Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile

We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a me...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; pp. 2429 - 9
Main Authors: Gozzi, Nicolò, Tizzoni, Michele, Chinazzi, Matteo, Ferres, Leo, Vespignani, Alessandro, Perra, Nicola
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 23.04.2021
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data.
AbstractList We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data.
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data.
Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data.
ArticleNumber 2429
Author Perra, Nicola
Chinazzi, Matteo
Vespignani, Alessandro
Gozzi, Nicolò
Ferres, Leo
Tizzoni, Michele
Author_xml – sequence: 1
  givenname: Nicolò
  surname: Gozzi
  fullname: Gozzi, Nicolò
  organization: Networks and Urban Systems Centre, University of Greenwich
– sequence: 2
  givenname: Michele
  orcidid: 0000-0001-7246-2341
  surname: Tizzoni
  fullname: Tizzoni, Michele
  organization: ISI Foundation
– sequence: 3
  givenname: Matteo
  surname: Chinazzi
  fullname: Chinazzi, Matteo
  organization: Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University
– sequence: 4
  givenname: Leo
  orcidid: 0000-0002-5899-9051
  surname: Ferres
  fullname: Ferres, Leo
  organization: Data Science Institute, Universidad del Desarrollo, Telefónica R&D
– sequence: 5
  givenname: Alessandro
  surname: Vespignani
  fullname: Vespignani, Alessandro
  organization: ISI Foundation, Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University
– sequence: 6
  givenname: Nicola
  surname: Perra
  fullname: Perra, Nicola
  email: n.perra@greenwich.ac.uk
  organization: Networks and Urban Systems Centre, University of Greenwich, Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33893279$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvD4OxcktBRYqVIPfFwtJ3GyrhK7tR0k_j3eTSltD_XFHvt5X48987I68sHbqnoN-D1gqj4kBkzIGhOoCREYavGsOiGYQQ2S0KN76-PqLKUrXAZtQDH2ojqmVDWUyOakiucpu9lk50eUdxbZYbBdRmFAKXTOTMh5e7OYyWVnEwr-AM0lGoumhAXcXP7afq6hQaaLISXUhXle_CpwHn03PjszBtRbtNm5yb6qng9mSvbsdj6tfn45_7H5Vl9cft1uPl3UHWc41wOXhOGetDAYsExgy_kg-4Zh1fctJlw2jWTCgLRGtIxxo3plygQ9Vy1v6Wm1XX37YK70dSzPjH90ME4fNkIctYnZdZPVwjCpDBBO5cD6oTUMC8YEbQVVQA0uXh9Xr-ulnW3fWZ-jmR6YPjzxbqfH8FsrLDgwWgze3RrEcLPYlPXsUmenyXgblqQJB0VANXyPvn2EXoUl-vJVe0oCEKxYod7cz-gulX-lLQBZgUNVoh3uEMB630J6bSFdWkgfWkiLIlKPRJ3Lh0qXV7npaSldpanc40cb_6f9hOovr6rZFw
CitedBy_id crossref_primary_10_1007_s11116_025_10613_w
crossref_primary_10_1016_j_physrep_2025_01_006
crossref_primary_10_1177_00207640241243280
crossref_primary_10_3390_atmos15091100
crossref_primary_10_1016_j_epidem_2022_100606
crossref_primary_10_1073_pnas_2421993122
crossref_primary_10_1093_cid_ciac850
crossref_primary_10_1016_j_jebo_2025_106914
crossref_primary_10_1038_s41562_022_01429_0
crossref_primary_10_1038_s41597_022_01893_3
crossref_primary_10_3390_ijerph19138012
crossref_primary_10_1109_TCYB_2022_3198732
crossref_primary_10_3389_fpubh_2024_1354645
crossref_primary_10_1016_j_sste_2021_100458
crossref_primary_10_1038_s42005_024_01535_7
crossref_primary_10_1371_journal_pcbi_1011149
crossref_primary_10_1140_epjds_s13688_023_00395_5
crossref_primary_10_1177_21677026211068871
crossref_primary_10_1007_s11524_022_00623_9
crossref_primary_10_1371_journal_pone_0292090
crossref_primary_10_3390_ijerph19031846
crossref_primary_10_1016_j_ress_2023_109525
crossref_primary_10_1007_s43576_022_00044_3
crossref_primary_10_1038_s41598_023_32786_z
crossref_primary_10_1057_s41599_022_01437_5
crossref_primary_10_1371_journal_pone_0277913
crossref_primary_10_3390_socsci10110417
crossref_primary_10_1038_s41598_024_66885_2
crossref_primary_10_1007_s11524_022_00658_y
crossref_primary_10_1371_journal_pcbi_1009346
crossref_primary_10_3390_healthcare11162259
crossref_primary_10_1080_13575279_2021_2002810
crossref_primary_10_1038_s41467_022_30688_8
crossref_primary_10_1038_s41467_023_39098_w
crossref_primary_10_1016_j_epidem_2025_100855
crossref_primary_10_1177_19485506211039990
crossref_primary_10_3390_ijerph19095306
crossref_primary_10_1038_s41598_022_18514_z
crossref_primary_10_1073_pnas_2112607118
crossref_primary_10_1109_JIOT_2022_3161046
crossref_primary_10_1140_epjds_s13688_025_00532_2
crossref_primary_10_1007_s41109_023_00540_z
crossref_primary_10_1016_j_tra_2025_104612
crossref_primary_10_1016_j_ijedudev_2023_102805
crossref_primary_10_1186_s12879_022_07045_7
crossref_primary_10_3390_e24020216
crossref_primary_10_1038_s41562_023_01660_3
crossref_primary_10_1007_s12273_023_1043_z
crossref_primary_10_1038_s41467_024_48332_y
crossref_primary_10_1080_24694452_2021_1943301
crossref_primary_10_1371_journal_pone_0322520
crossref_primary_10_1371_journal_pntd_0010565
crossref_primary_10_3390_urbansci7010015
crossref_primary_10_1017_nws_2023_6
crossref_primary_10_1016_j_tra_2024_104089
crossref_primary_10_1080_24694452_2022_2161986
crossref_primary_10_1126_science_abg5298
crossref_primary_10_1186_s40410_024_00237_5
crossref_primary_10_1016_j_apgeog_2023_102947
crossref_primary_10_1038_s41598_024_63098_5
crossref_primary_10_5209_geop_93456
crossref_primary_10_1057_s41599_024_03376_9
crossref_primary_10_1109_TCSS_2024_3418622
crossref_primary_10_3389_fdata_2023_1124526
crossref_primary_10_1093_pnasnexus_pgae483
crossref_primary_10_1007_s42844_022_00077_7
crossref_primary_10_1016_j_ijgfs_2025_101228
crossref_primary_10_1098_rsos_241463
crossref_primary_10_1038_s41598_022_07043_4
crossref_primary_10_1038_s41598_022_18857_7
crossref_primary_10_1080_00343404_2022_2141465
crossref_primary_10_1038_s41562_024_02079_0
crossref_primary_10_1016_j_chaos_2024_115490
crossref_primary_10_1007_s12122_024_09359_8
crossref_primary_10_1088_2632_072X_ac60b1
crossref_primary_10_1109_TCSS_2022_3194639
crossref_primary_10_1073_pnas_2305285120
crossref_primary_10_1371_journal_pcbi_1010146
crossref_primary_10_1038_s41598_025_14267_7
crossref_primary_10_1080_09585192_2023_2237863
crossref_primary_10_2196_47563
crossref_primary_10_1186_s40249_022_00961_5
crossref_primary_10_1371_journal_pcbi_1012802
crossref_primary_10_1016_j_epidem_2025_100830
Cites_doi 10.1126/science.abe9728
10.1038/s41562-020-0909-7
10.1038/s41591-020-1104-0
10.1038/s41591-020-0883-7
10.1111/1475-5890.12232
10.1101/2020.09.12.20191973
10.1016/j.epidem.2019.100368
10.1126/science.abb9789
10.5281/zenodo.4607303
10.1016/j.jinf.2020.05.037
10.1007/s15010-020-01420-9
10.1016/S1473-3099(20)30243-7
10.1001/jamainternmed.2020.4130
10.1046/j.1461-0248.2002.00268.x
10.1073/pnas.2009412117
10.1038/s41562-020-0931-9
10.1101/2021.01.12.21249682
10.1073/pnas.2007658117
10.1093/aje/kwt133
10.1016/S2589-7500(20)30165-5
10.1101/2020.09.22.20198754
10.1016/j.jocs.2010.07.002
10.2307/2530415
10.1038/s41562-021-01079-8
10.1038/s41467-020-18271-5
10.1126/science.abc0035
10.1057/s41599-020-0500-x
10.26633/RPSP.2020.99
10.1093/jtm/taaa021
10.1126/science.abb5793
10.1126/science.abb6105
10.1001/jama.2020.14348
10.1038/s41586-020-2293-x
10.1016/S2468-2667(20)30225-5
10.1093/eurpub/ckq163
10.1016/S1473-3099(20)30858-6
10.1093/jtm/taaa159
10.1371/journal.pone.0016591
10.1126/sciadv.abc0764
10.1038/s41591-020-01178-5
10.1186/s12916-020-01698-4
10.1371/journal.pcbi.1005697
10.1371/journal.pcbi.1002803
10.1371/journal.pone.0240648
10.1016/S1473-3099(20)30553-3
10.1016/j.ijid.2020.01.050
10.1073/pnas.2004978117
10.1016/S0140-6736(20)30260-9
10.1002/9781118445112.stat05303
10.1126/science.aba9757
10.1140/epjds/s13688-018-0157-5
10.1038/s41562-020-01009-0
10.1101/2020.05.29.20097097
10.1186/1741-7015-7-45
10.1016/S0140-6736(20)32266-2
10.2807/1560-7917.ES.2020.25.5.2000062
10.1038/s41586-020-2923-3
10.1001/jamanetworkopen.2020.21892
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-22601-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0
PMC8065143
33893279
10_1038_s41467_021_22601_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Chile
GeographicLocations_xml – name: Chile
GrantInformation_xml – fundername: M.T. acknowledges support from the Lagrange Project of the Institute for Scientific Interchange Foundation (ISI Foundation) funded by Fondazione Cassa di Risparmio di Torino (Fondazione CRT). M.T. acknowledges support from EPIPOSE - “Epidemic intelligence to minimize COVID-19’s public health, societal and economical impact” H2020-SC1-PHE-CORONAVIRUS-2020 call.
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c540t-f57240d2b1fa1e460e55f7d9408ddb025799746a17ea6b445a8d8a45a1d58b5b3
IEDL.DBID DOA
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656463600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:08:00 EDT 2025
Tue Nov 04 01:52:36 EST 2025
Sun Nov 09 13:06:57 EST 2025
Tue Oct 07 06:59:41 EDT 2025
Mon Jul 21 05:34:52 EDT 2025
Sat Nov 29 06:29:17 EST 2025
Tue Nov 18 20:59:25 EST 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f57240d2b1fa1e460e55f7d9408ddb025799746a17ea6b445a8d8a45a1d58b5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5899-9051
0000-0001-7246-2341
OpenAccessLink https://doaj.org/article/6a478a12537f4dfba4064463b63813a0
PMID 33893279
PQID 2517112084
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8065143
proquest_miscellaneous_2518218953
proquest_journals_2517112084
pubmed_primary_33893279
crossref_primary_10_1038_s41467_021_22601_6
crossref_citationtrail_10_1038_s41467_021_22601_6
springer_journals_10_1038_s41467_021_22601_6
PublicationCentury 2000
PublicationDate 2021-04-23
PublicationDateYYYYMMDD 2021-04-23
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References AugerKAAssociation between statewide school closure and COVID-19 incidence and mortality in the USJAMA20203248591:CAS:528:DC%2BB3cXhslGmu7%2FN10.1001/jama.2020.14348
Muñoz-PriceLSRacial disparities in incidence and outcomes among patients with COVID-19JAMA Netw. Open20203e2021892e202189210.1001/jamanetworkopen.2020.21892
BalcanDSeasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobilityBMC Med.2009710.1186/1741-7015-7-45
Oliver, N. et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv.6, eabc0764 (2020).
ChinazziMThe effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreakScience20203683954001:CAS:528:DC%2BB3cXnslKrtLw%3D10.1126/science.aba97572020Sci...368..395C
Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis.20, 1247–1254 (2020).
y Piontti, A. P., Perra, N., Rossi, L., Samay, N. & Vespignani, A. Charting the next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age (Springer, 2018).
LiCRomagnaniPvon BrunnAAndersH-JSARS-CoV-2 and Europe: timing of containment measures for outbreak controlInfection2020484831:CAS:528:DC%2BB3cXntFSqsL8%3D10.1007/s15010-020-01420-9
ISTAT, Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2. https://www.istat.it/it/archivio/246156 (2020).
M. Longini Jr, I. Chain Binomial Model (American Cancer Society, 2014).
Google llc. Google COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ (2020).
KisslerSMTedijantoCGoldsteinEGradYHLipsitchMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience20203688608681:CAS:528:DC%2BB3cXhtVWnur%2FI10.1126/science.abb57932020Sci...368..860K
MinterARetkuteRApproximate Bayesian Computation for infectious disease modellingEpidemics20192910036810.1016/j.epidem.2019.100368
Havers, F. P. et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Int. Med.180, 1576–1586 (2020).
Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med.20201810.1186/s12916-020-01698-4
Human development index estimates for Chile. http://www.desarrollosocialyfamilia.gob.cl/btca/txtcompleto/mideplan/des_humano_comunas2000.pdf (2000).
GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat. Med.2020261610.1038/s41591-020-0883-7
ZhaoSPreliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreakInt. J. Infect. Dis.202092214 – 21710.1016/j.ijid.2020.01.050
BlundellRCosta DiasMJoyceRXuXCovid-19 and inequalitiesFis. Stud.20204129131910.1111/1475-5890.12232
Topriceanu, C.-C. et al. Inequality in access to health and care services during lockdown—findings from the COVID-19 survey in five UK national longitudinal studies. medRxivhttps://doi.org/10.1101/2020.09.12.20191973 (2020).
Beiró, M. et al. Shopping mall attraction and social mixing at a city scale. EPJ Data Sci.7, 28 (2018).
Kissler, S. et al. Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat. Commun.11, 4674 (2020).
Scalia TombaGEmilia Vynnycky and Richard G White. An introduction to infectious disease modellingEur. J. Public Health20102229529510.1093/eurpub/ckq163
HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat. Hum. Behav.202041303131210.1038/s41562-020-01009-0
ZhouYEffects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone dataLancet Digital Health20202e417e42410.1016/S2589-7500(20)30165-5
LiuYGayleAAWilder-SmithARocklövJThe reproductive number of COVID-19 is higher compared to SARS coronavirusJ. Travel Med.202027Taaa02110.1093/jtm/taaa021
Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance25, 2000062 (2020).
Yi, H. et al. Health equity considerations in COVID-19: geospatial network analysis of the COVID-19 outbreak in the migrant population in Singapore. J. Travel Med.28, taaa159 (2021).
Global Human Development Indicators, United Nations Development Programme. http://hdr.undp.org/en/countries (2020).
Pollán, M. et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet396, 535–544 (2020).
KeelingMJRohaniPEstimating spatial coupling in epidemiological systems: a mechanistic approachEcol. Lett.20025202910.1046/j.1461-0248.2002.00268.x
Shi, Q. et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat. Med.27, 86–93 (2021).
SunnåkerMApproximate bayesian computationPLoS Comput. Biol.20139110303271810.1371/journal.pcbi.1002803
GattoMSpread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measuresProc. Natl Acad. Sci. USA202011710484104911:CAS:528:DC%2BB3cXhtFWntb3L10.1073/pnas.2004978117
JefferiesSCovid-19 in New Zealand and the impact of the national response: a descriptive epidemiological studyLancet Public Health20205e612e62310.1016/S2468-2667(20)30225-5
Mathur, R. et al. Ethnic differences in COVID-19 infection, hospitalisation, and mortality: an OpenSAFELY analysis of 17 million adults in England. medRxivhttps://doi.org/10.1101/2020.09.22.20198754 (2020).
Wu, J., Leung, K. & Leung, G. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet395, 689–697 (2020).
ChengCBarcelóJHartnettASKubinecRMesserschmidtLCOVID-19 government response event dataset (CoronaNet v.1.0)Nat. Hum. Behav.2020475676810.1038/s41562-020-0909-7
Poustchi, H. et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect. Dis.21, 473–481 (2021).
Centers for Disease Control and Prevention, COVID-19 Pandemic Planning Scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1 (2021).
RaderBCrowding and the shape of COVID-19 epidemicsNat. Med.2020261829183410.1038/s41591-020-1104-0
Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science369, eabb9789 (2020).
OECD. Income inequality (indicator). https://data.oecd.org/inequality/income-inequality.htm (2021).
GauvinLGender gaps in urban mobilityHumanit. Soc. Sci. Commun.2020711310.1057/s41599-020-0500-x
PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput. Biol.20171312110.1371/journal.pcbi.1005697
Covid-19 in Chile. https://www.gob.cl/coronavirus/cifrasoficiales/ (2020).
BajardiPHuman mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemicPLoS ONE20116e165911:CAS:528:DC%2BC3MXhvFahtLY%3D10.1371/journal.pone.00165912011PLoSO...616591B
AletaAModelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19Nat. Hum. Behav.2020496497110.1038/s41562-020-0931-9
Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature589, 82–87 (2021).
Mena, G. et al. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. medRxivhttps://doi.org/10.1101/2021.01.12.21249682 (2021).
Chilean government interventions against COVID-19. https://www.gob.cl/coronavirus/plandeaccion/ (2020).
Becker, N. A general chain binomial model for infectious diseases. Biometrics37, 251–258 (1981).
Verity, R. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis.20, 669–677 (2020).
Departamento de Estadisticas e Información de Salud. https://deis.minsal.cl/#datosabiertos (2020).
CoriAFergusonNMFraserCCauchemezSA new framework and software to estimate time-varying reproduction numbers during epidemicsAm. J. Epidemiol.20131781505151210.1093/aje/kwt133
Code for human development index calculation at the comunas level for Chile. https://zenodo.org/record/1305169#X7fExC2ZPq1 (2020).
Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature585, 410–413 (2020).
WhiteERHébert-DufresneLState-level variation of initial COVID-19 dynamics in the united statesPLoS ONE202015e02406481:CAS:528:DC%2BB3cXitFWnsbnO10.1371/journal.pone.0240648
Fraiberger, S. P. et al. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data. Preprint at https://arxiv.org/abs/2006.15195 (2020).
Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10, https://doi.org/10.1038/s41562-021-01079-8 (2021).
Canals, M. et al. Epidemic trends, public health response and health system capacity: the Chilean experience in four months of the COVID-19 pandemic. Rev. Panam Salud Publica. 44, e99 (2020).
Oxford COVID-19 Government Response Tracker. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (2020).
Gozzi, N. et al. Code for the paper “Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile”. https://doi.org/10.5281/zenodo.4607303 (2021).
Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S. & Colizza, V. Population mobility reductions during COVID-19 epidemic in France under lockdown. Lancet Digital Healthhttps://doi.org/10.1101/2020.05.29.20097097 (2020).
Klugman, J. Human Development Report 2010—20th anniversary edition. The Real Wealth of Nations: Pathways to Human Development (2010).
GoscéLPhillipsPAS
22601_CR34
D Balcan (22601_CR55) 2009; 7
PG Walker (22601_CR36) 2020; 369
22601_CR37
22601_CR38
K Prem (22601_CR58) 2017; 13
22601_CR39
M Gatto (22601_CR52) 2020; 117
22601_CR70
22601_CR71
22601_CR72
22601_CR73
22601_CR30
22601_CR31
22601_CR33
S Jefferies (22601_CR49) 2020; 5
KA Auger (22601_CR50) 2020; 324
22601_CR45
L Gauvin (22601_CR53) 2020; 7
22601_CR46
Y Liu (22601_CR26) 2020; 27
G Giordano (22601_CR27) 2020; 26
M Chinazzi (22601_CR14) 2020; 368
22601_CR41
22601_CR44
LS Muñoz-Price (22601_CR43) 2020; 3
G Bonaccorsi (22601_CR20) 2020; 117
22601_CR56
22601_CR13
P Bajardi (22601_CR16) 2011; 6
22601_CR57
22601_CR15
22601_CR59
G Scalia Tomba (22601_CR63) 2010; 22
22601_CR17
22601_CR18
L Goscé (22601_CR7) 2020; 81
S Zhao (22601_CR25) 2020; 92
D Balcan (22601_CR54) 2010; 1
C Li (22601_CR47) 2020; 48
22601_CR11
A Cori (22601_CR40) 2013; 178
M Sunnåker (22601_CR23) 2013; 9
R Blundell (22601_CR42) 2020; 41
L Di Domenico (22601_CR51) 2020; 18
A Minter (22601_CR24) 2019; 29
ER White (22601_CR8) 2020; 15
B Rader (22601_CR35) 2020; 26
Y Zhou (22601_CR12) 2020; 2
MJ Keeling (22601_CR61) 2002; 5
22601_CR67
22601_CR68
22601_CR69
22601_CR28
A Aleta (22601_CR4) 2020; 4
JA Weill (22601_CR19) 2020; 117
22601_CR29
C Cheng (22601_CR10) 2020; 4
22601_CR60
22601_CR1
22601_CR2
22601_CR62
22601_CR3
N Haug (22601_CR9) 2020; 4
22601_CR64
22601_CR5
22601_CR21
22601_CR65
22601_CR6
22601_CR22
LF Buss (22601_CR32) 2021; 371
H Tian (22601_CR48) 2020; 368
SM Kissler (22601_CR66) 2020; 368
References_xml – reference: BajardiPHuman mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemicPLoS ONE20116e165911:CAS:528:DC%2BC3MXhvFahtLY%3D10.1371/journal.pone.00165912011PLoSO...616591B
– reference: Human development index estimates for Chile. http://www.desarrollosocialyfamilia.gob.cl/btca/txtcompleto/mideplan/des_humano_comunas2000.pdf (2000).
– reference: Shi, Q. et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat. Med.27, 86–93 (2021).
– reference: ChinazziMThe effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreakScience20203683954001:CAS:528:DC%2BB3cXnslKrtLw%3D10.1126/science.aba97572020Sci...368..395C
– reference: OECD. Income inequality (indicator). https://data.oecd.org/inequality/income-inequality.htm (2021).
– reference: BonaccorsiGEconomic and social consequences of human mobility restrictions under COVID-19Proc. Natl Acad Sci. USA202011715530155351:CAS:528:DC%2BB3cXhsV2kurnO10.1073/pnas.20076581172020PNAS..11715530B
– reference: Havers, F. P. et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Int. Med.180, 1576–1586 (2020).
– reference: RaderBCrowding and the shape of COVID-19 epidemicsNat. Med.2020261829183410.1038/s41591-020-1104-0
– reference: BalcanDSeasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobilityBMC Med.2009710.1186/1741-7015-7-45
– reference: Chilean government interventions against COVID-19. https://www.gob.cl/coronavirus/plandeaccion/ (2020).
– reference: AugerKAAssociation between statewide school closure and COVID-19 incidence and mortality in the USJAMA20203248591:CAS:528:DC%2BB3cXhslGmu7%2FN10.1001/jama.2020.14348
– reference: ZhaoSPreliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreakInt. J. Infect. Dis.202092214 – 21710.1016/j.ijid.2020.01.050
– reference: HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat. Hum. Behav.202041303131210.1038/s41562-020-01009-0
– reference: KisslerSMTedijantoCGoldsteinEGradYHLipsitchMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience20203688608681:CAS:528:DC%2BB3cXhtVWnur%2FI10.1126/science.abb57932020Sci...368..860K
– reference: Mena, G. et al. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. medRxivhttps://doi.org/10.1101/2021.01.12.21249682 (2021).
– reference: Google llc. Google COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ (2020).
– reference: Global Human Development Indicators, United Nations Development Programme. http://hdr.undp.org/en/countries (2020).
– reference: WeillJAStiglerMDeschenesOSpringbornMRSocial distancing responses to COVID-19 emergency declarations strongly differentiated by incomeProc. Natl Acad. Sci. USA202011719658196601:CAS:528:DC%2BB3cXhs1ehtLrL10.1073/pnas.2009412117
– reference: Beiró, M. et al. Shopping mall attraction and social mixing at a city scale. EPJ Data Sci.7, 28 (2018).
– reference: WalkerPGThe impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countriesScience20203694134221:CAS:528:DC%2BB3cXhsVCmt7rF3253280272925042020Sci...369..413W10.1126/science.abc0035
– reference: BlundellRCosta DiasMJoyceRXuXCovid-19 and inequalitiesFis. Stud.20204129131910.1111/1475-5890.12232
– reference: Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S. & Colizza, V. Population mobility reductions during COVID-19 epidemic in France under lockdown. Lancet Digital Healthhttps://doi.org/10.1101/2020.05.29.20097097 (2020).
– reference: LiuYGayleAAWilder-SmithARocklövJThe reproductive number of COVID-19 is higher compared to SARS coronavirusJ. Travel Med.202027Taaa02110.1093/jtm/taaa021
– reference: Becker, N. A general chain binomial model for infectious diseases. Biometrics37, 251–258 (1981).
– reference: Klugman, J. Human Development Report 2010—20th anniversary edition. The Real Wealth of Nations: Pathways to Human Development (2010).
– reference: GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat. Med.2020261610.1038/s41591-020-0883-7
– reference: Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10, https://doi.org/10.1038/s41562-021-01079-8 (2021).
– reference: Kissler, S. et al. Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat. Commun.11, 4674 (2020).
– reference: ZhouYEffects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone dataLancet Digital Health20202e417e42410.1016/S2589-7500(20)30165-5
– reference: JefferiesSCovid-19 in New Zealand and the impact of the national response: a descriptive epidemiological studyLancet Public Health20205e612e62310.1016/S2468-2667(20)30225-5
– reference: Centers for Disease Control and Prevention, COVID-19 Pandemic Planning Scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1 (2021).
– reference: Gozzi, N. et al. Code for the paper “Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile”. https://doi.org/10.5281/zenodo.4607303 (2021).
– reference: PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput. Biol.20171312110.1371/journal.pcbi.1005697
– reference: Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science369, eabb9789 (2020).
– reference: Mathur, R. et al. Ethnic differences in COVID-19 infection, hospitalisation, and mortality: an OpenSAFELY analysis of 17 million adults in England. medRxivhttps://doi.org/10.1101/2020.09.22.20198754 (2020).
– reference: KeelingMJRohaniPEstimating spatial coupling in epidemiological systems: a mechanistic approachEcol. Lett.20025202910.1046/j.1461-0248.2002.00268.x
– reference: WhiteERHébert-DufresneLState-level variation of initial COVID-19 dynamics in the united statesPLoS ONE202015e02406481:CAS:528:DC%2BB3cXitFWnsbnO10.1371/journal.pone.0240648
– reference: Chile 2017 census. https://www.censo2017.cl (2020).
– reference: CoriAFergusonNMFraserCCauchemezSA new framework and software to estimate time-varying reproduction numbers during epidemicsAm. J. Epidemiol.20131781505151210.1093/aje/kwt133
– reference: Covid-19 in Chile. https://www.gob.cl/coronavirus/cifrasoficiales/ (2020).
– reference: Departamento de Estadisticas e Información de Salud. https://deis.minsal.cl/#datosabiertos (2020).
– reference: Yi, H. et al. Health equity considerations in COVID-19: geospatial network analysis of the COVID-19 outbreak in the migrant population in Singapore. J. Travel Med.28, taaa159 (2021).
– reference: GoscéLPhillipsPASpinolaPGuptaDRKAbubakarPIModelling SARS-CoV2 spread in London: approaches to lift the lockdownJ. Inf.202081260 – 26510.1016/j.jinf.2020.05.037
– reference: Fraiberger, S. P. et al. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data. Preprint at https://arxiv.org/abs/2006.15195 (2020).
– reference: M. Longini Jr, I. Chain Binomial Model (American Cancer Society, 2014).
– reference: Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature589, 82–87 (2021).
– reference: Topriceanu, C.-C. et al. Inequality in access to health and care services during lockdown—findings from the COVID-19 survey in five UK national longitudinal studies. medRxivhttps://doi.org/10.1101/2020.09.12.20191973 (2020).
– reference: Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature585, 410–413 (2020).
– reference: Poustchi, H. et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect. Dis.21, 473–481 (2021).
– reference: AletaAModelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19Nat. Hum. Behav.2020496497110.1038/s41562-020-0931-9
– reference: GattoMSpread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measuresProc. Natl Acad. Sci. USA202011710484104911:CAS:528:DC%2BB3cXhtFWntb3L10.1073/pnas.2004978117
– reference: BussLFThree-quarters attack rate of SARS-CoV-2 in the Brazilian amazon during a largely unmitigated epidemicScience20213712882921:CAS:528:DC%2BB3MXhsVahsbs%3D10.1126/science.abe9728
– reference: Wu, J., Leung, K. & Leung, G. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet395, 689–697 (2020).
– reference: Scalia TombaGEmilia Vynnycky and Richard G White. An introduction to infectious disease modellingEur. J. Public Health20102229529510.1093/eurpub/ckq163
– reference: Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance25, 2000062 (2020).
– reference: Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis.20, 1247–1254 (2020).
– reference: Pollán, M. et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet396, 535–544 (2020).
– reference: Verity, R. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis.20, 669–677 (2020).
– reference: MinterARetkuteRApproximate Bayesian Computation for infectious disease modellingEpidemics20192910036810.1016/j.epidem.2019.100368
– reference: TianHAn investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in ChinaScience20203686386421:CAS:528:DC%2BB3cXovFCrur4%3D10.1126/science.abb61052020Sci...368..638T
– reference: Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med.20201810.1186/s12916-020-01698-4
– reference: GauvinLGender gaps in urban mobilityHumanit. Soc. Sci. Commun.2020711310.1057/s41599-020-0500-x
– reference: SunnåkerMApproximate bayesian computationPLoS Comput. Biol.20139110303271810.1371/journal.pcbi.1002803
– reference: LiCRomagnaniPvon BrunnAAndersH-JSARS-CoV-2 and Europe: timing of containment measures for outbreak controlInfection2020484831:CAS:528:DC%2BB3cXntFSqsL8%3D10.1007/s15010-020-01420-9
– reference: BalcanDModeling the spatial spread of infectious diseases: The global epidemic and mobility computational modelJ. Comput. Sci.2010113214510.1016/j.jocs.2010.07.002
– reference: ISTAT, Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2. https://www.istat.it/it/archivio/246156 (2020).
– reference: Muñoz-PriceLSRacial disparities in incidence and outcomes among patients with COVID-19JAMA Netw. Open20203e2021892e202189210.1001/jamanetworkopen.2020.21892
– reference: Canals, M. et al. Epidemic trends, public health response and health system capacity: the Chilean experience in four months of the COVID-19 pandemic. Rev. Panam Salud Publica. 44, e99 (2020).
– reference: Code for human development index calculation at the comunas level for Chile. https://zenodo.org/record/1305169#X7fExC2ZPq1 (2020).
– reference: Oliver, N. et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv.6, eabc0764 (2020).
– reference: y Piontti, A. P., Perra, N., Rossi, L., Samay, N. & Vespignani, A. Charting the next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age (Springer, 2018).
– reference: ChengCBarcelóJHartnettASKubinecRMesserschmidtLCOVID-19 government response event dataset (CoronaNet v.1.0)Nat. Hum. Behav.2020475676810.1038/s41562-020-0909-7
– reference: Oxford COVID-19 Government Response Tracker. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (2020).
– ident: 22601_CR68
– ident: 22601_CR70
– volume: 371
  start-page: 288
  year: 2021
  ident: 22601_CR32
  publication-title: Science
  doi: 10.1126/science.abe9728
– volume: 4
  start-page: 756
  year: 2020
  ident: 22601_CR10
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-0909-7
– volume: 26
  start-page: 1829
  year: 2020
  ident: 22601_CR35
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1104-0
– volume: 26
  start-page: 1
  year: 2020
  ident: 22601_CR27
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0883-7
– volume: 41
  start-page: 291
  year: 2020
  ident: 22601_CR42
  publication-title: Fis. Stud.
  doi: 10.1111/1475-5890.12232
– ident: 22601_CR46
  doi: 10.1101/2020.09.12.20191973
– volume: 29
  start-page: 100368
  year: 2019
  ident: 22601_CR24
  publication-title: Epidemics
  doi: 10.1016/j.epidem.2019.100368
– ident: 22601_CR41
  doi: 10.1126/science.abb9789
– ident: 22601_CR73
  doi: 10.5281/zenodo.4607303
– volume: 81
  start-page: 260 – 265
  year: 2020
  ident: 22601_CR7
  publication-title: J. Inf.
  doi: 10.1016/j.jinf.2020.05.037
– ident: 22601_CR39
– volume: 48
  start-page: 483
  year: 2020
  ident: 22601_CR47
  publication-title: Infection
  doi: 10.1007/s15010-020-01420-9
– ident: 22601_CR34
  doi: 10.1016/S1473-3099(20)30243-7
– ident: 22601_CR29
  doi: 10.1001/jamainternmed.2020.4130
– ident: 22601_CR31
– volume: 5
  start-page: 20
  year: 2002
  ident: 22601_CR61
  publication-title: Ecol. Lett.
  doi: 10.1046/j.1461-0248.2002.00268.x
– volume: 117
  start-page: 19658
  year: 2020
  ident: 22601_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2009412117
– ident: 22601_CR67
– volume: 4
  start-page: 964
  year: 2020
  ident: 22601_CR4
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-0931-9
– ident: 22601_CR28
  doi: 10.1101/2021.01.12.21249682
– volume: 117
  start-page: 15530
  year: 2020
  ident: 22601_CR20
  publication-title: Proc. Natl Acad Sci. USA
  doi: 10.1073/pnas.2007658117
– volume: 178
  start-page: 1505
  year: 2013
  ident: 22601_CR40
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwt133
– volume: 2
  start-page: e417
  year: 2020
  ident: 22601_CR12
  publication-title: Lancet Digital Health
  doi: 10.1016/S2589-7500(20)30165-5
– ident: 22601_CR45
  doi: 10.1101/2020.09.22.20198754
– volume: 1
  start-page: 132
  year: 2010
  ident: 22601_CR54
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.07.002
– ident: 22601_CR21
– ident: 22601_CR57
– ident: 22601_CR64
  doi: 10.2307/2530415
– ident: 22601_CR38
  doi: 10.1038/s41562-021-01079-8
– ident: 22601_CR3
– ident: 22601_CR6
  doi: 10.1038/s41467-020-18271-5
– volume: 369
  start-page: 413
  year: 2020
  ident: 22601_CR36
  publication-title: Science
  doi: 10.1126/science.abc0035
– volume: 7
  start-page: 1
  year: 2020
  ident: 22601_CR53
  publication-title: Humanit. Soc. Sci. Commun.
  doi: 10.1057/s41599-020-0500-x
– ident: 22601_CR2
  doi: 10.26633/RPSP.2020.99
– volume: 27
  start-page: Taaa021
  year: 2020
  ident: 22601_CR26
  publication-title: J. Travel Med.
  doi: 10.1093/jtm/taaa021
– volume: 368
  start-page: 860
  year: 2020
  ident: 22601_CR66
  publication-title: Science
  doi: 10.1126/science.abb5793
– ident: 22601_CR18
– volume: 368
  start-page: 638
  year: 2020
  ident: 22601_CR48
  publication-title: Science
  doi: 10.1126/science.abb6105
– volume: 324
  start-page: 859
  year: 2020
  ident: 22601_CR50
  publication-title: JAMA
  doi: 10.1001/jama.2020.14348
– ident: 22601_CR59
  doi: 10.1038/s41586-020-2293-x
– volume: 5
  start-page: e612
  year: 2020
  ident: 22601_CR49
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30225-5
– volume: 22
  start-page: 295
  year: 2010
  ident: 22601_CR63
  publication-title: Eur. J. Public Health
  doi: 10.1093/eurpub/ckq163
– ident: 22601_CR33
  doi: 10.1016/S1473-3099(20)30858-6
– ident: 22601_CR44
  doi: 10.1093/jtm/taaa159
– volume: 6
  start-page: e16591
  year: 2011
  ident: 22601_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016591
– ident: 22601_CR56
– ident: 22601_CR11
  doi: 10.1126/sciadv.abc0764
– ident: 22601_CR5
  doi: 10.1038/s41591-020-01178-5
– volume: 18
  year: 2020
  ident: 22601_CR51
  publication-title: BMC Med.
  doi: 10.1186/s12916-020-01698-4
– ident: 22601_CR37
– volume: 13
  start-page: 1
  year: 2017
  ident: 22601_CR58
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005697
– volume: 9
  start-page: 1
  year: 2013
  ident: 22601_CR23
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002803
– volume: 15
  start-page: e0240648
  year: 2020
  ident: 22601_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0240648
– ident: 22601_CR13
  doi: 10.1016/S1473-3099(20)30553-3
– ident: 22601_CR69
– volume: 92
  start-page: 214 – 217
  year: 2020
  ident: 22601_CR25
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.01.050
– volume: 117
  start-page: 10484
  year: 2020
  ident: 22601_CR52
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2004978117
– ident: 22601_CR60
  doi: 10.1016/S0140-6736(20)30260-9
– ident: 22601_CR62
  doi: 10.1002/9781118445112.stat05303
– volume: 368
  start-page: 395
  year: 2020
  ident: 22601_CR14
  publication-title: Science
  doi: 10.1126/science.aba9757
– ident: 22601_CR71
  doi: 10.1140/epjds/s13688-018-0157-5
– volume: 4
  start-page: 1303
  year: 2020
  ident: 22601_CR9
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-020-01009-0
– ident: 22601_CR1
– ident: 22601_CR15
  doi: 10.1101/2020.05.29.20097097
– volume: 7
  year: 2009
  ident: 22601_CR55
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-7-45
– ident: 22601_CR30
  doi: 10.1016/S0140-6736(20)32266-2
– ident: 22601_CR65
  doi: 10.2807/1560-7917.ES.2020.25.5.2000062
– ident: 22601_CR22
  doi: 10.1038/s41586-020-2923-3
– volume: 3
  start-page: e2021892
  year: 2020
  ident: 22601_CR43
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.21892
– ident: 22601_CR72
– ident: 22601_CR17
SSID ssj0000391844
Score 2.643397
Snippet We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population...
Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2429
SubjectTerms 639/766/530/2801
692/308/174
692/699/255/2514
Algorithms
Cell phones
Cellular telephones
Chile - epidemiology
Communicable Disease Control - methods
Communicable Disease Control - statistics & numerical data
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - prevention & control
COVID-19 - virology
Disease control
Disease Transmission, Infectious - prevention & control
Disease Transmission, Infectious - statistics & numerical data
Economic impact
Epidemic models
Epidemics
Heterogeneity
Humanities and Social Sciences
Humans
Incidence
Mobility
Models, Theoretical
multidisciplinary
Pandemics
SARS-CoV-2 - isolation & purification
SARS-CoV-2 - physiology
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
Socioeconomic Factors
Time Factors
Viral diseases
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hJ7MT2CUFpBRIqSEC1N8uOnSUSJGV3i8S_Z8bObrU8euEUbTKR7P1mJp9f3wA87XgttawEFXcRueBNkbsq6JyLwEWDo20fT70fv5NHR2o20x-mCbfltK1ynRNjovZjS3PkeySthdygUOLFyfecqkbR6upUQuMiXKKy2eTnciY3cyykfq6EmM7KFFztLUXMDLQvoSIxrbzZ-h5F2f6_cc0_t0z-tm4aP0eH1_-3Izfg2kRE2cvkOTfhQhhuwZVUmvLnbVgcYOwTmx3mDDkiS_s-2NixNMvOkJ2mA5k41GbjEI2-9UmxA3-i4f7747ev81IzG7vO2nQWJb7QD-wjYtrb-ch8YCSwHO7A58ODT_tv8qk-Q94iz1vlXY0gF75yZWfLIJoi1HUnvRaF8t4hmZIaRyuNLWWwjROitsori5fS18rVjt-FnWEcwn1gwVaNd6Jpg9ZCaecwTZQOMSXtnS6IDMo1SqadxMuphsZXExfRuTIJWYPImoisaTJ4tnnnJEl3nGv9isDfWJLsdrwxLuZmimLTWCGVRU7IZSd85yzSIRxPc4dZrOS2yGB3jbmZcsHSnAGewZPNY4xiWpqxQxhPo41CsqVrnsG95GmblnDilJXUGcgtH9xq6vaTof8SlcJp1RwJcQbP19561qx__xUPzu_FQ7haUQBhbFd8F3ZWi9PwCC63P1b9cvE4RuAvphI05w
  priority: 102
  providerName: ProQuest
Title Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile
URI https://link.springer.com/article/10.1038/s41467-021-22601-6
https://www.ncbi.nlm.nih.gov/pubmed/33893279
https://www.proquest.com/docview/2517112084
https://www.proquest.com/docview/2518218953
https://pubmed.ncbi.nlm.nih.gov/PMC8065143
https://doaj.org/article/6a478a12537f4dfba4064463b63813a0
Volume 12
WOSCitedRecordID wos000656463600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BAhIXxHMJLJWRuEG0SezE9pFdumIlKBGPVeFi2bGzRIIEtV0k_j1jOy1bnhcuqVpPpKlnJv4mHn8D8KilJZe8YL65C0sZrbLUFE6mlDnKKsy2bTj1fvKCz2ZiPpf1uVZfviYs0gPHiduvNONC4zJMectsazSuQJjCUIOOk1MdsvWMy3PJVHgGU4mpCxtPyWRU7C9ZeCb4ioTC02il1dZKFAj7f4cyfy2W_GnHNCxER9fh2oggydOo-Q244PqbcCX2lPx2CxZTDFoPQ_tTguCOxIINMrQkvh4nCCvjSUrMkcnQB6HPXaTawK8oePjq5PhZmkuig-akiYdIwg1dT96gMTp9OhDriGdGdrfh3dH07eHzdGyskDYI0FZpW6J1MluYvNW5Y1XmyrLlVrJMWGsQBXGJaUalc-50ZRgrtbBC40duS2FKQ-_ATj_07i4Qp4vKGlY1TkompDEY37nBrMWT5rSOJZCvJ1k1I-u4b37xSYXdbypUNIxCw6hgGFUl8Hhzz5fIufFX6QNvu42k58sOP6AXqdGL1L-8KIG9teXVGMRL5dncEI5mAv_Fw80whp_fU9G9G86CjECUJEuawG50lI0m1IPBgssE-JYLbam6PdJ3HwPFt9_uRiSbwJO1s_1Q689Tce9_TMV9uFr4KMHQLege7KwWZ-4BXG6-rrrlYgIX-ZyHq5jApYPprH49CaE38VWzNV7r8gOO1Mcv6_ffARDTLP0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE42axE5iHxCCPtRVt8tKlKqcjJ04SyRIyu4W1D_Fb2TsPKrl0VsPnFa7mawc55vJ53jmG4DnBY1TkUbMNndhPqNJ4OvICJ8yQ1mCq-3cVb0fjtLxmB8dickK_OxqYWxaZRcTXaDO68y-I9-w0lrIDQLOXh9_823XKLu72rXQaGCxZ05_4JJt_mq4hff3RRTtbB9s7vptVwE_Q3ay8IsYhxbkkQ4LFRqWBCaOizQXLOB5rpECpAI5dqLC1KhEMxYrnnOFH2Eecx1riv97CVYZgj0YwOpkuD_52L_VsXrrnLG2OiegfGPOXCyymRCRle_yk6UnoGsU8Dd2-2eS5m87te4BuHPjf5u6m3C9pdrkTeMbt2DFVLfhStN88_QOzLYxulm-Xk0JsmDSZLaQuiDNPgJB_t2UnJZmTurKGX0tG00S_IqGm-8Oh1t-KIhyU02yptrGnVBW5D2itlTTmuSGWAlpcxc-XMgF34NBVVfmARCjoiTXLMmMEIwLrTEQhhqXd1ZdqDDMg7BDhcxaeXbbJeSLdGkClMsGSRKRJB2SZOLBy_6c40ac5FzrtxZsvaUVFnc_1LOpbOOUTBRLuULWS9OC5YVWSPgYS6jGOB1SFXiw1mFMttFuLs8A5sGz_jDGKbv5pCpTnzgbjnRSxNSD-w2y-5FQy5qjVHiQLmF-aajLR6rys9NCt3kBSPk9WO-842xY_56Kh-dfxVO4unuwP5Kj4XjvEVyLrPNiJIvoGgwWsxPzGC5n3xflfPak9X8Cny7ab34BC9mSfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUy8cL8EBhgJniBqEjuJ_YAQW1tRbSoVl2lvwU6cLhIko-1A-2v8Oo7tpFO57G0PPFVtTirH-c6Xz_G5ADwraZyKNGKmuQvzGU0CX0Va-JRpyhJcbRc26_1gP51M-OGhmG7Azy4XxoRVdpxoibpocvOOvG9Ka6E2CDjrl21YxHQwen38zTcdpMxOa9dOw0FkT5_-wOXb4tV4gPf6eRSNhh933_pthwE_R6Wy9MsYhxkUkQpLGWqWBDqOy7QQLOBFoVAOpAL1diLDVMtEMRZLXnCJH2ERcxUriv97CTZTioueHmzuDCfT96s3PKb2OmeszdQJKO8vmOUlExURmVJefrL2NLRNA_6mdP8M2Pxt19Y-DEfX_-dpvAHXWglO3jifuQkbur4FV1xTztPbMB8i6xkdX88IqmPiIl5IUxK3v0BQl7tU1EovSFNbo6-Vq1WCX9Fw993BeOCHgkg77SR3WTj2hKomHxDNlZw1pNDElJbWd-DThVzwXejVTa3vA9EySgrFklwLwbhQCgkyVLjsM1WHSs08CDuEZHlbtt10D_mS2fAByjOHqgxRlVlUZYkHL1bnHLuiJeda7xjgrSxNwXH7QzOfZS1_ZYlkKZeohmlasqJUEoUgYwlVyN8hlYEH2x3espYFF9kZ2Dx4ujqM_GU2pWStmxNrw1Fmiph6cM-hfDUSatR0lAoP0jX8rw11_UhdHdka6SZeAJcCHrzsPOVsWP-eigfnX8UT2EJnyfbHk72HcDUyfowEF9Ft6C3nJ_oRXM6_L6vF_HFLBQQ-X7Tb_AK7pZsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+effect+of+social+inequalities+on+the+mitigation+of+COVID-19+across+communities+in+Santiago+de+Chile&rft.jtitle=Nature+communications&rft.au=Nicol%C3%B2+Gozzi&rft.au=Michele+Tizzoni&rft.au=Matteo+Chinazzi&rft.au=Leo+Ferres&rft.date=2021-04-23&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-021-22601-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon