Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles

Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 19; H. 18; S. 4021
Hauptverfasser: Cao, Jingwei, Song, Chuanxue, Peng, Silun, Xiao, Feng, Song, Shixin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 18.09.2019
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.
AbstractList Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.
Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for intelligent vehicles is proposed to address problems such as how easily affected traditional traffic sign detection is by the environment, and poor real-time performance of deep learning-based methodologies for traffic sign recognition. Firstly, the HSV color space is used for spatial threshold segmentation, and traffic signs are effectively detected based on the shape features. Secondly, the model is considerably improved on the basis of the classical LeNet-5 convolutional neural network model by using Gabor kernel as the initial convolutional kernel, adding the batch normalization processing after the pooling layer and selecting Adam method as the optimizer algorithm. Finally, the traffic sign classification and recognition experiments are conducted based on the German Traffic Sign Recognition Benchmark. The favorable prediction and accurate recognition of traffic signs are achieved through the continuous training and testing of the network model. Experimental results show that the accurate recognition rate of traffic signs reaches 99.75%, and the average processing time per frame is 5.4 ms. Compared with other algorithms, the proposed algorithm has remarkable accuracy and real-time performance, strong generalization ability and high training efficiency. The accurate recognition rate and average processing time are markedly improved. This improvement is of considerable importance to reduce the accident rate and enhance the road traffic safety situation, providing a strong technical guarantee for the steady development of intelligent vehicle driving assistance.
Author Cao, Jingwei
Song, Chuanxue
Song, Shixin
Xiao, Feng
Peng, Silun
AuthorAffiliation 3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; caojw18@mails.jlu.edu.cn (J.C.); songchx@126.com (C.S.); pengsilun@126.com (S.P.); xiaofengjl@jlu.edu.cn (F.X.)
2 College of Automotive Engineering, Jilin University, Changchun 130022, China
AuthorAffiliation_xml – name: 2 College of Automotive Engineering, Jilin University, Changchun 130022, China
– name: 3 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
– name: 1 State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China; caojw18@mails.jlu.edu.cn (J.C.); songchx@126.com (C.S.); pengsilun@126.com (S.P.); xiaofengjl@jlu.edu.cn (F.X.)
Author_xml – sequence: 1
  givenname: Jingwei
  orcidid: 0000-0003-4915-5524
  surname: Cao
  fullname: Cao, Jingwei
– sequence: 2
  givenname: Chuanxue
  surname: Song
  fullname: Song, Chuanxue
– sequence: 3
  givenname: Silun
  surname: Peng
  fullname: Peng, Silun
– sequence: 4
  givenname: Feng
  orcidid: 0000-0003-1847-504X
  surname: Xiao
  fullname: Xiao, Feng
– sequence: 5
  givenname: Shixin
  surname: Song
  fullname: Song, Shixin
BookMark eNp9kslqHDEQhkVwiJfkkDdoyCU5TKytW9IlYJxtwGBwnFyFWir1aOiWJlKPwW9vjccJsQNGB21f_ar6VcfoIKYICL0l-CNjCp8WoojkmJIX6IhwyheSUnzwz_oQHZeyxpgyxuQrdMhIyzET8ghdLadNTjfgmutsvA-2-RGG2HyGGewcUmxMdM0V2DTEcL8_G4eUw7yaGp9ys4wzjGMYIM7NL1gFO0J5jV56MxZ48zCfoJ9fv1yff19cXH5bnp9dLGx9fF54TqwBaBWTrBU963DnuJWWqM6R3hEjvTdG1py7TioG4IygVnTcyQoRzk7Qcq_rklnrTQ6Tybc6maDvD1IetMnzLiWtrACsBCGys1yCNb1x1YregOw9wVC1Pu21Ntt-AmdrPdmMj0Qf38Sw0kO60Z2og4oq8P5BIKffWyiznkKx1RsTIW2LplS1XLa0oxV99wRdp22O1SpNW1YpofjzFMNEUSJYW6nTPWVzKiWD1zbMZvdRNcswaoL1rkP03w6pER-eRPwp8n_2DthGurs
CitedBy_id crossref_primary_10_3390_app12146831
crossref_primary_10_3390_s23104674
crossref_primary_10_3390_s24010249
crossref_primary_10_3390_s20010112
crossref_primary_10_1016_j_prime_2024_100442
crossref_primary_10_3390_e24040487
crossref_primary_10_3390_s20164587
crossref_primary_10_1155_2021_4702669
crossref_primary_10_3390_rs15122959
crossref_primary_10_1016_j_micpro_2023_104791
crossref_primary_10_1007_s11042_025_20853_8
crossref_primary_10_1016_j_procs_2024_04_255
crossref_primary_10_3390_ijms252111629
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1016_j_eij_2025_100761
crossref_primary_10_3390_s22093494
crossref_primary_10_1109_TNNLS_2024_3490800
crossref_primary_10_1016_j_eswa_2022_117247
crossref_primary_10_1155_2022_9318475
crossref_primary_10_3389_fpubh_2024_1431757
crossref_primary_10_1016_j_rineng_2024_103553
crossref_primary_10_1007_s11760_024_03108_1
crossref_primary_10_3390_s23135919
crossref_primary_10_3233_JIFS_221720
crossref_primary_10_3390_computers14030088
crossref_primary_10_3390_s22072683
crossref_primary_10_1007_s11554_024_01451_7
crossref_primary_10_1016_j_phycom_2021_101375
crossref_primary_10_1145_3418205
crossref_primary_10_3390_electronics13142773
crossref_primary_10_3390_encyclopedia2040119
crossref_primary_10_1111_exsy_12781
crossref_primary_10_1007_s11042_022_12531_w
crossref_primary_10_1155_2022_3995209
crossref_primary_10_2186_jpr_JPR_D_22_00053
crossref_primary_10_1002_sta4_273
crossref_primary_10_3390_s23073381
crossref_primary_10_3390_s24113411
crossref_primary_10_1007_s11760_024_03388_7
crossref_primary_10_1080_19479832_2022_2086304
crossref_primary_10_3390_en14123697
crossref_primary_10_1007_s11042_023_15898_6
crossref_primary_10_1088_1361_6501_ad9517
crossref_primary_10_1016_j_trc_2021_103303
crossref_primary_10_1155_2022_3041117
crossref_primary_10_1155_2022_4105942
crossref_primary_10_3390_wevj15070285
crossref_primary_10_1016_j_isprsjprs_2020_10_003
crossref_primary_10_1177_09544070211042961
crossref_primary_10_3390_s20061693
crossref_primary_10_1139_geomat_2020_0010
crossref_primary_10_1155_2022_6519601
crossref_primary_10_1016_j_optlaseng_2024_108111
crossref_primary_10_3390_app10093280
crossref_primary_10_1155_2021_8870529
Cites_doi 10.1016/j.ins.2014.01.010
10.1049/iet-its.2018.5171
10.1016/j.neucom.2012.11.057
10.1007/978-3-642-37835-5_31
10.1016/j.neucom.2014.11.026
10.20965/jrm.2015.p0610
10.1109/TITS.2016.2614548
10.3390/s19010217
10.1007/s12530-017-9215-7
10.1109/JSTARS.2018.2810143
10.1109/TCYB.2016.2533424
10.1109/TIP.2019.2896952
10.1016/j.neucom.2016.07.009
10.1007/s12239-014-0034-6
10.3390/s19092093
10.1109/ICT-ISPC.2018.8523920
10.1007/s00371-013-0879-0
10.1007/s11042-014-2293-7
10.1109/TITS.2017.2658662
10.1109/ISIE.2017.8001485
10.1109/IGARSS.2018.8519059
10.1109/MCOM.2019.1800226
10.1016/j.arcontrol.2012.09.008
10.1109/CMVIT.2017.26
10.1109/ICCUBEA.2018.8697847
10.1109/RCIS.2018.8406656
10.1162/neco_a_00990
10.1109/IJCNN.2013.6707049
10.1007/978-981-13-3600-3_48
10.1007/978-3-319-48308-5_54
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s19184021
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9c7e0971186c48ecabad333bae8bf10e
PMC6767627
10_3390_s19184021
GeographicLocations China
India
GeographicLocations_xml – name: China
– name: India
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-f41caee5938357b3606d4c8c196d1bd1a8ffaa802366893eeda72c764d88c1143
IEDL.DBID PIMPY
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489187800206&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:29:22 EST 2025
Tue Nov 04 01:43:35 EST 2025
Thu Sep 04 16:27:01 EDT 2025
Tue Oct 07 07:08:14 EDT 2025
Tue Oct 07 07:11:49 EDT 2025
Sat Nov 29 07:12:59 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f41caee5938357b3606d4c8c196d1bd1a8ffaa802366893eeda72c764d88c1143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4915-5524
0000-0003-1847-504X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2301921735?pq-origsite=%requestingapplication%
PMID 31540378
PQID 2301921735
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9c7e0971186c48ecabad333bae8bf10e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6767627
proquest_miscellaneous_2295485262
proquest_journals_2535487942
proquest_journals_2301921735
crossref_citationtrail_10_3390_s19184021
crossref_primary_10_3390_s19184021
PublicationCentury 2000
PublicationDate 20190918
PublicationDateYYYYMMDD 2019-09-18
PublicationDate_xml – month: 9
  year: 2019
  text: 20190918
  day: 18
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Andreev (ref_5) 2019; 57
Sun (ref_20) 2014; 128
Huang (ref_30) 2017; 47
ref_14
ref_36
ref_13
ref_35
ref_12
ref_33
ref_32
ref_31
ref_18
ref_38
Banharnsakun (ref_28) 2018; 9
Hechri (ref_16) 2015; 10
Campbell (ref_2) 2012; 36
Rawat (ref_34) 2017; 29
(ref_39) 2013; 2013
Zhu (ref_29) 2016; 214
Zhu (ref_10) 2017; 18
ref_24
Natarajan (ref_42) 2018; 12
Liu (ref_37) 2014; 266
ref_22
Yang (ref_6) 2014; 15
ref_21
ref_41
ref_40
ref_3
Yuan (ref_23) 2017; 18
ref_27
ref_26
Eichberger (ref_1) 2010; 3
Yoshida (ref_7) 2015; 27
ref_8
Gudigar (ref_9) 2016; 75
Wang (ref_15) 2014; 30
Guan (ref_19) 2018; 11
(ref_17) 2015; 153
ref_4
Yang (ref_11) 2014; 215
Yuan (ref_25) 2019; 28
References_xml – volume: 266
  start-page: 75
  year: 2014
  ident: ref_37
  article-title: Traffic sign recognition using group sparse coding
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.010
– volume: 2013
  start-page: 364305
  year: 2013
  ident: ref_39
  article-title: Eigen-gradients for traffic sign recognition
  publication-title: Math. Probl. Eng.
– volume: 12
  start-page: 1396
  year: 2018
  ident: ref_42
  article-title: Traffic sign recognition using weighted multi-convolutional neural network
  publication-title: IET Intel. Transp. Syst.
  doi: 10.1049/iet-its.2018.5171
– ident: ref_3
– ident: ref_24
– volume: 128
  start-page: 153
  year: 2014
  ident: ref_20
  article-title: Application of BW-ELM model on traffic sign recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.057
– volume: 3
  start-page: 32
  year: 2010
  ident: ref_1
  article-title: Review of recent patents in integrated vehicle safety, advanced driver assistance systems and intelligent transportation systems
  publication-title: Recent Pat. Mech. Eng.
– volume: 215
  start-page: 347
  year: 2014
  ident: ref_11
  article-title: Vision-based traffic sign recognition system for intelligent vehicles
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-642-37835-5_31
– volume: 153
  start-page: 286
  year: 2015
  ident: ref_17
  article-title: Traffic sign segmentation and classification using statistical learning methods
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.026
– volume: 27
  start-page: 610
  year: 2015
  ident: ref_7
  article-title: Toward next active safety technology of intelligent vehicle
  publication-title: J. Robot. Mechatron.
  doi: 10.20965/jrm.2015.p0610
– volume: 18
  start-page: 1918
  year: 2017
  ident: ref_23
  article-title: An incremental framework for video-based traffic sign detection, tracking, and recognition
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2614548
– ident: ref_36
  doi: 10.3390/s19010217
– volume: 9
  start-page: 255
  year: 2018
  ident: ref_28
  article-title: Multiple traffic sign detection based on the artificial bee colony method
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-017-9215-7
– volume: 11
  start-page: 1715
  year: 2018
  ident: ref_19
  article-title: Robust traffic-sign detection and classification using mobile LiDAR data with digital Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2810143
– ident: ref_21
– volume: 47
  start-page: 920
  year: 2017
  ident: ref_30
  article-title: An efficient method for traffic sign recognition based on extreme learning machine
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2533424
– volume: 28
  start-page: 3423
  year: 2019
  ident: ref_25
  article-title: VSSA-NET: vertical spatial sequence attention network for traffic sign detection
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2896952
– volume: 214
  start-page: 758
  year: 2016
  ident: ref_29
  article-title: Traffic sign detection and recognition using fully convolutional network guided proposals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.009
– ident: ref_8
– volume: 15
  start-page: 333
  year: 2014
  ident: ref_6
  article-title: In-vehicle technology for self-driving cars: Advantages and challenges for aging drivers
  publication-title: Int. J. Automot. Technol.
  doi: 10.1007/s12239-014-0034-6
– ident: ref_4
– ident: ref_14
  doi: 10.3390/s19092093
– ident: ref_33
– ident: ref_31
  doi: 10.1109/ICT-ISPC.2018.8523920
– volume: 30
  start-page: 539
  year: 2014
  ident: ref_15
  article-title: Hole-based traffic sign detection method for traffic signs with red rim
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-013-0879-0
– volume: 75
  start-page: 333
  year: 2016
  ident: ref_9
  article-title: A review on automatic detection and recognition of traffic sign
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-014-2293-7
– volume: 18
  start-page: 2584
  year: 2017
  ident: ref_10
  article-title: Overview of environment perception for intelligent vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2658662
– ident: ref_12
  doi: 10.1109/ISIE.2017.8001485
– volume: 10
  start-page: 202
  year: 2015
  ident: ref_16
  article-title: Robust road lanes and traffic signs recognition for driver assistance system
  publication-title: Int. J. Comput. Sci. Eng.
– ident: ref_26
  doi: 10.1109/IGARSS.2018.8519059
– ident: ref_41
– volume: 57
  start-page: 34
  year: 2019
  ident: ref_5
  article-title: Dense moving fog for intelligent IoT: Key challenges and opportunities
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800226
– ident: ref_38
– volume: 36
  start-page: 267
  year: 2012
  ident: ref_2
  article-title: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.008
– ident: ref_18
  doi: 10.1109/CMVIT.2017.26
– ident: ref_22
– ident: ref_27
  doi: 10.1109/ICCUBEA.2018.8697847
– ident: ref_13
  doi: 10.1109/RCIS.2018.8406656
– volume: 29
  start-page: 2352
  year: 2017
  ident: ref_34
  article-title: Deep convolutional neural networks for image classification: A comprehensive review
  publication-title: Neural Comp.
  doi: 10.1162/neco_a_00990
– ident: ref_40
  doi: 10.1109/IJCNN.2013.6707049
– ident: ref_32
  doi: 10.1007/978-981-13-3600-3_48
– ident: ref_35
  doi: 10.1007/978-3-319-48308-5_54
SSID ssj0023338
Score 2.5944605
Snippet Traffic sign detection and recognition are crucial in the development of intelligent vehicles. An improved traffic sign detection and recognition algorithm for...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4021
SubjectTerms Accuracy
Algorithms
Automobile safety
convolutional neural network
Deep learning
driving assistance
Informatics
intelligent vehicles
International conferences
Neural networks
Signs
Street signs
Support vector machines
Traffic congestion
Traffic control
traffic sign detection
traffic sign recognition
Vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9EcWDl-I2aZvk6GtREBFf7K3kMXUX1q7sdv39Ttpu2YLgxWObObQzSef7mo8vhJwZJ5VjSgciAhZEjiWBNDEEXW6cyiIrRCmQfX8Qj4-y31dPC0d9eU1YZQ9cJe5CWQHe5yiUiY0kWG2045wbDdJkYRf817cr1JxM1VQLI2TlI8SR1F9MkZUgk2Fhq_uUJv0tZNnWRS40mt4GWa8RIr2snmyTLEG-RdYWfAO3yXP1KwAcxVbjPSDoy_AjpzdQlMKqnOrc0ee5NAivL0cf48mwGHxSxKj0vrHhLOg7DEph3A55692-Xt8F9eEIgUWQVQRZFFoNECukmLEwHImIi6y0uKJcaFyoZZZp7e3dkgQxCbZCLZgVSeQkBiFK2iXL-TiHPUIhCTNjHVIL7PUgM6MZtwZEpnRX25h3yPk8aamtncP9ARajFBmEz2_a5LdDTpvQr8ou47egK5_5JsA7XJc3sO5pXff0r7p3yOG8bmm97KYp8inv7yZ4_PtwzD1BUxHrkJNmGNeT3yTROYxnGOM3PmXMEowRrenQet72SD4clM7c3v0uYWL_P17wgKwiOCv1bKE8JMvFZAZHZMV-F8Pp5Lic7j93FQlm
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Traffic Sign Detection and Recognition Algorithm for Intelligent Vehicles
URI https://www.proquest.com/docview/2301921735
https://www.proquest.com/docview/2535487942
https://www.proquest.com/docview/2295485262
https://pubmed.ncbi.nlm.nih.gov/PMC6767627
https://doaj.org/article/9c7e0971186c48ecabad333bae8bf10e
Volume 19
WOSCitedRecordID wos000489187800206&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6xLQc48F5RWCqDOHCJ2jgPOye0C12xEltVBVblFPkxaSst6dJmOfLbGTtp2EgrTlwsJR4plsZjf589-QbgrbYyszxTgYiRB7HlaSB1gsE40jYrYiOET5C9-CymU7lYZLPm9-hdk1a5XxP9Ql2rPbu8bVqER3Zj3In5iICzE_ISUfL-6mfgaki5u9amoMYB9J3w1rgH_dnZ-ex7S8Ai4mO1ulBEVH-0I65C_IaHnT3JS_d38GY3W_LG9nP68P8O_BE8aGAoO67nzWO4g-UTuH9DnPApzOvzBrSM9jMnNMG-rJcl-4iVz94qmSotm-_zj-j5-HJJX6pWPxgBYXbWan1W7AJXPvvuGXw7nXz98CloKjAEhpBcFRRxaBRikhGPTYSOiO3Y2EhDYWtDbUMli0IppyGXpgR8aL9VghuRxlaSEUGxQ-iVmxKfA8M0LLSxxF8IUKAstOKR0SiKTI2VSaIBvNv7IDeNPLmrknGZE01x7spbdw3gTWt6VWty3GZ04hzZGjgZbf9is13mTVTmmRHoRLRCmZpYolFaWZokWqHURTjGARztfZo3sb3L_7rw9u4kciwwi_kAXrfdFLTuJkaVuLkmG3e7KhOeko3ozK7OeLs95Xrl5b-dxF7KxYt_j-0l3CNs59PhQnkEvWp7ja_grvlVrXfbIRyIhfCtHEL_ZDKdzYf-OILa89-TYRM5fwAcryim
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0IFFgQSFys2uuPXR8QKpSqUdMoKqVqT2Y_xkmk4pTEBfGn-I3MOrappYpbDxyTHVl2_DzznnfyBuC1tjK1PFWeiJB7keWJJ3WMnh9qm-aREaJqkD0aitFIHh-n4zX43fwXxrVVNjmxStR2btw78k2iys66S4Tx-7Pvnpsa5XZXmxEaK1js4a-fJNmW7wbbdH_fcL7z6fDjrldPFfAMsZPSy6PAKMQ4JW0WCx0Sg7eRkYagaANtAyXzXCnni5YkVMyphijBjUgiKymI6AUd9xqsRwR2vwfr48H--KSVeCEpvpV_URim_uaS1BApKB50ql41HKDDaLv9mBcK3M6d_-2nuQu3ayrNtlbYvwdrWNyHWxcMFh_AweqdCVpGNdmZZbDPs0nBtrGsOtAKpgrLDpoeKvq8dTqhKyun3xiReTZo_UpLdoTTqoPwIXy5kot6BL1iXuBjYJgEuTaWNBiRIpS5Vjw0GkWeKl-ZOOzD2-YuZ6a2WHeTPk4zkloOEFkLiD68akPPVr4ilwV9cFBpA5wVePXFfDHJ6sySpUagMwILZGIiiUZpZQmGWqHUeeBjHzYa1GR1flpmfyFz-XIcOiWbRrwPL9tlSjxuN0kVOD-nGLdDLGOeUIzo4Ldzvt2VYjatLMydTWDCxZN_n9sLuLF7uD_MhoPR3lO4SVy1au8L5Ab0ysU5PoPr5kc5Wy6e188hg69Xje8_axp0XQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFyKM-qoQUWBBIXK_Gu7V0fEGpJI6JWURSg6s3sy0mk1imJC-Kv8euY9Ytaqrj1wDHZUeTH55nv806-AXijjIgNjaXHA0u9wNDIEyq0Xp8pE6eB5rxokD094eOxODuLJxvwu_4vjGurrHNikajNUrt35D2kys66i7Owl1ZtEZPB8MPld89NkHI7rfU4jRIix_bXT5Rv6_ejAd7rt5QOj758_ORVEwY8jUwl99LA19LaMEadFnLFkM2bQAuNsDS-Mr4UaSql80iLIizsWE8kp5pHgREYhFQDf_cObHKGoqcDm4dH48m0kXsM1V_pZcRY3O-tURmhmqJ-qwIWgwJa7Lbdm3mt2A0f_M-X6SFsVxSbHJTPxCPYsNljuH_NePEJTMt3KdYQrNXORIN8XswyMrB50ZmWEZkZMq17q_DzwfkMzyyfXxAk-WTU-Jjm5NTOi87Cp_D1Vk5qBzrZMrO7QGzkp0ob1GZIlqxIlaRMK8vTWPalDlkX3tV3PNGV9bqbAHKeoARz4EgacHThdRN6WfqN3BR06GDTBDiL8OKL5WqWVBkniTW3ziDMF5EOhNVSSYOQVNIKlfp924X9GkFJlbfWyV_43LwcMqdw44B24VWzjAnJ7TLJzC6vMMbtHIuQRhjDW1huHW97JVvMC2tzZx8YUf7s38f2Eu4hqJOT0fh4D7aQwhZdf77Yh06-urLP4a7-kS_WqxfVI0ng223D-w9ISHz3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Traffic+Sign+Detection+and+Recognition+Algorithm+for+Intelligent+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cao%2C+Jingwei&rft.au=Song%2C+Chuanxue&rft.au=Silun+Peng&rft.au=Xiao%2C+Feng&rft.date=2019-09-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=19&rft.issue=18&rft_id=info:doi/10.3390%2Fs19184021&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon