Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles
Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, a...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 19; H. 18; S. 4021 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
18.09.2019
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance. |
|---|---|
| AbstractList | Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance. Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance. |
| Author | Cao, Jingwei Song, Chuanxue Song, Shixin Xiao, Feng Peng, Silun |
| AuthorAffiliation | 3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China 1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; caojw18@mails.jlu.edu.cn (J.C.); songchx@126.com (C.S.); pengsilun@126.com (S.P.); xiaofengjl@jlu.edu.cn (F.X.) 2 College of Automotive Engineering, Jilin University, Changchun 130022, China |
| AuthorAffiliation_xml | – name: 2 College of Automotive Engineering, Jilin University, Changchun 130022, China – name: 3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China – name: 1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; caojw18@mails.jlu.edu.cn (J.C.); songchx@126.com (C.S.); pengsilun@126.com (S.P.); xiaofengjl@jlu.edu.cn (F.X.) |
| Author_xml | – sequence: 1 givenname: Jingwei orcidid: 0000-0003-4915-5524 surname: Cao fullname: Cao, Jingwei – sequence: 2 givenname: Chuanxue surname: Song fullname: Song, Chuanxue – sequence: 3 givenname: Silun surname: Peng fullname: Peng, Silun – sequence: 4 givenname: Feng orcidid: 0000-0003-1847-504X surname: Xiao fullname: Xiao, Feng – sequence: 5 givenname: Shixin surname: Song fullname: Song, Shixin |
| BookMark | eNp9kslqHDEQhkVwiJfkkDdoyCU5TKytW9IlYJxtwGBwnFyFWir1aOiWJlKPwW9vjccJsQNGB21f_ar6VcfoIKYICL0l-CNjCp8WoojkmJIX6IhwyheSUnzwz_oQHZeyxpgyxuQrdMhIyzET8ghdLadNTjfgmutsvA-2-RGG2HyGGewcUmxMdM0V2DTEcL8_G4eUw7yaGp9ys4wzjGMYIM7NL1gFO0J5jV56MxZ48zCfoJ9fv1yff19cXH5bnp9dLGx9fF54TqwBaBWTrBU963DnuJWWqM6R3hEjvTdG1py7TioG4IygVnTcyQoRzk7Qcq_rklnrTQ6Tybc6maDvD1IetMnzLiWtrACsBCGys1yCNb1x1YregOw9wVC1Pu21Ntt-AmdrPdmMj0Qf38Sw0kO60Z2og4oq8P5BIKffWyiznkKx1RsTIW2LplS1XLa0oxV99wRdp22O1SpNW1YpofjzFMNEUSJYW6nTPWVzKiWD1zbMZvdRNcswaoL1rkP03w6pER-eRPwp8n_2DthGurs |
| CitedBy_id | crossref_primary_10_3390_app12146831 crossref_primary_10_3390_s23104674 crossref_primary_10_3390_s24010249 crossref_primary_10_3390_s20010112 crossref_primary_10_1016_j_prime_2024_100442 crossref_primary_10_3390_e24040487 crossref_primary_10_3390_s20164587 crossref_primary_10_1155_2021_4702669 crossref_primary_10_3390_rs15122959 crossref_primary_10_1016_j_micpro_2023_104791 crossref_primary_10_1007_s11042_025_20853_8 crossref_primary_10_1016_j_procs_2024_04_255 crossref_primary_10_3390_ijms252111629 crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1016_j_eij_2025_100761 crossref_primary_10_3390_s22093494 crossref_primary_10_1109_TNNLS_2024_3490800 crossref_primary_10_1016_j_eswa_2022_117247 crossref_primary_10_1155_2022_9318475 crossref_primary_10_3389_fpubh_2024_1431757 crossref_primary_10_1016_j_rineng_2024_103553 crossref_primary_10_1007_s11760_024_03108_1 crossref_primary_10_3390_s23135919 crossref_primary_10_3233_JIFS_221720 crossref_primary_10_3390_computers14030088 crossref_primary_10_3390_s22072683 crossref_primary_10_1007_s11554_024_01451_7 crossref_primary_10_1016_j_phycom_2021_101375 crossref_primary_10_1145_3418205 crossref_primary_10_3390_electronics13142773 crossref_primary_10_3390_encyclopedia2040119 crossref_primary_10_1111_exsy_12781 crossref_primary_10_1007_s11042_022_12531_w crossref_primary_10_1155_2022_3995209 crossref_primary_10_2186_jpr_JPR_D_22_00053 crossref_primary_10_1002_sta4_273 crossref_primary_10_3390_s23073381 crossref_primary_10_3390_s24113411 crossref_primary_10_1007_s11760_024_03388_7 crossref_primary_10_1080_19479832_2022_2086304 crossref_primary_10_3390_en14123697 crossref_primary_10_1007_s11042_023_15898_6 crossref_primary_10_1088_1361_6501_ad9517 crossref_primary_10_1016_j_trc_2021_103303 crossref_primary_10_1155_2022_3041117 crossref_primary_10_1155_2022_4105942 crossref_primary_10_3390_wevj15070285 crossref_primary_10_1016_j_isprsjprs_2020_10_003 crossref_primary_10_1177_09544070211042961 crossref_primary_10_3390_s20061693 crossref_primary_10_1139_geomat_2020_0010 crossref_primary_10_1155_2022_6519601 crossref_primary_10_1016_j_optlaseng_2024_108111 crossref_primary_10_3390_app10093280 crossref_primary_10_1155_2021_8870529 |
| Cites_doi | 10.1016/j.ins.2014.01.010 10.1049/iet-its.2018.5171 10.1016/j.neucom.2012.11.057 10.1007/978-3-642-37835-5_31 10.1016/j.neucom.2014.11.026 10.20965/jrm.2015.p0610 10.1109/TITS.2016.2614548 10.3390/s19010217 10.1007/s12530-017-9215-7 10.1109/JSTARS.2018.2810143 10.1109/TCYB.2016.2533424 10.1109/TIP.2019.2896952 10.1016/j.neucom.2016.07.009 10.1007/s12239-014-0034-6 10.3390/s19092093 10.1109/ICT-ISPC.2018.8523920 10.1007/s00371-013-0879-0 10.1007/s11042-014-2293-7 10.1109/TITS.2017.2658662 10.1109/ISIE.2017.8001485 10.1109/IGARSS.2018.8519059 10.1109/MCOM.2019.1800226 10.1016/j.arcontrol.2012.09.008 10.1109/CMVIT.2017.26 10.1109/ICCUBEA.2018.8697847 10.1109/RCIS.2018.8406656 10.1162/neco_a_00990 10.1109/IJCNN.2013.6707049 10.1007/978-981-13-3600-3_48 10.1007/978-3-319-48308-5_54 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s19184021 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_9c7e0971186c48ecabad333bae8bf10e PMC6767627 10_3390_s19184021 |
| GeographicLocations | China India |
| GeographicLocations_xml | – name: China – name: India |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-f41caee5938357b3606d4c8c196d1bd1a8ffaa802366893eeda72c764d88c1143 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489187800206&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:29:22 EST 2025 Tue Nov 04 01:43:35 EST 2025 Thu Sep 04 16:27:01 EDT 2025 Tue Oct 07 07:08:14 EDT 2025 Tue Oct 07 07:11:49 EDT 2025 Sat Nov 29 07:12:59 EST 2025 Tue Nov 18 19:58:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-f41caee5938357b3606d4c8c196d1bd1a8ffaa802366893eeda72c764d88c1143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4915-5524 0000-0003-1847-504X |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2301921735?pq-origsite=%requestingapplication% |
| PMID | 31540378 |
| PQID | 2301921735 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9c7e0971186c48ecabad333bae8bf10e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767627 proquest_miscellaneous_2295485262 proquest_journals_2535487942 proquest_journals_2301921735 crossref_citationtrail_10_3390_s19184021 crossref_primary_10_3390_s19184021 |
| PublicationCentury | 2000 |
| PublicationDate | 20190918 |
| PublicationDateYYYYMMDD | 2019-09-18 |
| PublicationDate_xml | – month: 9 year: 2019 text: 20190918 day: 18 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Andreev (ref_5) 2019; 57 Sun (ref_20) 2014; 128 Huang (ref_30) 2017; 47 ref_14 ref_36 ref_13 ref_35 ref_12 ref_33 ref_32 ref_31 ref_18 ref_38 Banharnsakun (ref_28) 2018; 9 Hechri (ref_16) 2015; 10 Campbell (ref_2) 2012; 36 Rawat (ref_34) 2017; 29 (ref_39) 2013; 2013 Zhu (ref_29) 2016; 214 Zhu (ref_10) 2017; 18 ref_24 Natarajan (ref_42) 2018; 12 Liu (ref_37) 2014; 266 ref_22 Yang (ref_6) 2014; 15 ref_21 ref_41 ref_40 ref_3 Yuan (ref_23) 2017; 18 ref_27 ref_26 Eichberger (ref_1) 2010; 3 Yoshida (ref_7) 2015; 27 ref_8 Gudigar (ref_9) 2016; 75 Wang (ref_15) 2014; 30 Guan (ref_19) 2018; 11 (ref_17) 2015; 153 ref_4 Yang (ref_11) 2014; 215 Yuan (ref_25) 2019; 28 |
| References_xml | – volume: 266 start-page: 75 year: 2014 ident: ref_37 article-title: Traffic sign recognition using group sparse coding publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.01.010 – volume: 2013 start-page: 364305 year: 2013 ident: ref_39 article-title: Eigen-gradients for traffic sign recognition publication-title: Math. Probl. Eng. – volume: 12 start-page: 1396 year: 2018 ident: ref_42 article-title: Traffic sign recognition using weighted multi-convolutional neural network publication-title: IET Intel. Transp. Syst. doi: 10.1049/iet-its.2018.5171 – ident: ref_3 – ident: ref_24 – volume: 128 start-page: 153 year: 2014 ident: ref_20 article-title: Application of BW-ELM model on traffic sign recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.057 – volume: 3 start-page: 32 year: 2010 ident: ref_1 article-title: Review of recent patents in integrated vehicle safety, advanced driver assistance systems and intelligent transportation systems publication-title: Recent Pat. Mech. Eng. – volume: 215 start-page: 347 year: 2014 ident: ref_11 article-title: Vision-based traffic sign recognition system for intelligent vehicles publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-3-642-37835-5_31 – volume: 153 start-page: 286 year: 2015 ident: ref_17 article-title: Traffic sign segmentation and classification using statistical learning methods publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.026 – volume: 27 start-page: 610 year: 2015 ident: ref_7 article-title: Toward next active safety technology of intelligent vehicle publication-title: J. Robot. Mechatron. doi: 10.20965/jrm.2015.p0610 – volume: 18 start-page: 1918 year: 2017 ident: ref_23 article-title: An incremental framework for video-based traffic sign detection, tracking, and recognition publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2614548 – ident: ref_36 doi: 10.3390/s19010217 – volume: 9 start-page: 255 year: 2018 ident: ref_28 article-title: Multiple traffic sign detection based on the artificial bee colony method publication-title: Evol. Syst. doi: 10.1007/s12530-017-9215-7 – volume: 11 start-page: 1715 year: 2018 ident: ref_19 article-title: Robust traffic-sign detection and classification using mobile LiDAR data with digital Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2810143 – ident: ref_21 – volume: 47 start-page: 920 year: 2017 ident: ref_30 article-title: An efficient method for traffic sign recognition based on extreme learning machine publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2533424 – volume: 28 start-page: 3423 year: 2019 ident: ref_25 article-title: VSSA-NET: vertical spatial sequence attention network for traffic sign detection publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2896952 – volume: 214 start-page: 758 year: 2016 ident: ref_29 article-title: Traffic sign detection and recognition using fully convolutional network guided proposals publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.009 – ident: ref_8 – volume: 15 start-page: 333 year: 2014 ident: ref_6 article-title: In-vehicle technology for self-driving cars: Advantages and challenges for aging drivers publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-014-0034-6 – ident: ref_4 – ident: ref_14 doi: 10.3390/s19092093 – ident: ref_33 – ident: ref_31 doi: 10.1109/ICT-ISPC.2018.8523920 – volume: 30 start-page: 539 year: 2014 ident: ref_15 article-title: Hole-based traffic sign detection method for traffic signs with red rim publication-title: Vis. Comput. doi: 10.1007/s00371-013-0879-0 – volume: 75 start-page: 333 year: 2016 ident: ref_9 article-title: A review on automatic detection and recognition of traffic sign publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-2293-7 – volume: 18 start-page: 2584 year: 2017 ident: ref_10 article-title: Overview of environment perception for intelligent vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2658662 – ident: ref_12 doi: 10.1109/ISIE.2017.8001485 – volume: 10 start-page: 202 year: 2015 ident: ref_16 article-title: Robust road lanes and traffic signs recognition for driver assistance system publication-title: Int. J. Comput. Sci. Eng. – ident: ref_26 doi: 10.1109/IGARSS.2018.8519059 – ident: ref_41 – volume: 57 start-page: 34 year: 2019 ident: ref_5 article-title: Dense moving fog for intelligent IoT: Key challenges and opportunities publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800226 – ident: ref_38 – volume: 36 start-page: 267 year: 2012 ident: ref_2 article-title: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.008 – ident: ref_18 doi: 10.1109/CMVIT.2017.26 – ident: ref_22 – ident: ref_27 doi: 10.1109/ICCUBEA.2018.8697847 – ident: ref_13 doi: 10.1109/RCIS.2018.8406656 – volume: 29 start-page: 2352 year: 2017 ident: ref_34 article-title: Deep convolutional neural networks for image classification: A comprehensive review publication-title: Neural Comp. doi: 10.1162/neco_a_00990 – ident: ref_40 doi: 10.1109/IJCNN.2013.6707049 – ident: ref_32 doi: 10.1007/978-981-13-3600-3_48 – ident: ref_35 doi: 10.1007/978-3-319-48308-5_54 |
| SSID | ssj0023338 |
| Score | 2.5944605 |
| Snippet | Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4021 |
| SubjectTerms | Accuracy Algorithms Automobile safety convolutional neural network Deep learning driving assistance Informatics intelligent vehicles International conferences Neural networks Signs Street signs Support vector machines Traffic congestion Traffic control traffic sign detection traffic sign recognition Vehicles |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9EcWDl-I2aZvk6GtREBFf7K3kMXUX1q7sdv39Ttpu2YLgxWObObQzSef7mo8vhJwZJ5VjSgciAhZEjiWBNDEEXW6cyiIrRCmQfX8Qj4-y31dPC0d9eU1YZQ9cJe5CWQHe5yiUiY0kWG2045wbDdJkYRf817cr1JxM1VQLI2TlI8SR1F9MkZUgk2Fhq_uUJv0tZNnWRS40mt4GWa8RIr2snmyTLEG-RdYWfAO3yXP1KwAcxVbjPSDoy_AjpzdQlMKqnOrc0ee5NAivL0cf48mwGHxSxKj0vrHhLOg7DEph3A55692-Xt8F9eEIgUWQVQRZFFoNECukmLEwHImIi6y0uKJcaFyoZZZp7e3dkgQxCbZCLZgVSeQkBiFK2iXL-TiHPUIhCTNjHVIL7PUgM6MZtwZEpnRX25h3yPk8aamtncP9ARajFBmEz2_a5LdDTpvQr8ou47egK5_5JsA7XJc3sO5pXff0r7p3yOG8bmm97KYp8inv7yZ4_PtwzD1BUxHrkJNmGNeT3yTROYxnGOM3PmXMEowRrenQet72SD4clM7c3v0uYWL_P17wgKwiOCv1bKE8JMvFZAZHZMV-F8Pp5Lic7j93FQlm priority: 102 providerName: Directory of Open Access Journals |
| Title | Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles |
| URI | https://www.proquest.com/docview/2301921735 https://www.proquest.com/docview/2535487942 https://www.proquest.com/docview/2295485262 https://pubmed.ncbi.nlm.nih.gov/PMC6767627 https://doaj.org/article/9c7e0971186c48ecabad333bae8bf10e |
| Volume | 19 |
| WOSCitedRecordID | wos000489187800206&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48F5RWCqDOHCJ2jgPOye0C12xEltVBVblFPkxaSst6dJmOfLbGTtp2EgrTlwsJR4plsZjf589-QbgrbYyszxTgYiRB7HlaSB1gsE40jYrYiOET5C9-CymU7lYZLPm9-hdk1a5XxP9Ql2rPbu8bVqER3Zj3In5iICzE_ISUfL-6mfgaki5u9amoMYB9J3w1rgH_dnZ-ex7S8Ai4mO1ulBEVH-0I65C_IaHnT3JS_d38GY3W_LG9nP68P8O_BE8aGAoO67nzWO4g-UTuH9DnPApzOvzBrSM9jMnNMG-rJcl-4iVz94qmSotm-_zj-j5-HJJX6pWPxgBYXbWan1W7AJXPvvuGXw7nXz98CloKjAEhpBcFRRxaBRikhGPTYSOiO3Y2EhDYWtDbUMli0IppyGXpgR8aL9VghuRxlaSEUGxQ-iVmxKfA8M0LLSxxF8IUKAstOKR0SiKTI2VSaIBvNv7IDeNPLmrknGZE01x7spbdw3gTWt6VWty3GZ04hzZGjgZbf9is13mTVTmmRHoRLRCmZpYolFaWZokWqHURTjGARztfZo3sb3L_7rw9u4kciwwi_kAXrfdFLTuJkaVuLkmG3e7KhOeko3ozK7OeLs95Xrl5b-dxF7KxYt_j-0l3CNs59PhQnkEvWp7ja_grvlVrXfbIRyIhfCtHEL_ZDKdzYf-OILa89-TYRM5fwAcryim |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0IFFgQSFys2uuPXR8QKpSqUdMoKqVqT2Y_xkmk4pTEBfGn-I3MOrappYpbDxyTHVl2_DzznnfyBuC1tjK1PFWeiJB7keWJJ3WMnh9qm-aREaJqkD0aitFIHh-n4zX43fwXxrVVNjmxStR2btw78k2iys66S4Tx-7Pvnpsa5XZXmxEaK1js4a-fJNmW7wbbdH_fcL7z6fDjrldPFfAMsZPSy6PAKMQ4JW0WCx0Sg7eRkYagaANtAyXzXCnni5YkVMyphijBjUgiKymI6AUd9xqsRwR2vwfr48H--KSVeCEpvpV_URim_uaS1BApKB50ql41HKDDaLv9mBcK3M6d_-2nuQu3ayrNtlbYvwdrWNyHWxcMFh_AweqdCVpGNdmZZbDPs0nBtrGsOtAKpgrLDpoeKvq8dTqhKyun3xiReTZo_UpLdoTTqoPwIXy5kot6BL1iXuBjYJgEuTaWNBiRIpS5Vjw0GkWeKl-ZOOzD2-YuZ6a2WHeTPk4zkloOEFkLiD68akPPVr4ilwV9cFBpA5wVePXFfDHJ6sySpUagMwILZGIiiUZpZQmGWqHUeeBjHzYa1GR1flpmfyFz-XIcOiWbRrwPL9tlSjxuN0kVOD-nGLdDLGOeUIzo4Ldzvt2VYjatLMydTWDCxZN_n9sLuLF7uD_MhoPR3lO4SVy1au8L5Ab0ysU5PoPr5kc5Wy6e188hg69Xje8_axp0XQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFyKM-qoQUWBBIXK_Gu7V0fEGpJI6JWURSg6s3sy0mk1imJC-Kv8euY9Ytaqrj1wDHZUeTH55nv806-AXijjIgNjaXHA0u9wNDIEyq0Xp8pE6eB5rxokD094eOxODuLJxvwu_4vjGurrHNikajNUrt35D2kys66i7Owl1ZtEZPB8MPld89NkHI7rfU4jRIix_bXT5Rv6_ejAd7rt5QOj758_ORVEwY8jUwl99LA19LaMEadFnLFkM2bQAuNsDS-Mr4UaSql80iLIizsWE8kp5pHgREYhFQDf_cObHKGoqcDm4dH48m0kXsM1V_pZcRY3O-tURmhmqJ-qwIWgwJa7Lbdm3mt2A0f_M-X6SFsVxSbHJTPxCPYsNljuH_NePEJTMt3KdYQrNXORIN8XswyMrB50ZmWEZkZMq17q_DzwfkMzyyfXxAk-WTU-Jjm5NTOi87Cp_D1Vk5qBzrZMrO7QGzkp0ob1GZIlqxIlaRMK8vTWPalDlkX3tV3PNGV9bqbAHKeoARz4EgacHThdRN6WfqN3BR06GDTBDiL8OKL5WqWVBkniTW3ziDMF5EOhNVSSYOQVNIKlfp924X9GkFJlbfWyV_43LwcMqdw44B24VWzjAnJ7TLJzC6vMMbtHIuQRhjDW1huHW97JVvMC2tzZx8YUf7s38f2Eu4hqJOT0fh4D7aQwhZdf77Yh06-urLP4a7-kS_WqxfVI0ng223D-w9ISHz3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Traffic+Sign+Detection+and+Recognition+Algorithm+for+Intelligent+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Jingwei&rft.au=Song%2C+Chuanxue&rft.au=Silun+Peng&rft.au=Xiao%2C+Feng&rft.date=2019-09-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=18&rft_id=info:doi/10.3390%2Fs19184021&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |