Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data
Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full di...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 13; číslo 1; s. 456 - 15 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
09.01.2023
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future. |
|---|---|
| AbstractList | Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future. Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future. Abstract Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future. |
| ArticleNumber | 456 |
| Author | Doborjeh, Zohreh Budhraja, Sugam Goh, Wilson Doborjeh, Maryam Sumich, Alexander Kasabov, Nikola Singh, Balkaran Lai, Edmund Tan, Samuel Lee, Jimmy |
| Author_xml | – sequence: 1 givenname: Balkaran surname: Singh fullname: Singh, Balkaran email: balkaran.singh@aut.ac.nz organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology – sequence: 2 givenname: Maryam surname: Doborjeh fullname: Doborjeh, Maryam email: mgholami@aut.ac.nz organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology – sequence: 3 givenname: Zohreh surname: Doborjeh fullname: Doborjeh, Zohreh organization: School of Population Health, The University of Auckland, School of Psychology, The University of Waikato – sequence: 4 givenname: Sugam surname: Budhraja fullname: Budhraja, Sugam organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology – sequence: 5 givenname: Samuel surname: Tan fullname: Tan, Samuel organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU) – sequence: 6 givenname: Alexander surname: Sumich fullname: Sumich, Alexander organization: Department of Psychology, Nottingham Trent University – sequence: 7 givenname: Wilson surname: Goh fullname: Goh, Wilson organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Center for Biomedical Informatics, Nanyang Technological University (NTU), School of Biological Sciences, Nanyang Technological University (NTU) – sequence: 8 givenname: Jimmy surname: Lee fullname: Lee, Jimmy organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Institute for Mental Health – sequence: 9 givenname: Edmund surname: Lai fullname: Lai, Edmund organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology – sequence: 10 givenname: Nikola surname: Kasabov fullname: Kasabov, Nikola organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Intelligent Systems Research Center, Ulster University, Institute for Information and Communication Technologies, Bulgarian Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36624117$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBXEvuChFZ8VKrEpXfLccZZr7x2sBNge-C3491toe2hvtgav-_j8cy8rE5CDFBVrwl-TzATHzInjRQ1prSmHWG0Fs-qM4p5U1NG6cm982l1kfMGl9VQyYl8UZ2ytqWckO6s-rOKIc9JuwADCrCkiOxyc7NDLlhIEAygLczrOEQfxx2yMSH4Pfmi170HNEHKMWjvcrFv4wDeuzCiX25eIz1N3hk9u_ICigGNEGBvTpBziaFBz_pV9dxqn-Hidj-vrr98vl59q6--f71cfbqqTcPxXMNgB0p7zDrRU0MkIZYYzLHhohso1ph3XAL0bU86ohvWl79RrSXYwWJj2Xl1ecQOUW_UlNxWp52K2qlDIKZR6TQ740HJtm80I6IXbWG2nSRcWOgZJ6bVLeGF9fHImpZ-C4OBUMrnH0Af3gS3VmP8qaSgUlJcAO9uASn-WCDPauuyKZXTAeKSFe1axhjHB-nbR9JNXFKp90FFm660nxXVm_sZ_UvlrstFII4Ck2LOCawybj40Zt95rwhW-5lSx5lSBaoOM6VEsdJH1jv6kyZ2NOUiDiOk_2k_4foLtPvg1A |
| CitedBy_id | crossref_primary_10_1186_s13731_024_00429_w crossref_primary_10_3390_math13071156 crossref_primary_10_1111_exsy_13710 |
| Cites_doi | 10.1016/S0019-9958(65)90241-X 10.1371/journal.pone.0104158 10.1016/j.ijmedinf.2006.11.006 10.1016/j.bbr.2019.01.022 10.24869/psyd.2018.64 10.1145/3292500.3330701 10.1109/91.928739 10.1016/j.ins.2006.04.008 10.1186/1471-2164-12-S2-S5 10.1089/cmb.2018.0238 10.1109/3468.736369 10.1016/S0377-0427(00)00433-7 10.1016/j.neunet.2006.05.028 10.1109/3477.969494 10.1371/journal.pone.0028210 10.1109/TFUZZ.2004.841738 10.1016/j.jad.2018.08.073 10.1162/cpsy_a_00007 10.1016/j.cobeha.2022.101101 10.1017/S0033291719002745 10.1023/A:1012487302797 10.1016/j.pnpbp.2013.06.018 10.3389/fncel.2020.585833 10.1016/S0006-3223(03)00185-9 10.1016/j.schres.2013.09.025 10.1097/GIM.0b013e3181fcb468 10.1002/glia.22561 10.1016/j.cell.2018.05.056 10.3233/IFS-1994-2306 10.1126/science.286.5439.531 10.1176/appi.ajp.159.7.1232 10.1109/TCBB.2016.2520934 10.1016/j.ins.2011.02.021 10.1016/j.neuropharm.2012.11.015 10.1172/JCI200522329 10.1016/j.artmed.2015.11.001 10.1016/j.fss.2018.11.010 10.1016/j.cell.2017.05.038 10.1002/hipo.20782 10.7551/mitpress/3071.001.0001 10.1016/S0165-0114(96)00098-X 10.1016/j.euroneuro.2016.12.007 10.1002/ajmg.b.32571 10.1007/978-1-84628-347-5 10.1038/nrc2294 10.1007/978-3-662-43505-2_14 10.1073/pnas.081071198 10.1186/gb-2010-11-10-r106 10.1002/hipo.23174 10.3389/fgene.2020.00885 10.1109/3477.678632 10.1109/91.842154 10.3174/ajnr.A3560 10.1016/j.patrec.2006.08.007 10.1007/978-3-540-30499-9_97 10.1007/978-3-030-71098-9_3 10.1109/IntelCIS.2015.7397257 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-27132-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_96b5a318b86749679148feb341c6a614 PMC9829920 36624117 10_1038_s41598_022_27132_8 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-edfd22b0378b2c1911f1c040c487d20a04749eeb6b171a53b1172aa9efdf0cf3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915457700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:33 EDT 2025 Tue Nov 04 02:06:37 EST 2025 Thu Oct 02 04:20:33 EDT 2025 Tue Oct 07 09:18:22 EDT 2025 Thu Jan 02 22:53:37 EST 2025 Tue Nov 18 19:56:07 EST 2025 Sat Nov 29 02:07:49 EST 2025 Fri Feb 21 02:37:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-edfd22b0378b2c1911f1c040c487d20a04749eeb6b171a53b1172aa9efdf0cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2762570223?pq-origsite=%requestingapplication% |
| PMID | 36624117 |
| PQID | 2762570223 |
| PQPubID | 2041939 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_96b5a318b86749679148feb341c6a614 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829920 proquest_miscellaneous_2763334020 proquest_journals_2762570223 pubmed_primary_36624117 crossref_citationtrail_10_1038_s41598_022_27132_8 crossref_primary_10_1038_s41598_022_27132_8 springer_journals_10_1038_s41598_022_27132_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-09 |
| PublicationDateYYYYMMDD | 2023-01-09 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Bellazzi, Zupan (CR6) 2008 Fannon (CR42) 2003 Gibbons, Suthers, Wilkie, Buckle, Higgs (CR39) 1992; 51 Nogami (CR46) 2011 Clarke (CR7) 2008 Potra, Wright (CR27) 2000 Millan (CR47) 2013 Yu, Ma, Fisher, Kreisberg, Raphael, Ideker (CR8) 2018 Hakak (CR5) 2001 de Monasterio-Schrader (CR49) 2013 Akiba, Sano, Yanase, Ohta, Koyama (CR34) 2019 Anders, Huber (CR54) 2010 Ishibuchi, Yamamoto (CR19) 2005 Alonso, Castiello, Mencar (CR17) 2015 Lee (CR29) 2013 Sumich (CR43) 2002 Bérubé (CR38) 2005 Kasabov (CR13) 2001; 31 Timpano, Picketts (CR36) 2020 Golub (CR4) 1979; 286 Bin Goh, Sng, Yee, Lee, Wong, Lee (CR30) 2017 Jin (CR24) 2000 Krebs (CR31) 2020 Mencar, Castellano, Fanelli (CR58) 2007 Moloney (CR48) 2019 Guillaume (CR11) 2001 Valente De Oliveira (CR25) 1999 Bähner, Meyer-Lindenberg (CR41) 2017 Haury, Gestraud, Vert (CR57) 2011 Gacto, Alcalá, Herrera (CR16) 2011 Wang, Palade (CR20) 2011; 12 Kasabov (CR12) 2007; 28 Song, Kasabov (CR14) 2006 Mah (CR32) 2014 Rajab (CR26) 2019 Schartner (CR51) 2017 Lee (CR3) 2018 Sumich, Heym, Lenzoni, Hunter (CR50) 2022 Gugustea, Tamming, Martin-Kenny, Bérubé, Leung (CR45) 2020 Setnes, Babuška, Kaymak, van Nauta Lemke (CR23) 1998 CR18 Kasabov (CR10) 1996 Kasabov (CR33) 2007 CR15 CR59 Ishibuchi, Murata, Türkşen (CR22) 1997 Boyle, Li, Pritchard (CR1) 2017 Zadeh (CR9) 1965; 8 Guyon, Weston, Barnhill, Vapnik (CR55) 2002 Chiu (CR21) 1994 Wu, Gao, Kasabov (CR2) 2016 Feltes, Chandelier, Grisci, Dorn (CR35) 2019 Galanello, Cao (CR40) 2011; 13 Sumich, Castro, Anilkumar, Zachariah, Kumari (CR52) 2013 Wada (CR37) 2013; 34 Krawczuk, Łukaszuk (CR56) 2016 Vapnik (CR28) 1998 Lana, Ugolini, Giovannini (CR44) 2020 Sumich (CR53) 2018 MK Yu (27132_CR8) 2018 S Timpano (27132_CR36) 2020 T Nogami (27132_CR46) 2011 LA Zadeh (27132_CR9) 1965; 8 JM Alonso (27132_CR17) 2015 BC Feltes (27132_CR35) 2019 A Sumich (27132_CR52) 2013 27132_CR15 27132_CR59 T Akiba (27132_CR34) 2019 D Lana (27132_CR44) 2020 27132_CR18 C Mencar (27132_CR58) 2007 J Lee (27132_CR29) 2013 R Galanello (27132_CR40) 2011; 13 S Anders (27132_CR54) 2010 R Clarke (27132_CR7) 2008 CE Krebs (27132_CR31) 2020 TR Golub (27132_CR4) 1979; 286 Y Lee (27132_CR3) 2018 T Wada (27132_CR37) 2013; 34 H Ishibuchi (27132_CR19) 2005 N Kasabov (27132_CR13) 2001; 31 M Setnes (27132_CR23) 1998 C Schartner (27132_CR51) 2017 WW Bin Goh (27132_CR30) 2017 SL Chiu (27132_CR21) 1994 J Valente De Oliveira (27132_CR25) 1999 Y Hakak (27132_CR5) 2001 S Rajab (27132_CR26) 2019 D Fannon (27132_CR42) 2003 S Guillaume (27132_CR11) 2001 RJ Gibbons (27132_CR39) 1992; 51 R Gugustea (27132_CR45) 2020 R Bellazzi (27132_CR6) 2008 AC Haury (27132_CR57) 2011 J Krawczuk (27132_CR56) 2016 A Sumich (27132_CR43) 2002 WC Mah (27132_CR32) 2014 A Sumich (27132_CR50) 2022 GM Moloney (27132_CR48) 2019 N Kasabov (27132_CR12) 2007; 28 FA Potra (27132_CR27) 2000 P de Monasterio-Schrader (27132_CR49) 2013 MJ Millan (27132_CR47) 2013 F Bähner (27132_CR41) 2017 N Kasabov (27132_CR10) 1996 EA Boyle (27132_CR1) 2017 Z Wang (27132_CR20) 2011; 12 VN Vapnik (27132_CR28) 1998 A Sumich (27132_CR53) 2018 MJ Gacto (27132_CR16) 2011 Y Jin (27132_CR24) 2000 H Wu (27132_CR2) 2016 Q Song (27132_CR14) 2006 H Ishibuchi (27132_CR22) 1997 N Kasabov (27132_CR33) 2007 NG Bérubé (27132_CR38) 2005 I Guyon (27132_CR55) 2002 |
| References_xml | – volume: 8 start-page: 338 issue: 3 year: 1965 end-page: 353 ident: CR9 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – year: 2014 ident: CR32 article-title: Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0104158 – year: 2008 ident: CR6 article-title: Predictive data mining in clinical medicine: Current issues and guidelines publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2006.11.006 – year: 2019 ident: CR48 article-title: Differential gene expression in the mesocorticolimbic system of innately high- and low-impulsive rats publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2019.01.022 – year: 2018 ident: CR53 article-title: Neurophysiological correlates of excitement in men with recent-onset psychosis publication-title: Psychiatr. Danub. doi: 10.24869/psyd.2018.64 – year: 2019 ident: CR34 article-title: Optuna: A next-generation hyperparameter optimization framework publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. doi: 10.1145/3292500.3330701 – year: 2001 ident: CR11 article-title: Designing fuzzy inference systems from data: An interpretability-oriented review publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.928739 – year: 2007 ident: CR58 article-title: Distinguishability quantification of fuzzy sets publication-title: Inf. Sci. (N. Y.) doi: 10.1016/j.ins.2006.04.008 – volume: 12 start-page: 2 issue: SUPPL year: 2011 ident: CR20 article-title: Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S5 – year: 2019 ident: CR35 article-title: CuMiDa: An extensively curated microarray database for benchmarking and testing of machine learning approaches in cancer research publication-title: J. Comput. Biol. doi: 10.1089/cmb.2018.0238 – year: 1999 ident: CR25 article-title: Semantic constraints for membership function optimization publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/3468.736369 – year: 2000 ident: CR27 article-title: Interior-point methods publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00433-7 – year: 2006 ident: CR14 article-title: TWNFI - A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.05.028 – year: 1998 ident: CR28 publication-title: Statistical Learning Theory – volume: 31 start-page: 902 issue: 6 year: 2001 end-page: 918 ident: CR13 article-title: ‘Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) doi: 10.1109/3477.969494 – year: 2011 ident: CR57 article-title: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures publication-title: PLoS ONE doi: 10.1371/journal.pone.0028210 – year: 2005 ident: CR19 article-title: Rule weight specification in fuzzy rule-based classification systems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.841738 – year: 2018 ident: CR3 article-title: Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2018.08.073 – year: 2017 ident: CR30 article-title: Can peripheral blood-derived gene expressions characterize individuals at ultra-high risk for psychosis? publication-title: Comput. Psychiatry doi: 10.1162/cpsy_a_00007 – year: 2022 ident: CR50 article-title: Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2022.101101 – ident: CR15 – year: 2020 ident: CR31 article-title: Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect publication-title: Psychol. Med. doi: 10.1017/S0033291719002745 – year: 2002 ident: CR55 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – year: 2013 ident: CR52 article-title: ‘Neurophysiological correlates of excitement in schizophrenia publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2013.06.018 – year: 2020 ident: CR44 article-title: An overview on the differential interplay among neurons–astrocytes–microglia in CA1 and CA3 hippocampus in hypoxia/ischemia publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2020.585833 – year: 2003 ident: CR42 article-title: Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(03)00185-9 – year: 2013 ident: CR29 article-title: The longitudinal youth at risk study (LYRIKS) - An Asian UHR perspective publication-title: Schizophr. Res. doi: 10.1016/j.schres.2013.09.025 – volume: 13 start-page: 83 issue: 2 year: 2011 end-page: 88 ident: CR40 article-title: Alpha-thalassemia publication-title: Genet. Med. doi: 10.1097/GIM.0b013e3181fcb468 – year: 2013 ident: CR49 article-title: Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2 publication-title: Glia doi: 10.1002/glia.22561 – year: 2018 ident: CR8 article-title: Visible machine learning for biomedicine publication-title: Cell doi: 10.1016/j.cell.2018.05.056 – ident: CR18 – year: 1994 ident: CR21 article-title: Fuzzy model identification based on cluster estimation publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-1994-2306 – volume: 286 start-page: 1999 issue: 5439 year: 1979 ident: CR4 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – year: 2002 ident: CR43 article-title: Temporal lobe abnormalities in first-episode psychosis publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.159.7.1232 – year: 2016 ident: CR2 article-title: Network-based method for inferring cancer progression at the pathway level from cross-sectional mutation data publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2016.2520934 – year: 2011 ident: CR16 article-title: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures publication-title: Inf. Sci. (N. Y.) doi: 10.1016/j.ins.2011.02.021 – year: 2013 ident: CR47 article-title: An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2012.11.015 – volume: 51 start-page: 1136 issue: 5 year: 1992 end-page: 1149 ident: CR39 article-title: X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: Localization to Xq12-q21.31 by X inactivation and linkage analysis publication-title: Am. J. Hum. Genet. – year: 2005 ident: CR38 article-title: The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis publication-title: J. Clin. Investig. doi: 10.1172/JCI200522329 – year: 2016 ident: CR56 article-title: The feature selection bias problem in relation to high-dimensional gene data publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2015.11.001 – year: 2019 ident: CR26 article-title: Handling interpretability issues in ANFIS using rule base simplification and constrained learning publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2018.11.010 – year: 2017 ident: CR1 article-title: an expanded view of complex traits: From polygenic to omnigenic publication-title: Cell doi: 10.1016/j.cell.2017.05.038 – year: 2011 ident: CR46 article-title: Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice publication-title: Hippocampus doi: 10.1002/hipo.20782 – year: 1996 ident: CR10 publication-title: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering doi: 10.7551/mitpress/3071.001.0001 – year: 1997 ident: CR22 article-title: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(96)00098-X – year: 2017 ident: CR41 article-title: Hippocampal–prefrontal connectivity as a translational phenotype for schizophrenia publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2016.12.007 – year: 2017 ident: CR51 article-title: The regulation of tetraspanin 8 gene expression—A potential new mechanism in the pathogenesis of bipolar disorder publication-title: Am. J. Med. Genet. Part B Neuropsychiatr. Genet. doi: 10.1002/ajmg.b.32571 – year: 2007 ident: CR33 publication-title: Evolving Connectionist Systems doi: 10.1007/978-1-84628-347-5 – year: 2008 ident: CR7 article-title: The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2294 – year: 2015 ident: CR17 article-title: Interpretability of fuzzy systems: Current research trends and prospects publication-title: Springer Handb. Comput. Intell. doi: 10.1007/978-3-662-43505-2_14 – year: 2001 ident: CR5 article-title: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.081071198 – year: 2010 ident: CR54 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – year: 2020 ident: CR45 article-title: Inactivation of ATRX in forebrain excitatory neurons affects hippocampal synaptic plasticity publication-title: Hippocampus doi: 10.1002/hipo.23174 – ident: CR59 – year: 2020 ident: CR36 article-title: Neurodevelopmental disorders caused by defective chromatin remodeling: Phenotypic complexity is highlighted by a review of ATRX function publication-title: Front. Genet. doi: 10.3389/fgene.2020.00885 – year: 1998 ident: CR23 article-title: ‘Similarity measures in fuzzy rule base simplification publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/3477.678632 – year: 2000 ident: CR24 article-title: Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.842154 – volume: 34 start-page: 2034 issue: 10 year: 2013 end-page: 2038 ident: CR37 article-title: Neuroradiologic features in X-linked α-thalassemia/mental retardation syndrome publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3560 – volume: 28 start-page: 673 issue: 6 year: 2007 end-page: 685 ident: CR12 article-title: Global, local and personalised modeling and pattern discovery in bioinformatics: An integrated approach publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.08.007 – year: 1998 ident: 27132_CR23 publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/3477.678632 – year: 2011 ident: 27132_CR46 publication-title: Hippocampus doi: 10.1002/hipo.20782 – year: 2001 ident: 27132_CR11 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.928739 – year: 2020 ident: 27132_CR45 publication-title: Hippocampus doi: 10.1002/hipo.23174 – volume: 34 start-page: 2034 issue: 10 year: 2013 ident: 27132_CR37 publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3560 – year: 2002 ident: 27132_CR43 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.159.7.1232 – year: 2019 ident: 27132_CR26 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2018.11.010 – year: 2017 ident: 27132_CR41 publication-title: Eur. Neuropsychopharmacol. doi: 10.1016/j.euroneuro.2016.12.007 – volume: 31 start-page: 902 issue: 6 year: 2001 ident: 27132_CR13 publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) doi: 10.1109/3477.969494 – year: 2018 ident: 27132_CR53 publication-title: Psychiatr. Danub. doi: 10.24869/psyd.2018.64 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 27132_CR9 publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – year: 2022 ident: 27132_CR50 publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2022.101101 – year: 2006 ident: 27132_CR14 publication-title: Neural Netw. doi: 10.1016/j.neunet.2006.05.028 – year: 2019 ident: 27132_CR35 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2018.0238 – year: 2011 ident: 27132_CR16 publication-title: Inf. Sci. (N. Y.) doi: 10.1016/j.ins.2011.02.021 – year: 2017 ident: 27132_CR1 publication-title: Cell doi: 10.1016/j.cell.2017.05.038 – year: 1997 ident: 27132_CR22 publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(96)00098-X – ident: 27132_CR15 doi: 10.1007/978-3-540-30499-9_97 – year: 2007 ident: 27132_CR58 publication-title: Inf. Sci. (N. Y.) doi: 10.1016/j.ins.2006.04.008 – year: 2013 ident: 27132_CR47 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2012.11.015 – year: 2019 ident: 27132_CR48 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2019.01.022 – year: 2020 ident: 27132_CR31 publication-title: Psychol. Med. doi: 10.1017/S0033291719002745 – year: 2016 ident: 27132_CR2 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2016.2520934 – ident: 27132_CR18 doi: 10.1007/978-3-030-71098-9_3 – volume: 51 start-page: 1136 issue: 5 year: 1992 ident: 27132_CR39 publication-title: Am. J. Hum. Genet. – volume: 28 start-page: 673 issue: 6 year: 2007 ident: 27132_CR12 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.08.007 – year: 2015 ident: 27132_CR17 publication-title: Springer Handb. Comput. Intell. doi: 10.1007/978-3-662-43505-2_14 – year: 2013 ident: 27132_CR52 publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2013.06.018 – volume: 13 start-page: 83 issue: 2 year: 2011 ident: 27132_CR40 publication-title: Genet. Med. doi: 10.1097/GIM.0b013e3181fcb468 – year: 2010 ident: 27132_CR54 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – year: 2017 ident: 27132_CR30 publication-title: Comput. Psychiatry doi: 10.1162/cpsy_a_00007 – year: 2008 ident: 27132_CR6 publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2006.11.006 – year: 2013 ident: 27132_CR29 publication-title: Schizophr. Res. doi: 10.1016/j.schres.2013.09.025 – volume: 286 start-page: 1999 issue: 5439 year: 1979 ident: 27132_CR4 publication-title: Science doi: 10.1126/science.286.5439.531 – volume-title: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering year: 1996 ident: 27132_CR10 doi: 10.7551/mitpress/3071.001.0001 – year: 1994 ident: 27132_CR21 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/IFS-1994-2306 – year: 2005 ident: 27132_CR38 publication-title: J. Clin. Investig. doi: 10.1172/JCI200522329 – year: 2014 ident: 27132_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0104158 – year: 2002 ident: 27132_CR55 publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: 27132_CR59 doi: 10.1109/IntelCIS.2015.7397257 – year: 2005 ident: 27132_CR19 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2004.841738 – volume: 12 start-page: 2 issue: SUPPL year: 2011 ident: 27132_CR20 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S5 – year: 2020 ident: 27132_CR36 publication-title: Front. Genet. doi: 10.3389/fgene.2020.00885 – year: 2017 ident: 27132_CR51 publication-title: Am. J. Med. Genet. Part B Neuropsychiatr. Genet. doi: 10.1002/ajmg.b.32571 – year: 1999 ident: 27132_CR25 publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/3468.736369 – year: 2019 ident: 27132_CR34 publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. doi: 10.1145/3292500.3330701 – year: 2003 ident: 27132_CR42 publication-title: Biol. Psychiatry doi: 10.1016/S0006-3223(03)00185-9 – year: 2018 ident: 27132_CR3 publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2018.08.073 – year: 2001 ident: 27132_CR5 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.081071198 – year: 2008 ident: 27132_CR7 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2294 – year: 2020 ident: 27132_CR44 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2020.585833 – year: 2018 ident: 27132_CR8 publication-title: Cell doi: 10.1016/j.cell.2018.05.056 – year: 2016 ident: 27132_CR56 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2015.11.001 – volume-title: Statistical Learning Theory year: 1998 ident: 27132_CR28 – year: 2013 ident: 27132_CR49 publication-title: Glia doi: 10.1002/glia.22561 – volume-title: Evolving Connectionist Systems year: 2007 ident: 27132_CR33 doi: 10.1007/978-1-84628-347-5 – year: 2000 ident: 27132_CR27 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00433-7 – year: 2011 ident: 27132_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028210 – year: 2000 ident: 27132_CR24 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.842154 |
| SSID | ssj0000529419 |
| Score | 2.4077587 |
| Snippet | Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining... Abstract Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 456 |
| SubjectTerms | 631/114/1305 631/114/2164 Algorithms Benchmarks Bipolar Disorder Case studies Cognitive ability Datasets Decision making Diagnosis Early Detection of Cancer Fuzzy Logic Gene Expression Heterogeneity Humanities and Social Sciences Humans Impulsive behavior Learning algorithms Machine learning Medical research Mental disorders Mental health multidisciplinary Neural networks Neural Networks, Computer Schizophrenia Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kUfAivm1dJYI3bbaT9ORxVHHxIIuHRfYW8sSBpWfYmRF3D_52K0n3OOPz4rWTdIdKFfmqk_o-gBde9LiPYXwrOvNtZvRqbc_7lrEuaC-Tj4VL79MHeXKizs70xx2pr3wnrNIDV8MdaeFmFh3PKSF7LaRG_J4wA-ypF1YUCWuGqGcnmaqs3kz3VI9VMh1XRyvcqXI1GcvVKJiCtWpvJyqE_b9Dmb9elvzpxLRsRMe34daIIMnrOvM7cC0Od-FG1ZS8vAffsgRnEX6IgRS2SpI2V1eXZD6V9pGqGl36E8SsJH5dno9FVGQ5gfMVDi8yObleneTftWT3sJssBoK-F_PgepV2IPm26X04PX53-vZ9O4ostB7B2rqNIQXGXMelcsxj9kYT9RjZHjOZwDrb9Wj2GJ1wVFI7444i5LFWxxRS5xN_AAfDYoiPgFCWAmdRCpoiJn3Udamzrg_WJz-LgTVAJ3sbPxKQZ3Ocm3IQzpWpa2RwjUxZI6MaeLkds6z0G3_t_SYv47Znps4uD9ChzOhQ5l8O1cDh5ARmjOcVfkBkuT_EUg083zZjJObjFTvExab04ZznfLyBh9VntjPhQiBUorIBuedNe1Pdbxnmnwvbt1aIGPI7X01-92NafzbF4_9hiidwkyGmK3-c9CEcrC828Slc91_W89XFsxJx3wHsYS7A priority: 102 providerName: Directory of Open Access Journals |
| Title | Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data |
| URI | https://link.springer.com/article/10.1038/s41598-022-27132-8 https://www.ncbi.nlm.nih.gov/pubmed/36624117 https://www.proquest.com/docview/2762570223 https://www.proquest.com/docview/2763334020 https://pubmed.ncbi.nlm.nih.gov/PMC9829920 https://doaj.org/article/96b5a318b86749679148feb341c6a614 |
| Volume | 13 |
| WOSCitedRecordID | wos000915457700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4ga20mcnBBFrUCiqwhVaDlFsWOXlapku9lFtAd-O2PHSVkevXDJYW2v_JgZfzPjmQF4qdIY7zHk74wmKrQZvcIq5nHIWFTnShilXS69zx_FdJrNZnnhDW6df1Y5yEQnqOtWWRv5PkOuTQTeOPzN4jy0VaOsd9WX0NiCHZslgbune8VoY7FerJjmPlYm4tl-h_eVjSljNiYFFbEw27iPXNr-v2HNP59M_uY3ddfR0d3_Xcg9uOOBKHnbU859uKGbB3CrL0158RB-2Eqern6ErolLeknM-vLygsyHCEHSF592_QlCX6K_L858LBZZDBi_w-Gu2o4NeyfW6kt-9ZmTtiFIwtoO7l_kNsQ-Wn0EJ0eHJ-_eh75WQ6gQ861CXZuaMRlxkUmmUAmkhioUEAoVoppFVRSLONdappIKWiVcUkROVZVrU5tIGf4Ytpu20btAKDM1Z1qk1GjUHamMTFTJuK6UUYmuWQB0OLBS-TzmdjvOSudP51nZH3KJW1y6Qy6zAF6NYxZ9Fo9rex9YOhh72gzc7od2eVp6hi7zVCYVCkSZpbiyVOSoVxotERSotELME8DecPylFwtdeXX2AbwYm5GhrZemanS7dn0451atD-BJT3TjTHiaIuKiIgCxQY4bU91saeZfXdLwPEPgYf_z9UC4V9P691Y8vX4Vz-A2Q9DnTFL5Hmyvlmv9HG6qb6t5t5zAlpgJ980msHNwOC0-TZzNA7_HrJg4ZsWW4sNx8eUnwEJFCw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqixncU5IMRWteow6mGEerNix4aRqmSYzADTA_-I_8izs5Rh6a0Hrokd2c5bvvf8FoAnOo1RjyF_C5ro0FX0CouYxyFjUZnrzGrja-l9GGXjsTg8zA824EefC-PCKnuZ6AV1WWvnI99myLVJhhqHv5x9Dl3XKHe72rfQaMli36y-osnWvNh7i__3KWM77yZvdsOuq0CoEZ0sQlPakjEV8UwoptFcoZZqJGWN0L1kURHFWZwbo1JFM1okXFHU8UWRG1vaSFuOnz0H5xFFMOEjBQ8Gl467NItp3qXmRFxsN6geXQobcykwaPeFYk39-S4Bf4O2f0Zo_nZN67XfztX_7NyuwZUOZpNXLV9chw1T3YCLbePN1U347vqU-u4YpiS-pCexy-PjFZn2-Y-kba3txxME9sR8mx11mWZk1lswDU73vYRcUj9xPm3ya0QAqSuCDGrc5DbeuCIuJPcWTM5i77dhs6orcxcIZbbkzGQptQYtY6oiGxUqLgttdWJKFgDt6UPqrkq7O44j6aMFuJAtTUn8o9LTlBQBPBvmzNoaJaeOfu3Ibhjp6ov7B_X8o-zElcxTlRQo7pVIcWdplqPVbI1CyKPTAhFdAFs9tclO6DXyhNQCeDy8RnHl7qCKytRLP4Zz7pwWAdxpaXxYCU9TxJM0CyBbo_61pa6_qaaffEn0XCCsct983vPJybL-fRT3Tt_FI7i0O3k_kqO98f59uMwQ3nrnW74Fm4v50jyAC_rLYtrMH3o5QECeMf_8BD-Fmrc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUX3pRAASPBiUYb29k4OSAElBVVq9UeKtSbFTs2rFQly2YX2B74X_w7xs6jLI_eeuCa2JHtzOOb8TwAnukkRj2G_J3SoQ5dRa8wj3kcMhYVmRZWG19L78OhGI_T4-NssgE_ulwYF1bZyUQvqItKOx_5gCHXDgVqHD6wbVjEZG_0avY5dB2k3E1r106jIZEDs_qK5lv9cn8P__Vzxkbvjt6-D9sOA6FGpLIITWELxlTERaqYRtOFWqqRrDXC-IJFeRSLODNGJYoKmg-5oqjv8zwztrCRthw_ewkuC1ez3EcNTnr3jrtAi2nWpulEPB3UqCpdOhtz6TBoA4bpmir0HQP-BnP_jNb87crWa8LRjf_4DG_C9RZ-k9cNv9yCDVPehqtNQ87VHfju-pf6rhmmIL7UJ7HL09MVmXZ5kaRpue3HEwT8xHybnbQZaGTWWTY1Tvc9hlyyP3G-bvJrpACpSoKMa9zkJg65JC5U9y4cXcTe78FmWZXmPhDKbMGZEQm1Bi1mqiIb5Soucm310BQsANrRitRt9XZ3HCfSRxHwVDb0JfHvSk9fMg3gRT9n1tQuOXf0G0eC_UhXd9w_qOYfZSvGZJaoYY5qQKUJ7iwRGVrT1iiEQjrJEekFsNNRnmyFYS3PyC6Ap_1rFGPubiovTbX0YzjnzpkRwHZD7_1KeJIgzqQiALHGCWtLXX9TTj_5UulZinDLfXO345mzZf37KB6cv4snsIVsIw_3xwcP4RpD1Ot9ctkObC7mS_MIrugvi2k9f-xFAgF5wezzE1hro3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+neuro+fuzzy+inference+methodology+for+explainable+personalised+modelling+with+applications+on+gene+expression+data&rft.jtitle=Scientific+reports&rft.au=Singh%2C+Balkaran&rft.au=Doborjeh%2C+Maryam&rft.au=Doborjeh%2C+Zohreh&rft.au=Budhraja%2C+Sugam&rft.date=2023-01-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-022-27132-8&rft_id=info%3Apmid%2F36624117&rft.externalDocID=PMC9829920 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |