Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile
We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a me...
Saved in:
| Published in: | Nature communications Vol. 12; no. 1; pp. 2429 - 9 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
23.04.2021
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.
Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data. |
|---|---|
| AbstractList | We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic.We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95-112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals' mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data. We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population in the area, characterizing the effects of non-pharmaceutical interventions (NPIs) on the epidemic dynamics. We integrate these data into a mechanistic epidemic model calibrated on surveillance data. As of August 1, 2020, we estimate a detection rate of 102 cases per 1000 infections (90% CI: [95–112 per 1000]). We show that the introduction of a full lockdown on May 15, 2020, while causing a modest additional decrease in mobility and contacts with respect to previous NPIs, was decisive in bringing the epidemic under control, highlighting the importance of a timely governmental response to COVID-19 outbreaks. We find that the impact of NPIs on individuals’ mobility correlates with the Human Development Index of comunas in the city. Indeed, more developed and wealthier areas became more isolated after government interventions and experienced a significantly lower burden of the pandemic. The heterogeneity of COVID-19 impact raises important issues in the implementation of NPIs and highlights the challenges that communities affected by systemic health and social inequalities face adapting their behaviors during an epidemic. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data. Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic effects. Here, the authors study the spatial and temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data. |
| ArticleNumber | 2429 |
| Author | Perra, Nicola Chinazzi, Matteo Vespignani, Alessandro Gozzi, Nicolò Ferres, Leo Tizzoni, Michele |
| Author_xml | – sequence: 1 givenname: Nicolò surname: Gozzi fullname: Gozzi, Nicolò organization: Networks and Urban Systems Centre, University of Greenwich – sequence: 2 givenname: Michele orcidid: 0000-0001-7246-2341 surname: Tizzoni fullname: Tizzoni, Michele organization: ISI Foundation – sequence: 3 givenname: Matteo surname: Chinazzi fullname: Chinazzi, Matteo organization: Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University – sequence: 4 givenname: Leo orcidid: 0000-0002-5899-9051 surname: Ferres fullname: Ferres, Leo organization: Data Science Institute, Universidad del Desarrollo, Telefónica R&D – sequence: 5 givenname: Alessandro surname: Vespignani fullname: Vespignani, Alessandro organization: ISI Foundation, Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University – sequence: 6 givenname: Nicola surname: Perra fullname: Perra, Nicola email: n.perra@greenwich.ac.uk organization: Networks and Urban Systems Centre, University of Greenwich, Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33893279$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvD4OxcktBRYqVIPfFwtJ3GyrhK7tR0k_j3eTSltD_XFHvt5X48987I68sHbqnoN-D1gqj4kBkzIGhOoCREYavGsOiGYQQ2S0KN76-PqLKUrXAZtQDH2ojqmVDWUyOakiucpu9lk50eUdxbZYbBdRmFAKXTOTMh5e7OYyWVnEwr-AM0lGoumhAXcXP7afq6hQaaLISXUhXle_CpwHn03PjszBtRbtNm5yb6qng9mSvbsdj6tfn45_7H5Vl9cft1uPl3UHWc41wOXhOGetDAYsExgy_kg-4Zh1fctJlw2jWTCgLRGtIxxo3plygQ9Vy1v6Wm1XX37YK70dSzPjH90ME4fNkIctYnZdZPVwjCpDBBO5cD6oTUMC8YEbQVVQA0uXh9Xr-ulnW3fWZ-jmR6YPjzxbqfH8FsrLDgwWgze3RrEcLPYlPXsUmenyXgblqQJB0VANXyPvn2EXoUl-vJVe0oCEKxYod7cz-gulX-lLQBZgUNVoh3uEMB630J6bSFdWkgfWkiLIlKPRJ3Lh0qXV7npaSldpanc40cb_6f9hOovr6rZFw |
| CitedBy_id | crossref_primary_10_1007_s11116_025_10613_w crossref_primary_10_1016_j_physrep_2025_01_006 crossref_primary_10_1177_00207640241243280 crossref_primary_10_3390_atmos15091100 crossref_primary_10_1016_j_epidem_2022_100606 crossref_primary_10_1073_pnas_2421993122 crossref_primary_10_1093_cid_ciac850 crossref_primary_10_1016_j_jebo_2025_106914 crossref_primary_10_1038_s41562_022_01429_0 crossref_primary_10_1038_s41597_022_01893_3 crossref_primary_10_3390_ijerph19138012 crossref_primary_10_1109_TCYB_2022_3198732 crossref_primary_10_3389_fpubh_2024_1354645 crossref_primary_10_1016_j_sste_2021_100458 crossref_primary_10_1038_s42005_024_01535_7 crossref_primary_10_1371_journal_pcbi_1011149 crossref_primary_10_1140_epjds_s13688_023_00395_5 crossref_primary_10_1177_21677026211068871 crossref_primary_10_1007_s11524_022_00623_9 crossref_primary_10_1371_journal_pone_0292090 crossref_primary_10_3390_ijerph19031846 crossref_primary_10_1016_j_ress_2023_109525 crossref_primary_10_1007_s43576_022_00044_3 crossref_primary_10_1038_s41598_023_32786_z crossref_primary_10_1057_s41599_022_01437_5 crossref_primary_10_1371_journal_pone_0277913 crossref_primary_10_3390_socsci10110417 crossref_primary_10_1038_s41598_024_66885_2 crossref_primary_10_1007_s11524_022_00658_y crossref_primary_10_1371_journal_pcbi_1009346 crossref_primary_10_3390_healthcare11162259 crossref_primary_10_1080_13575279_2021_2002810 crossref_primary_10_1038_s41467_022_30688_8 crossref_primary_10_1038_s41467_023_39098_w crossref_primary_10_1016_j_epidem_2025_100855 crossref_primary_10_1177_19485506211039990 crossref_primary_10_3390_ijerph19095306 crossref_primary_10_1038_s41598_022_18514_z crossref_primary_10_1073_pnas_2112607118 crossref_primary_10_1109_JIOT_2022_3161046 crossref_primary_10_1140_epjds_s13688_025_00532_2 crossref_primary_10_1007_s41109_023_00540_z crossref_primary_10_1016_j_tra_2025_104612 crossref_primary_10_1016_j_ijedudev_2023_102805 crossref_primary_10_1186_s12879_022_07045_7 crossref_primary_10_3390_e24020216 crossref_primary_10_1038_s41562_023_01660_3 crossref_primary_10_1007_s12273_023_1043_z crossref_primary_10_1038_s41467_024_48332_y crossref_primary_10_1080_24694452_2021_1943301 crossref_primary_10_1371_journal_pone_0322520 crossref_primary_10_1371_journal_pntd_0010565 crossref_primary_10_3390_urbansci7010015 crossref_primary_10_1017_nws_2023_6 crossref_primary_10_1016_j_tra_2024_104089 crossref_primary_10_1080_24694452_2022_2161986 crossref_primary_10_1126_science_abg5298 crossref_primary_10_1186_s40410_024_00237_5 crossref_primary_10_1016_j_apgeog_2023_102947 crossref_primary_10_1038_s41598_024_63098_5 crossref_primary_10_5209_geop_93456 crossref_primary_10_1057_s41599_024_03376_9 crossref_primary_10_1109_TCSS_2024_3418622 crossref_primary_10_3389_fdata_2023_1124526 crossref_primary_10_1093_pnasnexus_pgae483 crossref_primary_10_1007_s42844_022_00077_7 crossref_primary_10_1016_j_ijgfs_2025_101228 crossref_primary_10_1098_rsos_241463 crossref_primary_10_1038_s41598_022_07043_4 crossref_primary_10_1038_s41598_022_18857_7 crossref_primary_10_1080_00343404_2022_2141465 crossref_primary_10_1038_s41562_024_02079_0 crossref_primary_10_1016_j_chaos_2024_115490 crossref_primary_10_1007_s12122_024_09359_8 crossref_primary_10_1088_2632_072X_ac60b1 crossref_primary_10_1109_TCSS_2022_3194639 crossref_primary_10_1073_pnas_2305285120 crossref_primary_10_1371_journal_pcbi_1010146 crossref_primary_10_1038_s41598_025_14267_7 crossref_primary_10_1080_09585192_2023_2237863 crossref_primary_10_2196_47563 crossref_primary_10_1186_s40249_022_00961_5 crossref_primary_10_1371_journal_pcbi_1012802 crossref_primary_10_1016_j_epidem_2025_100830 |
| Cites_doi | 10.1126/science.abe9728 10.1038/s41562-020-0909-7 10.1038/s41591-020-1104-0 10.1038/s41591-020-0883-7 10.1111/1475-5890.12232 10.1101/2020.09.12.20191973 10.1016/j.epidem.2019.100368 10.1126/science.abb9789 10.5281/zenodo.4607303 10.1016/j.jinf.2020.05.037 10.1007/s15010-020-01420-9 10.1016/S1473-3099(20)30243-7 10.1001/jamainternmed.2020.4130 10.1046/j.1461-0248.2002.00268.x 10.1073/pnas.2009412117 10.1038/s41562-020-0931-9 10.1101/2021.01.12.21249682 10.1073/pnas.2007658117 10.1093/aje/kwt133 10.1016/S2589-7500(20)30165-5 10.1101/2020.09.22.20198754 10.1016/j.jocs.2010.07.002 10.2307/2530415 10.1038/s41562-021-01079-8 10.1038/s41467-020-18271-5 10.1126/science.abc0035 10.1057/s41599-020-0500-x 10.26633/RPSP.2020.99 10.1093/jtm/taaa021 10.1126/science.abb5793 10.1126/science.abb6105 10.1001/jama.2020.14348 10.1038/s41586-020-2293-x 10.1016/S2468-2667(20)30225-5 10.1093/eurpub/ckq163 10.1016/S1473-3099(20)30858-6 10.1093/jtm/taaa159 10.1371/journal.pone.0016591 10.1126/sciadv.abc0764 10.1038/s41591-020-01178-5 10.1186/s12916-020-01698-4 10.1371/journal.pcbi.1005697 10.1371/journal.pcbi.1002803 10.1371/journal.pone.0240648 10.1016/S1473-3099(20)30553-3 10.1016/j.ijid.2020.01.050 10.1073/pnas.2004978117 10.1016/S0140-6736(20)30260-9 10.1002/9781118445112.stat05303 10.1126/science.aba9757 10.1140/epjds/s13688-018-0157-5 10.1038/s41562-020-01009-0 10.1101/2020.05.29.20097097 10.1186/1741-7015-7-45 10.1016/S0140-6736(20)32266-2 10.2807/1560-7917.ES.2020.25.5.2000062 10.1038/s41586-020-2923-3 10.1001/jamanetworkopen.2020.21892 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-22601-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0 PMC8065143 33893279 10_1038_s41467_021_22601_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Chile |
| GeographicLocations_xml | – name: Chile |
| GrantInformation_xml | – fundername: M.T. acknowledges support from the Lagrange Project of the Institute for Scientific Interchange Foundation (ISI Foundation) funded by Fondazione Cassa di Risparmio di Torino (Fondazione CRT). M.T. acknowledges support from EPIPOSE - “Epidemic intelligence to minimize COVID-19’s public health, societal and economical impact” H2020-SC1-PHE-CORONAVIRUS-2020 call. – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c540t-f57240d2b1fa1e460e55f7d9408ddb025799746a17ea6b445a8d8a45a1d58b5b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000656463600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:08:00 EDT 2025 Tue Nov 04 01:52:36 EST 2025 Sun Nov 09 13:06:57 EST 2025 Tue Oct 07 06:59:41 EDT 2025 Mon Jul 21 05:34:52 EDT 2025 Sat Nov 29 06:29:17 EST 2025 Tue Nov 18 20:59:25 EST 2025 Fri Feb 21 02:38:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-f57240d2b1fa1e460e55f7d9408ddb025799746a17ea6b445a8d8a45a1d58b5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5899-9051 0000-0001-7246-2341 |
| OpenAccessLink | https://doaj.org/article/6a478a12537f4dfba4064463b63813a0 |
| PMID | 33893279 |
| PQID | 2517112084 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8065143 proquest_miscellaneous_2518218953 proquest_journals_2517112084 pubmed_primary_33893279 crossref_primary_10_1038_s41467_021_22601_6 crossref_citationtrail_10_1038_s41467_021_22601_6 springer_journals_10_1038_s41467_021_22601_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-23 |
| PublicationDateYYYYMMDD | 2021-04-23 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | AugerKAAssociation between statewide school closure and COVID-19 incidence and mortality in the USJAMA20203248591:CAS:528:DC%2BB3cXhslGmu7%2FN10.1001/jama.2020.14348 Muñoz-PriceLSRacial disparities in incidence and outcomes among patients with COVID-19JAMA Netw. Open20203e2021892e202189210.1001/jamanetworkopen.2020.21892 BalcanDSeasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobilityBMC Med.2009710.1186/1741-7015-7-45 Oliver, N. et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv.6, eabc0764 (2020). ChinazziMThe effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreakScience20203683954001:CAS:528:DC%2BB3cXnslKrtLw%3D10.1126/science.aba97572020Sci...368..395C Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis.20, 1247–1254 (2020). y Piontti, A. P., Perra, N., Rossi, L., Samay, N. & Vespignani, A. Charting the next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age (Springer, 2018). LiCRomagnaniPvon BrunnAAndersH-JSARS-CoV-2 and Europe: timing of containment measures for outbreak controlInfection2020484831:CAS:528:DC%2BB3cXntFSqsL8%3D10.1007/s15010-020-01420-9 ISTAT, Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2. https://www.istat.it/it/archivio/246156 (2020). M. Longini Jr, I. Chain Binomial Model (American Cancer Society, 2014). Google llc. Google COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ (2020). KisslerSMTedijantoCGoldsteinEGradYHLipsitchMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience20203688608681:CAS:528:DC%2BB3cXhtVWnur%2FI10.1126/science.abb57932020Sci...368..860K MinterARetkuteRApproximate Bayesian Computation for infectious disease modellingEpidemics20192910036810.1016/j.epidem.2019.100368 Havers, F. P. et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Int. Med.180, 1576–1586 (2020). Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med.20201810.1186/s12916-020-01698-4 Human development index estimates for Chile. http://www.desarrollosocialyfamilia.gob.cl/btca/txtcompleto/mideplan/des_humano_comunas2000.pdf (2000). GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat. Med.2020261610.1038/s41591-020-0883-7 ZhaoSPreliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreakInt. J. Infect. Dis.202092214 – 21710.1016/j.ijid.2020.01.050 BlundellRCosta DiasMJoyceRXuXCovid-19 and inequalitiesFis. Stud.20204129131910.1111/1475-5890.12232 Topriceanu, C.-C. et al. Inequality in access to health and care services during lockdown—findings from the COVID-19 survey in five UK national longitudinal studies. medRxivhttps://doi.org/10.1101/2020.09.12.20191973 (2020). Beiró, M. et al. Shopping mall attraction and social mixing at a city scale. EPJ Data Sci.7, 28 (2018). Kissler, S. et al. Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat. Commun.11, 4674 (2020). Scalia TombaGEmilia Vynnycky and Richard G White. An introduction to infectious disease modellingEur. J. Public Health20102229529510.1093/eurpub/ckq163 HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat. Hum. Behav.202041303131210.1038/s41562-020-01009-0 ZhouYEffects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone dataLancet Digital Health20202e417e42410.1016/S2589-7500(20)30165-5 LiuYGayleAAWilder-SmithARocklövJThe reproductive number of COVID-19 is higher compared to SARS coronavirusJ. Travel Med.202027Taaa02110.1093/jtm/taaa021 Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance25, 2000062 (2020). Yi, H. et al. Health equity considerations in COVID-19: geospatial network analysis of the COVID-19 outbreak in the migrant population in Singapore. J. Travel Med.28, taaa159 (2021). Global Human Development Indicators, United Nations Development Programme. http://hdr.undp.org/en/countries (2020). Pollán, M. et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet396, 535–544 (2020). KeelingMJRohaniPEstimating spatial coupling in epidemiological systems: a mechanistic approachEcol. Lett.20025202910.1046/j.1461-0248.2002.00268.x Shi, Q. et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat. Med.27, 86–93 (2021). SunnåkerMApproximate bayesian computationPLoS Comput. Biol.20139110303271810.1371/journal.pcbi.1002803 GattoMSpread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measuresProc. Natl Acad. Sci. USA202011710484104911:CAS:528:DC%2BB3cXhtFWntb3L10.1073/pnas.2004978117 JefferiesSCovid-19 in New Zealand and the impact of the national response: a descriptive epidemiological studyLancet Public Health20205e612e62310.1016/S2468-2667(20)30225-5 Mathur, R. et al. Ethnic differences in COVID-19 infection, hospitalisation, and mortality: an OpenSAFELY analysis of 17 million adults in England. medRxivhttps://doi.org/10.1101/2020.09.22.20198754 (2020). Wu, J., Leung, K. & Leung, G. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet395, 689–697 (2020). ChengCBarcelóJHartnettASKubinecRMesserschmidtLCOVID-19 government response event dataset (CoronaNet v.1.0)Nat. Hum. Behav.2020475676810.1038/s41562-020-0909-7 Poustchi, H. et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect. Dis.21, 473–481 (2021). Centers for Disease Control and Prevention, COVID-19 Pandemic Planning Scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1 (2021). RaderBCrowding and the shape of COVID-19 epidemicsNat. Med.2020261829183410.1038/s41591-020-1104-0 Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science369, eabb9789 (2020). OECD. Income inequality (indicator). https://data.oecd.org/inequality/income-inequality.htm (2021). GauvinLGender gaps in urban mobilityHumanit. Soc. Sci. Commun.2020711310.1057/s41599-020-0500-x PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput. Biol.20171312110.1371/journal.pcbi.1005697 Covid-19 in Chile. https://www.gob.cl/coronavirus/cifrasoficiales/ (2020). BajardiPHuman mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemicPLoS ONE20116e165911:CAS:528:DC%2BC3MXhvFahtLY%3D10.1371/journal.pone.00165912011PLoSO...616591B AletaAModelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19Nat. Hum. Behav.2020496497110.1038/s41562-020-0931-9 Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature589, 82–87 (2021). Mena, G. et al. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. medRxivhttps://doi.org/10.1101/2021.01.12.21249682 (2021). Chilean government interventions against COVID-19. https://www.gob.cl/coronavirus/plandeaccion/ (2020). Becker, N. A general chain binomial model for infectious diseases. Biometrics37, 251–258 (1981). Verity, R. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis.20, 669–677 (2020). Departamento de Estadisticas e Información de Salud. https://deis.minsal.cl/#datosabiertos (2020). CoriAFergusonNMFraserCCauchemezSA new framework and software to estimate time-varying reproduction numbers during epidemicsAm. J. Epidemiol.20131781505151210.1093/aje/kwt133 Code for human development index calculation at the comunas level for Chile. https://zenodo.org/record/1305169#X7fExC2ZPq1 (2020). Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature585, 410–413 (2020). WhiteERHébert-DufresneLState-level variation of initial COVID-19 dynamics in the united statesPLoS ONE202015e02406481:CAS:528:DC%2BB3cXitFWnsbnO10.1371/journal.pone.0240648 Fraiberger, S. P. et al. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data. Preprint at https://arxiv.org/abs/2006.15195 (2020). Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10, https://doi.org/10.1038/s41562-021-01079-8 (2021). Canals, M. et al. Epidemic trends, public health response and health system capacity: the Chilean experience in four months of the COVID-19 pandemic. Rev. Panam Salud Publica. 44, e99 (2020). Oxford COVID-19 Government Response Tracker. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (2020). Gozzi, N. et al. Code for the paper “Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile”. https://doi.org/10.5281/zenodo.4607303 (2021). Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S. & Colizza, V. Population mobility reductions during COVID-19 epidemic in France under lockdown. Lancet Digital Healthhttps://doi.org/10.1101/2020.05.29.20097097 (2020). Klugman, J. Human Development Report 2010—20th anniversary edition. The Real Wealth of Nations: Pathways to Human Development (2010). GoscéLPhillipsPAS 22601_CR34 D Balcan (22601_CR55) 2009; 7 PG Walker (22601_CR36) 2020; 369 22601_CR37 22601_CR38 K Prem (22601_CR58) 2017; 13 22601_CR39 M Gatto (22601_CR52) 2020; 117 22601_CR70 22601_CR71 22601_CR72 22601_CR73 22601_CR30 22601_CR31 22601_CR33 S Jefferies (22601_CR49) 2020; 5 KA Auger (22601_CR50) 2020; 324 22601_CR45 L Gauvin (22601_CR53) 2020; 7 22601_CR46 Y Liu (22601_CR26) 2020; 27 G Giordano (22601_CR27) 2020; 26 M Chinazzi (22601_CR14) 2020; 368 22601_CR41 22601_CR44 LS Muñoz-Price (22601_CR43) 2020; 3 G Bonaccorsi (22601_CR20) 2020; 117 22601_CR56 22601_CR13 P Bajardi (22601_CR16) 2011; 6 22601_CR57 22601_CR15 22601_CR59 G Scalia Tomba (22601_CR63) 2010; 22 22601_CR17 22601_CR18 L Goscé (22601_CR7) 2020; 81 S Zhao (22601_CR25) 2020; 92 D Balcan (22601_CR54) 2010; 1 C Li (22601_CR47) 2020; 48 22601_CR11 A Cori (22601_CR40) 2013; 178 M Sunnåker (22601_CR23) 2013; 9 R Blundell (22601_CR42) 2020; 41 L Di Domenico (22601_CR51) 2020; 18 A Minter (22601_CR24) 2019; 29 ER White (22601_CR8) 2020; 15 B Rader (22601_CR35) 2020; 26 Y Zhou (22601_CR12) 2020; 2 MJ Keeling (22601_CR61) 2002; 5 22601_CR67 22601_CR68 22601_CR69 22601_CR28 A Aleta (22601_CR4) 2020; 4 JA Weill (22601_CR19) 2020; 117 22601_CR29 C Cheng (22601_CR10) 2020; 4 22601_CR60 22601_CR1 22601_CR2 22601_CR62 22601_CR3 N Haug (22601_CR9) 2020; 4 22601_CR64 22601_CR5 22601_CR21 22601_CR65 22601_CR6 22601_CR22 LF Buss (22601_CR32) 2021; 371 H Tian (22601_CR48) 2020; 368 SM Kissler (22601_CR66) 2020; 368 |
| References_xml | – reference: BajardiPHuman mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemicPLoS ONE20116e165911:CAS:528:DC%2BC3MXhvFahtLY%3D10.1371/journal.pone.00165912011PLoSO...616591B – reference: Human development index estimates for Chile. http://www.desarrollosocialyfamilia.gob.cl/btca/txtcompleto/mideplan/des_humano_comunas2000.pdf (2000). – reference: Shi, Q. et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat. Med.27, 86–93 (2021). – reference: ChinazziMThe effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreakScience20203683954001:CAS:528:DC%2BB3cXnslKrtLw%3D10.1126/science.aba97572020Sci...368..395C – reference: OECD. Income inequality (indicator). https://data.oecd.org/inequality/income-inequality.htm (2021). – reference: BonaccorsiGEconomic and social consequences of human mobility restrictions under COVID-19Proc. Natl Acad Sci. USA202011715530155351:CAS:528:DC%2BB3cXhsV2kurnO10.1073/pnas.20076581172020PNAS..11715530B – reference: Havers, F. P. et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Int. Med.180, 1576–1586 (2020). – reference: RaderBCrowding and the shape of COVID-19 epidemicsNat. Med.2020261829183410.1038/s41591-020-1104-0 – reference: BalcanDSeasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobilityBMC Med.2009710.1186/1741-7015-7-45 – reference: Chilean government interventions against COVID-19. https://www.gob.cl/coronavirus/plandeaccion/ (2020). – reference: AugerKAAssociation between statewide school closure and COVID-19 incidence and mortality in the USJAMA20203248591:CAS:528:DC%2BB3cXhslGmu7%2FN10.1001/jama.2020.14348 – reference: ZhaoSPreliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreakInt. J. Infect. Dis.202092214 – 21710.1016/j.ijid.2020.01.050 – reference: HaugNRanking the effectiveness of worldwide COVID-19 government interventionsNat. Hum. Behav.202041303131210.1038/s41562-020-01009-0 – reference: KisslerSMTedijantoCGoldsteinEGradYHLipsitchMProjecting the transmission dynamics of SARS-CoV-2 through the postpandemic periodScience20203688608681:CAS:528:DC%2BB3cXhtVWnur%2FI10.1126/science.abb57932020Sci...368..860K – reference: Mena, G. et al. Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile. medRxivhttps://doi.org/10.1101/2021.01.12.21249682 (2021). – reference: Google llc. Google COVID-19 community mobility reports. https://www.google.com/covid19/mobility/ (2020). – reference: Global Human Development Indicators, United Nations Development Programme. http://hdr.undp.org/en/countries (2020). – reference: WeillJAStiglerMDeschenesOSpringbornMRSocial distancing responses to COVID-19 emergency declarations strongly differentiated by incomeProc. Natl Acad. Sci. USA202011719658196601:CAS:528:DC%2BB3cXhs1ehtLrL10.1073/pnas.2009412117 – reference: Beiró, M. et al. Shopping mall attraction and social mixing at a city scale. EPJ Data Sci.7, 28 (2018). – reference: WalkerPGThe impact of COVID-19 and strategies for mitigation and suppression in low-and middle-income countriesScience20203694134221:CAS:528:DC%2BB3cXhsVCmt7rF3253280272925042020Sci...369..413W10.1126/science.abc0035 – reference: BlundellRCosta DiasMJoyceRXuXCovid-19 and inequalitiesFis. Stud.20204129131910.1111/1475-5890.12232 – reference: Pullano, G., Valdano, E., Scarpa, N., Rubrichi, S. & Colizza, V. Population mobility reductions during COVID-19 epidemic in France under lockdown. Lancet Digital Healthhttps://doi.org/10.1101/2020.05.29.20097097 (2020). – reference: LiuYGayleAAWilder-SmithARocklövJThe reproductive number of COVID-19 is higher compared to SARS coronavirusJ. Travel Med.202027Taaa02110.1093/jtm/taaa021 – reference: Becker, N. A general chain binomial model for infectious diseases. Biometrics37, 251–258 (1981). – reference: Klugman, J. Human Development Report 2010—20th anniversary edition. The Real Wealth of Nations: Pathways to Human Development (2010). – reference: GiordanoGModelling the COVID-19 epidemic and implementation of population-wide interventions in ItalyNat. Med.2020261610.1038/s41591-020-0883-7 – reference: Hale, T. et al. A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10, https://doi.org/10.1038/s41562-021-01079-8 (2021). – reference: Kissler, S. et al. Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat. Commun.11, 4674 (2020). – reference: ZhouYEffects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone dataLancet Digital Health20202e417e42410.1016/S2589-7500(20)30165-5 – reference: JefferiesSCovid-19 in New Zealand and the impact of the national response: a descriptive epidemiological studyLancet Public Health20205e612e62310.1016/S2468-2667(20)30225-5 – reference: Centers for Disease Control and Prevention, COVID-19 Pandemic Planning Scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1 (2021). – reference: Gozzi, N. et al. Code for the paper “Estimating the effect of social inequalities in the mitigation of COVID-19 across communities in Santiago de Chile”. https://doi.org/10.5281/zenodo.4607303 (2021). – reference: PremKCookARJitMProjecting social contact matrices in 152 countries using contact surveys and demographic dataPLoS Comput. Biol.20171312110.1371/journal.pcbi.1005697 – reference: Dehning, J. et al. Inferring change points in the spread of COVID-19 reveals the effectiveness of interventions. Science369, eabb9789 (2020). – reference: Mathur, R. et al. Ethnic differences in COVID-19 infection, hospitalisation, and mortality: an OpenSAFELY analysis of 17 million adults in England. medRxivhttps://doi.org/10.1101/2020.09.22.20198754 (2020). – reference: KeelingMJRohaniPEstimating spatial coupling in epidemiological systems: a mechanistic approachEcol. Lett.20025202910.1046/j.1461-0248.2002.00268.x – reference: WhiteERHébert-DufresneLState-level variation of initial COVID-19 dynamics in the united statesPLoS ONE202015e02406481:CAS:528:DC%2BB3cXitFWnsbnO10.1371/journal.pone.0240648 – reference: Chile 2017 census. https://www.censo2017.cl (2020). – reference: CoriAFergusonNMFraserCCauchemezSA new framework and software to estimate time-varying reproduction numbers during epidemicsAm. J. Epidemiol.20131781505151210.1093/aje/kwt133 – reference: Covid-19 in Chile. https://www.gob.cl/coronavirus/cifrasoficiales/ (2020). – reference: Departamento de Estadisticas e Información de Salud. https://deis.minsal.cl/#datosabiertos (2020). – reference: Yi, H. et al. Health equity considerations in COVID-19: geospatial network analysis of the COVID-19 outbreak in the migrant population in Singapore. J. Travel Med.28, taaa159 (2021). – reference: GoscéLPhillipsPASpinolaPGuptaDRKAbubakarPIModelling SARS-CoV2 spread in London: approaches to lift the lockdownJ. Inf.202081260 – 26510.1016/j.jinf.2020.05.037 – reference: Fraiberger, S. P. et al. Uncovering socioeconomic gaps in mobility reduction during the COVID-19 pandemic using location data. Preprint at https://arxiv.org/abs/2006.15195 (2020). – reference: M. Longini Jr, I. Chain Binomial Model (American Cancer Society, 2014). – reference: Chang, S. et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature589, 82–87 (2021). – reference: Topriceanu, C.-C. et al. Inequality in access to health and care services during lockdown—findings from the COVID-19 survey in five UK national longitudinal studies. medRxivhttps://doi.org/10.1101/2020.09.12.20191973 (2020). – reference: Lai, S. et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature585, 410–413 (2020). – reference: Poustchi, H. et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect. Dis.21, 473–481 (2021). – reference: AletaAModelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19Nat. Hum. Behav.2020496497110.1038/s41562-020-0931-9 – reference: GattoMSpread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measuresProc. Natl Acad. Sci. USA202011710484104911:CAS:528:DC%2BB3cXhtFWntb3L10.1073/pnas.2004978117 – reference: BussLFThree-quarters attack rate of SARS-CoV-2 in the Brazilian amazon during a largely unmitigated epidemicScience20213712882921:CAS:528:DC%2BB3MXhsVahsbs%3D10.1126/science.abe9728 – reference: Wu, J., Leung, K. & Leung, G. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet395, 689–697 (2020). – reference: Scalia TombaGEmilia Vynnycky and Richard G White. An introduction to infectious disease modellingEur. J. Public Health20102229529510.1093/eurpub/ckq163 – reference: Backer, J. A., Klinkenberg, D. & Wallinga, J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance25, 2000062 (2020). – reference: Badr, H. S. et al. Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis.20, 1247–1254 (2020). – reference: Pollán, M. et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet396, 535–544 (2020). – reference: Verity, R. et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis.20, 669–677 (2020). – reference: MinterARetkuteRApproximate Bayesian Computation for infectious disease modellingEpidemics20192910036810.1016/j.epidem.2019.100368 – reference: TianHAn investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in ChinaScience20203686386421:CAS:528:DC%2BB3cXovFCrur4%3D10.1126/science.abb61052020Sci...368..638T – reference: Di DomenicoLPullanoGSabbatiniCEBoëlleP-YColizzaVImpact of lockdown on COVID-19 epidemic in Île-de-France and possible exit strategiesBMC Med.20201810.1186/s12916-020-01698-4 – reference: GauvinLGender gaps in urban mobilityHumanit. Soc. Sci. Commun.2020711310.1057/s41599-020-0500-x – reference: SunnåkerMApproximate bayesian computationPLoS Comput. Biol.20139110303271810.1371/journal.pcbi.1002803 – reference: LiCRomagnaniPvon BrunnAAndersH-JSARS-CoV-2 and Europe: timing of containment measures for outbreak controlInfection2020484831:CAS:528:DC%2BB3cXntFSqsL8%3D10.1007/s15010-020-01420-9 – reference: BalcanDModeling the spatial spread of infectious diseases: The global epidemic and mobility computational modelJ. Comput. Sci.2010113214510.1016/j.jocs.2010.07.002 – reference: ISTAT, Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2. https://www.istat.it/it/archivio/246156 (2020). – reference: Muñoz-PriceLSRacial disparities in incidence and outcomes among patients with COVID-19JAMA Netw. Open20203e2021892e202189210.1001/jamanetworkopen.2020.21892 – reference: Canals, M. et al. Epidemic trends, public health response and health system capacity: the Chilean experience in four months of the COVID-19 pandemic. Rev. Panam Salud Publica. 44, e99 (2020). – reference: Code for human development index calculation at the comunas level for Chile. https://zenodo.org/record/1305169#X7fExC2ZPq1 (2020). – reference: Oliver, N. et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Sci. Adv.6, eabc0764 (2020). – reference: y Piontti, A. P., Perra, N., Rossi, L., Samay, N. & Vespignani, A. Charting the next Pandemic: Modeling Infectious Disease Spreading in the Data Science Age (Springer, 2018). – reference: ChengCBarcelóJHartnettASKubinecRMesserschmidtLCOVID-19 government response event dataset (CoronaNet v.1.0)Nat. Hum. Behav.2020475676810.1038/s41562-020-0909-7 – reference: Oxford COVID-19 Government Response Tracker. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker (2020). – ident: 22601_CR68 – ident: 22601_CR70 – volume: 371 start-page: 288 year: 2021 ident: 22601_CR32 publication-title: Science doi: 10.1126/science.abe9728 – volume: 4 start-page: 756 year: 2020 ident: 22601_CR10 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-0909-7 – volume: 26 start-page: 1829 year: 2020 ident: 22601_CR35 publication-title: Nat. Med. doi: 10.1038/s41591-020-1104-0 – volume: 26 start-page: 1 year: 2020 ident: 22601_CR27 publication-title: Nat. Med. doi: 10.1038/s41591-020-0883-7 – volume: 41 start-page: 291 year: 2020 ident: 22601_CR42 publication-title: Fis. Stud. doi: 10.1111/1475-5890.12232 – ident: 22601_CR46 doi: 10.1101/2020.09.12.20191973 – volume: 29 start-page: 100368 year: 2019 ident: 22601_CR24 publication-title: Epidemics doi: 10.1016/j.epidem.2019.100368 – ident: 22601_CR41 doi: 10.1126/science.abb9789 – ident: 22601_CR73 doi: 10.5281/zenodo.4607303 – volume: 81 start-page: 260 – 265 year: 2020 ident: 22601_CR7 publication-title: J. Inf. doi: 10.1016/j.jinf.2020.05.037 – ident: 22601_CR39 – volume: 48 start-page: 483 year: 2020 ident: 22601_CR47 publication-title: Infection doi: 10.1007/s15010-020-01420-9 – ident: 22601_CR34 doi: 10.1016/S1473-3099(20)30243-7 – ident: 22601_CR29 doi: 10.1001/jamainternmed.2020.4130 – ident: 22601_CR31 – volume: 5 start-page: 20 year: 2002 ident: 22601_CR61 publication-title: Ecol. Lett. doi: 10.1046/j.1461-0248.2002.00268.x – volume: 117 start-page: 19658 year: 2020 ident: 22601_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2009412117 – ident: 22601_CR67 – volume: 4 start-page: 964 year: 2020 ident: 22601_CR4 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-0931-9 – ident: 22601_CR28 doi: 10.1101/2021.01.12.21249682 – volume: 117 start-page: 15530 year: 2020 ident: 22601_CR20 publication-title: Proc. Natl Acad Sci. USA doi: 10.1073/pnas.2007658117 – volume: 178 start-page: 1505 year: 2013 ident: 22601_CR40 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwt133 – volume: 2 start-page: e417 year: 2020 ident: 22601_CR12 publication-title: Lancet Digital Health doi: 10.1016/S2589-7500(20)30165-5 – ident: 22601_CR45 doi: 10.1101/2020.09.22.20198754 – volume: 1 start-page: 132 year: 2010 ident: 22601_CR54 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2010.07.002 – ident: 22601_CR21 – ident: 22601_CR57 – ident: 22601_CR64 doi: 10.2307/2530415 – ident: 22601_CR38 doi: 10.1038/s41562-021-01079-8 – ident: 22601_CR3 – ident: 22601_CR6 doi: 10.1038/s41467-020-18271-5 – volume: 369 start-page: 413 year: 2020 ident: 22601_CR36 publication-title: Science doi: 10.1126/science.abc0035 – volume: 7 start-page: 1 year: 2020 ident: 22601_CR53 publication-title: Humanit. Soc. Sci. Commun. doi: 10.1057/s41599-020-0500-x – ident: 22601_CR2 doi: 10.26633/RPSP.2020.99 – volume: 27 start-page: Taaa021 year: 2020 ident: 22601_CR26 publication-title: J. Travel Med. doi: 10.1093/jtm/taaa021 – volume: 368 start-page: 860 year: 2020 ident: 22601_CR66 publication-title: Science doi: 10.1126/science.abb5793 – ident: 22601_CR18 – volume: 368 start-page: 638 year: 2020 ident: 22601_CR48 publication-title: Science doi: 10.1126/science.abb6105 – volume: 324 start-page: 859 year: 2020 ident: 22601_CR50 publication-title: JAMA doi: 10.1001/jama.2020.14348 – ident: 22601_CR59 doi: 10.1038/s41586-020-2293-x – volume: 5 start-page: e612 year: 2020 ident: 22601_CR49 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(20)30225-5 – volume: 22 start-page: 295 year: 2010 ident: 22601_CR63 publication-title: Eur. J. Public Health doi: 10.1093/eurpub/ckq163 – ident: 22601_CR33 doi: 10.1016/S1473-3099(20)30858-6 – ident: 22601_CR44 doi: 10.1093/jtm/taaa159 – volume: 6 start-page: e16591 year: 2011 ident: 22601_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016591 – ident: 22601_CR56 – ident: 22601_CR11 doi: 10.1126/sciadv.abc0764 – ident: 22601_CR5 doi: 10.1038/s41591-020-01178-5 – volume: 18 year: 2020 ident: 22601_CR51 publication-title: BMC Med. doi: 10.1186/s12916-020-01698-4 – ident: 22601_CR37 – volume: 13 start-page: 1 year: 2017 ident: 22601_CR58 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005697 – volume: 9 start-page: 1 year: 2013 ident: 22601_CR23 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002803 – volume: 15 start-page: e0240648 year: 2020 ident: 22601_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0240648 – ident: 22601_CR13 doi: 10.1016/S1473-3099(20)30553-3 – ident: 22601_CR69 – volume: 92 start-page: 214 – 217 year: 2020 ident: 22601_CR25 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.01.050 – volume: 117 start-page: 10484 year: 2020 ident: 22601_CR52 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2004978117 – ident: 22601_CR60 doi: 10.1016/S0140-6736(20)30260-9 – ident: 22601_CR62 doi: 10.1002/9781118445112.stat05303 – volume: 368 start-page: 395 year: 2020 ident: 22601_CR14 publication-title: Science doi: 10.1126/science.aba9757 – ident: 22601_CR71 doi: 10.1140/epjds/s13688-018-0157-5 – volume: 4 start-page: 1303 year: 2020 ident: 22601_CR9 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-020-01009-0 – ident: 22601_CR1 – ident: 22601_CR15 doi: 10.1101/2020.05.29.20097097 – volume: 7 year: 2009 ident: 22601_CR55 publication-title: BMC Med. doi: 10.1186/1741-7015-7-45 – ident: 22601_CR30 doi: 10.1016/S0140-6736(20)32266-2 – ident: 22601_CR65 doi: 10.2807/1560-7917.ES.2020.25.5.2000062 – ident: 22601_CR22 doi: 10.1038/s41586-020-2923-3 – volume: 3 start-page: e2021892 year: 2020 ident: 22601_CR43 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.21892 – ident: 22601_CR72 – ident: 22601_CR17 |
| SSID | ssj0000391844 |
| Score | 2.643397 |
| Snippet | We study the spatio-temporal spread of SARS-CoV-2 in Santiago de Chile using anonymized mobile phone data from 1.4 million users, 22% of the whole population... Fine-grained studies of epidemic spread and of the effect of nonpharmaceutical interventions are still needed to underpin demographic and socio-economic... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2429 |
| SubjectTerms | 639/766/530/2801 692/308/174 692/699/255/2514 Algorithms Cell phones Cellular telephones Chile - epidemiology Communicable Disease Control - methods Communicable Disease Control - statistics & numerical data Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 - virology Disease control Disease Transmission, Infectious - prevention & control Disease Transmission, Infectious - statistics & numerical data Economic impact Epidemic models Epidemics Heterogeneity Humanities and Social Sciences Humans Incidence Mobility Models, Theoretical multidisciplinary Pandemics SARS-CoV-2 - isolation & purification SARS-CoV-2 - physiology Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Socioeconomic Factors Time Factors Viral diseases |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6hJ7MT2CUFpBRIqSEC1N8uOnSUSJGV3i8S_Z8bObrU8euEUbTKR7P1mJp9f3wA87XgttawEFXcRueBNkbsq6JyLwEWDo20fT70fv5NHR2o20x-mCbfltK1ynRNjovZjS3PkeySthdygUOLFyfecqkbR6upUQuMiXKKy2eTnciY3cyykfq6EmM7KFFztLUXMDLQvoSIxrbzZ-h5F2f6_cc0_t0z-tm4aP0eH1_-3Izfg2kRE2cvkOTfhQhhuwZVUmvLnbVgcYOwTmx3mDDkiS_s-2NixNMvOkJ2mA5k41GbjEI2-9UmxA3-i4f7747ev81IzG7vO2nQWJb7QD-wjYtrb-ch8YCSwHO7A58ODT_tv8qk-Q94iz1vlXY0gF75yZWfLIJoi1HUnvRaF8t4hmZIaRyuNLWWwjROitsori5fS18rVjt-FnWEcwn1gwVaNd6Jpg9ZCaecwTZQOMSXtnS6IDMo1SqadxMuphsZXExfRuTIJWYPImoisaTJ4tnnnJEl3nGv9isDfWJLsdrwxLuZmimLTWCGVRU7IZSd85yzSIRxPc4dZrOS2yGB3jbmZcsHSnAGewZPNY4xiWpqxQxhPo41CsqVrnsG95GmblnDilJXUGcgtH9xq6vaTof8SlcJp1RwJcQbP19561qx__xUPzu_FQ7haUQBhbFd8F3ZWi9PwCC63P1b9cvE4RuAvphI05w priority: 102 providerName: ProQuest |
| Title | Estimating the effect of social inequalities on the mitigation of COVID-19 across communities in Santiago de Chile |
| URI | https://link.springer.com/article/10.1038/s41467-021-22601-6 https://www.ncbi.nlm.nih.gov/pubmed/33893279 https://www.proquest.com/docview/2517112084 https://www.proquest.com/docview/2518218953 https://pubmed.ncbi.nlm.nih.gov/PMC8065143 https://doaj.org/article/6a478a12537f4dfba4064463b63813a0 |
| Volume | 12 |
| WOSCitedRecordID | wos000656463600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BAhIXxHMJLJWRuEG0SezE9pFdumIlKBGPVeFi2bGzRIIEtV0k_j1jOy1bnhcuqVpPpKlnJv4mHn8D8KilJZe8YL65C0sZrbLUFE6mlDnKKsy2bTj1fvKCz2ZiPpf1uVZfviYs0gPHiduvNONC4zJMectsazSuQJjCUIOOk1MdsvWMy3PJVHgGU4mpCxtPyWRU7C9ZeCb4ioTC02il1dZKFAj7f4cyfy2W_GnHNCxER9fh2oggydOo-Q244PqbcCX2lPx2CxZTDFoPQ_tTguCOxIINMrQkvh4nCCvjSUrMkcnQB6HPXaTawK8oePjq5PhZmkuig-akiYdIwg1dT96gMTp9OhDriGdGdrfh3dH07eHzdGyskDYI0FZpW6J1MluYvNW5Y1XmyrLlVrJMWGsQBXGJaUalc-50ZRgrtbBC40duS2FKQ-_ATj_07i4Qp4vKGlY1TkompDEY37nBrMWT5rSOJZCvJ1k1I-u4b37xSYXdbypUNIxCw6hgGFUl8Hhzz5fIufFX6QNvu42k58sOP6AXqdGL1L-8KIG9teXVGMRL5dncEI5mAv_Fw80whp_fU9G9G86CjECUJEuawG50lI0m1IPBgssE-JYLbam6PdJ3HwPFt9_uRiSbwJO1s_1Q689Tce9_TMV9uFr4KMHQLege7KwWZ-4BXG6-rrrlYgIX-ZyHq5jApYPprH49CaE38VWzNV7r8gOO1Mcv6_ffARDTLP0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE42axE5iHxCCPtRVt8tKlKqcjJ04SyRIyu4W1D_Fb2TsPKrl0VsPnFa7mawc55vJ53jmG4DnBY1TkUbMNndhPqNJ4OvICJ8yQ1mCq-3cVb0fjtLxmB8dickK_OxqYWxaZRcTXaDO68y-I9-w0lrIDQLOXh9_823XKLu72rXQaGCxZ05_4JJt_mq4hff3RRTtbB9s7vptVwE_Q3ay8IsYhxbkkQ4LFRqWBCaOizQXLOB5rpECpAI5dqLC1KhEMxYrnnOFH2Eecx1riv97CVYZgj0YwOpkuD_52L_VsXrrnLG2OiegfGPOXCyymRCRle_yk6UnoGsU8Dd2-2eS5m87te4BuHPjf5u6m3C9pdrkTeMbt2DFVLfhStN88_QOzLYxulm-Xk0JsmDSZLaQuiDNPgJB_t2UnJZmTurKGX0tG00S_IqGm-8Oh1t-KIhyU02yptrGnVBW5D2itlTTmuSGWAlpcxc-XMgF34NBVVfmARCjoiTXLMmMEIwLrTEQhhqXd1ZdqDDMg7BDhcxaeXbbJeSLdGkClMsGSRKRJB2SZOLBy_6c40ac5FzrtxZsvaUVFnc_1LOpbOOUTBRLuULWS9OC5YVWSPgYS6jGOB1SFXiw1mFMttFuLs8A5sGz_jDGKbv5pCpTnzgbjnRSxNSD-w2y-5FQy5qjVHiQLmF-aajLR6rys9NCt3kBSPk9WO-842xY_56Kh-dfxVO4unuwP5Kj4XjvEVyLrPNiJIvoGgwWsxPzGC5n3xflfPak9X8Cny7ab34BC9mSfg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUy8cL8EBhgJniBqEjuJ_YAQW1tRbSoVl2lvwU6cLhIko-1A-2v8Oo7tpFO57G0PPFVtTirH-c6Xz_G5ADwraZyKNGKmuQvzGU0CX0Va-JRpyhJcbRc26_1gP51M-OGhmG7Azy4XxoRVdpxoibpocvOOvG9Ka6E2CDjrl21YxHQwen38zTcdpMxOa9dOw0FkT5_-wOXb4tV4gPf6eRSNhh933_pthwE_R6Wy9MsYhxkUkQpLGWqWBDqOy7QQLOBFoVAOpAL1diLDVMtEMRZLXnCJH2ERcxUriv97CTZTioueHmzuDCfT96s3PKb2OmeszdQJKO8vmOUlExURmVJefrL2NLRNA_6mdP8M2Pxt19Y-DEfX_-dpvAHXWglO3jifuQkbur4FV1xTztPbMB8i6xkdX88IqmPiIl5IUxK3v0BQl7tU1EovSFNbo6-Vq1WCX9Fw993BeOCHgkg77SR3WTj2hKomHxDNlZw1pNDElJbWd-DThVzwXejVTa3vA9EySgrFklwLwbhQCgkyVLjsM1WHSs08CDuEZHlbtt10D_mS2fAByjOHqgxRlVlUZYkHL1bnHLuiJeda7xjgrSxNwXH7QzOfZS1_ZYlkKZeohmlasqJUEoUgYwlVyN8hlYEH2x3espYFF9kZ2Dx4ujqM_GU2pWStmxNrw1Fmiph6cM-hfDUSatR0lAoP0jX8rw11_UhdHdka6SZeAJcCHrzsPOVsWP-eigfnX8UT2EJnyfbHk72HcDUyfowEF9Ft6C3nJ_oRXM6_L6vF_HFLBQQ-X7Tb_AK7pZsY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+the+effect+of+social+inequalities+on+the+mitigation+of+COVID-19+across+communities+in+Santiago+de+Chile&rft.jtitle=Nature+communications&rft.au=Nicol%C3%B2+Gozzi&rft.au=Michele+Tizzoni&rft.au=Matteo+Chinazzi&rft.au=Leo+Ferres&rft.date=2021-04-23&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-021-22601-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6a478a12537f4dfba4064463b63813a0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |