobi (76550_CR13) 2020
76550_CR15
76550_CR37
C Dennie (76550_CR12) 2020; 71
76550_CR18
M-Y Ng (76550_CR6) 2020; 2
76550_CR19
A Nair (76550_CR11) 2020; 75
GD Rubin (76550_CR10) 2020
76550_CR41
76550_CR20
76550_CR42
76550_CR40
76550_CR23
76550_CR45
76550_CR24
76550_CR46
76550_CR21
76550_CR43
76550_CR22
76550_CR44
76550_CR27
76550_CR28
76550_CR25
76550_CR26
76550_CR8
C Huang (76550_CR7) 2020; 395
76550_CR29
76550_CR5
76550_CR4
76550_CR3
76550_CR2
T Ai (76550_CR9) 2020
W Wang (76550_CR1) 2020; 323
76550_CR30
76550_CR31
76550_CR34
76550_CR35
76550_CR32
76550_CR33
References_xml – volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR7
  article-title: Clinical features of patients infected with 2019 Novel Coronavirus in Wuhan China
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– ident: CR45
– ident: CR22
– year: 2020
  ident: CR9
  article-title: Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in china: a report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– ident: CR18
– ident: CR43
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR2
– year: 2020
  ident: CR13
  article-title: Portable chest x-ray in coronavirus disease-19 (covid-19): a pictorial review
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.04.001
– ident: CR16
– ident: CR37
– ident: CR30
– ident: CR33
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR40
– ident: CR25
– volume: 323
  start-page: 1843
  issue: 18
  year: 2020
  end-page: 1844
  ident: CR1
  article-title: Detection of SARS-CoV-2 in different types of clinical specimens
  publication-title: JAMA
– ident: CR27
– ident: CR42
– ident: CR23
– ident: CR21
– ident: CR46
– ident: CR19
– ident: CR44
– volume: 75
  start-page: 329
  issue: 5
  year: 2020
  end-page: 334
  ident: CR11
  article-title: A British Society of thoracic imaging statement: considerations in designing local imaging diagnostic algorithms for the COVID-19 pandemic
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.03.008
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 2
  start-page: e200034
  issue: 1
  year: 2020
  ident: CR6
  article-title: Imaging profile of the COVID-19 infection: radiologic findings and literature review
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200034
– ident: CR17
– ident: CR31
– year: 2020
  ident: CR10
  article-title: The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the fleischner society
  publication-title: Radiology
  doi: 10.1016/j.chest.2020.04.003
– ident: CR32
– volume: 71
  start-page: 470
  issue: 4
  year: 2020
  end-page: 481
  ident: CR12
  article-title: The Canadian Society of Thoracic Radiology (CSTR) and Canadian Association of Radiologists (CAR) consensus statement regarding chest imaging in suspected and confirmed COVID-19
  publication-title: Can. Assoc. Radiol. J.
  doi: 10.1177/0846537120924606
– ident: CR34
– ident: CR36
– ident: CR5
– ident: CR28
– ident: CR41
– ident: CR26
– ident: CR24
– ident: CR20
– ident: 76550_CR16
– ident: 76550_CR41
– ident: 76550_CR18
– ident: 76550_CR40
  doi: 10.1109/CVPR.2016.90
– ident: 76550_CR22
– ident: 76550_CR20
– volume: 395
  start-page: 497
  year: 2020
  ident: 76550_CR7
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 75
  start-page: 329
  issue: 5
  year: 2020
  ident: 76550_CR11
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2020.03.008
– ident: 76550_CR37
– volume: 323
  start-page: 1843
  issue: 18
  year: 2020
  ident: 76550_CR1
  publication-title: JAMA
– ident: 76550_CR43
  doi: 10.1109/CVPR.2009.5206848
– ident: 76550_CR26
  doi: 10.1109/BIBM49941.2020.9313217
– ident: 76550_CR31
  doi: 10.1016/j.mehy.2020.109761
– year: 2020
  ident: 76550_CR13
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.04.001
– ident: 76550_CR8
  doi: 10.1056/NEJMoa2002032
– ident: 76550_CR33
– ident: 76550_CR29
  doi: 10.1007/s42600-021-00151-6
– ident: 76550_CR24
  doi: 10.1148/radiol.2020200905
– year: 2020
  ident: 76550_CR10
  publication-title: Radiology
  doi: 10.1016/j.chest.2020.04.003
– ident: 76550_CR35
  doi: 10.1109/BIBM49941.2020.9313304
– ident: 76550_CR45
– ident: 76550_CR15
  doi: 10.1016/S2589-7500(20)30109-6
– ident: 76550_CR30
  doi: 10.1101/2020.04.14.20065722
– ident: 76550_CR21
  doi: 10.1038/nature14539
– ident: 76550_CR25
  doi: 10.1088/1361-6560/abe838
– ident: 76550_CR19
– ident: 76550_CR42
  doi: 10.1109/CVPR.2017.243
– ident: 76550_CR44
– ident: 76550_CR2
  doi: 10.1016/j.mayocp.2020.04.004
– ident: 76550_CR17
– ident: 76550_CR32
  doi: 10.3390/ijerph17186933
– ident: 76550_CR27
  doi: 10.1016/j.media.2020.101794
– volume: 71
  start-page: 470
  issue: 4
  year: 2020
  ident: 76550_CR12
  publication-title: Can. Assoc. Radiol. J.
  doi: 10.1177/0846537120924606
– ident: 76550_CR4
  doi: 10.1101/2020.02.11.20021493
– ident: 76550_CR34
– ident: 76550_CR38
– ident: 76550_CR3
  doi: 10.1148/radiol.2020200432
– ident: 76550_CR5
  doi: 10.1101/2020.04.05.20053355
– volume: 2
  start-page: e200034
  issue: 1
  year: 2020
  ident: 76550_CR6
  publication-title: Radiol. Cardiothorac. Imaging
  doi: 10.1148/ryct.2020200034
– ident: 76550_CR36
  doi: 10.1007/s13246-020-00865-4
– year: 2020
  ident: 76550_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– ident: 76550_CR23
  doi: 10.1016/j.eng.2020.04.010
– ident: 76550_CR28
  doi: 10.1016/j.patrec.2020.09.010
– ident: 76550_CR39
  doi: 10.1109/CVPR.2017.369
– ident: 76550_CR46
– ident: 76550_CR14
  doi: 10.1007/s00330-020-06918-2
SSID ssj0000529419
Score 2.7359135
Snippet The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19549
SubjectTerms 692/699/255/2514
692/700/139
Chest
Computational Biology
Coronavirus Infections - diagnostic imaging
Coronaviruses
COVID-19
Deep Learning
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted
multidisciplinary
Neural networks
Pandemics
Pneumonia, Viral - diagnostic imaging
Radiography
Radiography, Thoracic
Radiology
Science
Science (multidisciplinary)
Tomography, X-Ray Computed
Well being
Title COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images
URI https://link.springer.com/article/10.1038/s41598-020-76550-z
https://www.ncbi.nlm.nih.gov/pubmed/33177550
https://www.proquest.com/docview/2471558747
https://www.proquest.com/docview/2460085445
https://pubmed.ncbi.nlm.nih.gov/PMC7658227
Volume 10
WOSCitedRecordID wos000594820700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfYBhIvjK9B2TgFiTeI1qZpm_KCYGxiEjsqBNPxVKVNKk6C9rh2k7a_HjvtdTom9sLD9SolTRvZsX-OHRvgZWoiY0K_4MbXlkuRGJ4KIzmqk1jFka0qV4fs9FMynarZLM2GDbd2CKtcyUQnqE1T0h75vkApGkUK0e_bxW9OVaPIuzqU0NiALcqSELrQvWzcYyEvlgzS4ayMH6r9FvUVnSlDmymJEZzzy3V9dA1kXo-V_Mth6vTQ0fb_zuA-3BsQKHvXs8wDuGXrh3Cnr0l58QjODz6fHn_gU9u9YZpRfGmztIYZaxeMQtQHVsURKBWm-3OB5NiDYkEYgmC87VyEV82aivXjBSkrUWG2jM6zMFeli834Ul-w-S8Uae1j-HZ0-PXgIx-KM_ASQV7HK7SE0FbzjYnCUlf4K6qiQHgVFoWWJCao5IS2aHz7JtJKBiWqS2liLYUVaRXuwGbd1PYpsFJolQpV4VCptIlVUaTRDAtsqQ3CrdiDYEWivBwyl1MBjZ-586CHKu_JmiNZc0fW_NKDV-Mziz5vx42991Yky4c13OZX9PLgxdiMq49cKrq2zRn1iQm0Shl58KRnlPF1IUKzBIf3IFljobEDZfZeb6nnP1yGb_wsBG743tcrZrv6rH_P4tnNs9iFu4IYn2IYgz3Y7JZn9jncLs-7ebucwEYyS9xVTWDr_eE0-zJxGxR4PRHZxK0sbMmOT7LvfwAPaSeg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHQhe-GYEBhgJnsBa4jiJg4QQ2phWrSt9GFN5Ck7saJUgKU021P0ofiPXzsdUJva2Bx6qVIp7E6fH1-fGx_cCvIpVoJTvplS5UlPOIkVjpjjF6SQUYaDz3NYhOxpF47GYTuPJGvzu9sIYWWXnE62jVmVm3pFvMfSiQSCQ_X6Y_6SmapRZXe1KaDSw2NfLXxiyVe-HO_j_vmZs99Ph9h5tqwrQDNlJTXOk8BhkuEoFfiZz_KR5miIv8NNUcoNvUytBaowaXRVIwb0M_TxXoeRMszj30e41WOcIdjGA9cnwYPK1f6tj1s24F7e7c1xfbFU4Q5pdbBilRSGGA_RsdQa8QGsvqjP_WqK1M9_unf_tmd2F2y3HJh-bQXEP1nRxH240VTeXD-B0-_PRcIeOdf2OSGIUtOVCK6K0nhMjwm8HI1owyT7twUrlsYVRuxCk-fi1thq2gpQ5aex5McmQElTE7Nghtg4ZmdKFXJLZD3Ta1UP4ciWdfgSDoiz0YyAZkyJmIkdTMdeRFkEgMdD0dCYVEsrQAa-DRJK1udlNiZDvidUI-CJpYJQgjBILo-TMgTf9b-ZNZpJLW292EElaL1Ul5_hw4GV_Gv2LWTSShS5PTJvQ0HLOAwc2GmD2l_ORfEZo3oFoBbJ9A5O7fPVMMTu2OczxtpCa4nXfduA-v61_9-LJ5b14ATf3Dg9GyWg43n8Kt5gZdEax6W3CoF6c6GdwPTutZ9XieTtuCXy7atj_AfAlfl4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V8hAX3g9DgUWCE6xir9cvJIRQQ0TUKuQAVW5m7V2LSK0dYrco_Wn8OmbWdqpQ0VsPHCJH8mbsdb6d_cb77QzAq0QHWvtuxrWrDJci0jwRWnKcTsI4DExR2DpkB_vRZBLPZsl0C373e2FIVtn7ROuodZXTO_KBQC8aBDGy30HRySKmw9GHxU9OFaRopbUvp9FCZM-sfmH4Vr8fD_G_fi3E6NPX3c-8qzDAc2QqDS-QzmPA4Wod-Lkq8JMVWYYcwc8yJQnrVDdBGYwgXR2oWHo5-nypQyWFEUnho90rcDWipOVWNjhdv9-hFTTpJd0-HdePBzXOlbSfDeO1KMTAgJ9uzoXnCO55neZfi7V2Dhzd_p-f3h241TFv9rEdKndhy5T34Hpbi3N1H052vxyMh3ximndMMdLVVkujmTZmwUia3w1RtEApQO3BCuixBWlgGJJ__NpYZVvJqoK19ryE5UgUakb7eJitTsZmfKlWbH6Errx-AN8updMPYbusSvMYWC5UnIi4QFOJNJGJg0Bh-OmZXGmkmaEDXg-PNO8ytlPhkMPUKgf8OG0hlSKkUgup9NSBN-vfLNp8JRe23unhkna-q07PsOLAy_Vp9Dq0lKRKUx1Tm5DIupSBA49akK4v5yMljdC8A9EGfNcNKKP55ply_sNmNsfbQsKK133bA_3stv7diycX9-IF3ECsp_vjyd5TuClo_JGM09uB7WZ5bJ7BtfykmdfL53YAM_h-2Zj_A7c0hZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-Net%3A+a+tailored+deep+convolutional+neural+network+design+for+detection+of+COVID-19+cases+from+chest+X-ray+images&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Linda&rft.au=Lin%2C+Zhong+Qiu&rft.au=Wong%2C+Alexander&rft.date=2020-11-11&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76550-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_020_76550_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon