Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data

Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 13; číslo 1; s. 456 - 15
Hlavní autoři: Singh, Balkaran, Doborjeh, Maryam, Doborjeh, Zohreh, Budhraja, Sugam, Tan, Samuel, Sumich, Alexander, Goh, Wilson, Lee, Jimmy, Lai, Edmund, Kasabov, Nikola
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 09.01.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.
AbstractList Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.
Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.
Abstract Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining insights on the underlying molecular processes of genetic conditions. Interpretable models can potentially support early diagnosis before full disease manifestation. This is particularly important yet, challenging for mental health. We hypothesise this is due to extreme heterogeneity issues which may be overcome and explained by personalised modelling techniques. Thus far, most machine learning methods applied to gene expression datasets, including deep neural networks, lack personalised interpretability. This paper proposes a new methodology named personalised constrained neuro fuzzy inference (PCNFI) for learning personalised rules from high dimensional datasets which are structurally and semantically interpretable. Case studies on two mental health related datasets (schizophrenia and bipolar disorders) have shown that the relatively short and simple personalised fuzzy rules provided enhanced interpretability as well as better classification performance compared to other commonly used machine learning methods. Performance test on a cancer dataset also showed that PCNFI matches previous benchmarks. Insights from our approach also indicated the importance of two genes (ATRX and TSPAN2) as possible biomarkers for early differentiation of ultra-high risk, bipolar and healthy individuals. These genes are linked to cognitive ability and impulsive behaviour. Our findings suggest a significant starting point for further research into the biological role of cognitive and impulsivity-related differences. With potential applications across bio-medical research, the proposed PCNFI method is promising for diagnosis, prognosis, and the design of personalised treatment plans for better outcomes in the future.
ArticleNumber 456
Author Doborjeh, Zohreh
Budhraja, Sugam
Goh, Wilson
Doborjeh, Maryam
Sumich, Alexander
Kasabov, Nikola
Singh, Balkaran
Lai, Edmund
Tan, Samuel
Lee, Jimmy
Author_xml – sequence: 1
  givenname: Balkaran
  surname: Singh
  fullname: Singh, Balkaran
  email: balkaran.singh@aut.ac.nz
  organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology
– sequence: 2
  givenname: Maryam
  surname: Doborjeh
  fullname: Doborjeh, Maryam
  email: mgholami@aut.ac.nz
  organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology
– sequence: 3
  givenname: Zohreh
  surname: Doborjeh
  fullname: Doborjeh, Zohreh
  organization: School of Population Health, The University of Auckland, School of Psychology, The University of Waikato
– sequence: 4
  givenname: Sugam
  surname: Budhraja
  fullname: Budhraja, Sugam
  organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology
– sequence: 5
  givenname: Samuel
  surname: Tan
  fullname: Tan, Samuel
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU)
– sequence: 6
  givenname: Alexander
  surname: Sumich
  fullname: Sumich, Alexander
  organization: Department of Psychology, Nottingham Trent University
– sequence: 7
  givenname: Wilson
  surname: Goh
  fullname: Goh, Wilson
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Center for Biomedical Informatics, Nanyang Technological University (NTU), School of Biological Sciences, Nanyang Technological University (NTU)
– sequence: 8
  givenname: Jimmy
  surname: Lee
  fullname: Lee, Jimmy
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Institute for Mental Health
– sequence: 9
  givenname: Edmund
  surname: Lai
  fullname: Lai, Edmund
  organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology
– sequence: 10
  givenname: Nikola
  surname: Kasabov
  fullname: Kasabov, Nikola
  organization: Knowledge Engineering and Discovery Research Innovation (KEDRI), School of Engineering Computer and Mathematical Sciences, Auckland University of Technology, Intelligent Systems Research Center, Ulster University, Institute for Information and Communication Technologies, Bulgarian Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36624117$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBXEvuChFZ8VKrEpXfLccZZr7x2sBNge-C3491toe2hvtgav-_j8cy8rE5CDFBVrwl-TzATHzInjRQ1prSmHWG0Fs-qM4p5U1NG6cm982l1kfMGl9VQyYl8UZ2ytqWckO6s-rOKIc9JuwADCrCkiOxyc7NDLlhIEAygLczrOEQfxx2yMSH4Pfmi170HNEHKMWjvcrFv4wDeuzCiX25eIz1N3hk9u_ICigGNEGBvTpBziaFBz_pV9dxqn-Hidj-vrr98vl59q6--f71cfbqqTcPxXMNgB0p7zDrRU0MkIZYYzLHhohso1ph3XAL0bU86ohvWl79RrSXYwWJj2Xl1ecQOUW_UlNxWp52K2qlDIKZR6TQ740HJtm80I6IXbWG2nSRcWOgZJ6bVLeGF9fHImpZ-C4OBUMrnH0Af3gS3VmP8qaSgUlJcAO9uASn-WCDPauuyKZXTAeKSFe1axhjHB-nbR9JNXFKp90FFm660nxXVm_sZ_UvlrstFII4Ck2LOCawybj40Zt95rwhW-5lSx5lSBaoOM6VEsdJH1jv6kyZ2NOUiDiOk_2k_4foLtPvg1A
CitedBy_id crossref_primary_10_1186_s13731_024_00429_w
crossref_primary_10_3390_math13071156
crossref_primary_10_1111_exsy_13710
Cites_doi 10.1016/S0019-9958(65)90241-X
10.1371/journal.pone.0104158
10.1016/j.ijmedinf.2006.11.006
10.1016/j.bbr.2019.01.022
10.24869/psyd.2018.64
10.1145/3292500.3330701
10.1109/91.928739
10.1016/j.ins.2006.04.008
10.1186/1471-2164-12-S2-S5
10.1089/cmb.2018.0238
10.1109/3468.736369
10.1016/S0377-0427(00)00433-7
10.1016/j.neunet.2006.05.028
10.1109/3477.969494
10.1371/journal.pone.0028210
10.1109/TFUZZ.2004.841738
10.1016/j.jad.2018.08.073
10.1162/cpsy_a_00007
10.1016/j.cobeha.2022.101101
10.1017/S0033291719002745
10.1023/A:1012487302797
10.1016/j.pnpbp.2013.06.018
10.3389/fncel.2020.585833
10.1016/S0006-3223(03)00185-9
10.1016/j.schres.2013.09.025
10.1097/GIM.0b013e3181fcb468
10.1002/glia.22561
10.1016/j.cell.2018.05.056
10.3233/IFS-1994-2306
10.1126/science.286.5439.531
10.1176/appi.ajp.159.7.1232
10.1109/TCBB.2016.2520934
10.1016/j.ins.2011.02.021
10.1016/j.neuropharm.2012.11.015
10.1172/JCI200522329
10.1016/j.artmed.2015.11.001
10.1016/j.fss.2018.11.010
10.1016/j.cell.2017.05.038
10.1002/hipo.20782
10.7551/mitpress/3071.001.0001
10.1016/S0165-0114(96)00098-X
10.1016/j.euroneuro.2016.12.007
10.1002/ajmg.b.32571
10.1007/978-1-84628-347-5
10.1038/nrc2294
10.1007/978-3-662-43505-2_14
10.1073/pnas.081071198
10.1186/gb-2010-11-10-r106
10.1002/hipo.23174
10.3389/fgene.2020.00885
10.1109/3477.678632
10.1109/91.842154
10.3174/ajnr.A3560
10.1016/j.patrec.2006.08.007
10.1007/978-3-540-30499-9_97
10.1007/978-3-030-71098-9_3
10.1109/IntelCIS.2015.7397257
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-27132-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_96b5a318b86749679148feb341c6a614
PMC9829920
36624117
10_1038_s41598_022_27132_8
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-edfd22b0378b2c1911f1c040c487d20a04749eeb6b171a53b1172aa9efdf0cf3
IEDL.DBID M7P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915457700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:33 EDT 2025
Tue Nov 04 02:06:37 EST 2025
Thu Oct 02 04:20:33 EDT 2025
Tue Oct 07 09:18:22 EDT 2025
Thu Jan 02 22:53:37 EST 2025
Tue Nov 18 19:56:07 EST 2025
Sat Nov 29 02:07:49 EST 2025
Fri Feb 21 02:37:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-edfd22b0378b2c1911f1c040c487d20a04749eeb6b171a53b1172aa9efdf0cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2762570223?pq-origsite=%requestingapplication%
PMID 36624117
PQID 2762570223
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_96b5a318b86749679148feb341c6a614
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9829920
proquest_miscellaneous_2763334020
proquest_journals_2762570223
pubmed_primary_36624117
crossref_citationtrail_10_1038_s41598_022_27132_8
crossref_primary_10_1038_s41598_022_27132_8
springer_journals_10_1038_s41598_022_27132_8
PublicationCentury 2000
PublicationDate 2023-01-09
PublicationDateYYYYMMDD 2023-01-09
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Bellazzi, Zupan (CR6) 2008
Fannon (CR42) 2003
Gibbons, Suthers, Wilkie, Buckle, Higgs (CR39) 1992; 51
Nogami (CR46) 2011
Clarke (CR7) 2008
Potra, Wright (CR27) 2000
Millan (CR47) 2013
Yu, Ma, Fisher, Kreisberg, Raphael, Ideker (CR8) 2018
Hakak (CR5) 2001
de Monasterio-Schrader (CR49) 2013
Akiba, Sano, Yanase, Ohta, Koyama (CR34) 2019
Anders, Huber (CR54) 2010
Ishibuchi, Yamamoto (CR19) 2005
Alonso, Castiello, Mencar (CR17) 2015
Lee (CR29) 2013
Sumich (CR43) 2002
Bérubé (CR38) 2005
Kasabov (CR13) 2001; 31
Timpano, Picketts (CR36) 2020
Golub (CR4) 1979; 286
Bin Goh, Sng, Yee, Lee, Wong, Lee (CR30) 2017
Jin (CR24) 2000
Krebs (CR31) 2020
Mencar, Castellano, Fanelli (CR58) 2007
Moloney (CR48) 2019
Guillaume (CR11) 2001
Valente De Oliveira (CR25) 1999
Bähner, Meyer-Lindenberg (CR41) 2017
Haury, Gestraud, Vert (CR57) 2011
Gacto, Alcalá, Herrera (CR16) 2011
Wang, Palade (CR20) 2011; 12
Kasabov (CR12) 2007; 28
Song, Kasabov (CR14) 2006
Mah (CR32) 2014
Rajab (CR26) 2019
Schartner (CR51) 2017
Lee (CR3) 2018
Sumich, Heym, Lenzoni, Hunter (CR50) 2022
Gugustea, Tamming, Martin-Kenny, Bérubé, Leung (CR45) 2020
Setnes, Babuška, Kaymak, van Nauta Lemke (CR23) 1998
CR18
Kasabov (CR10) 1996
Kasabov (CR33) 2007
CR15
CR59
Ishibuchi, Murata, Türkşen (CR22) 1997
Boyle, Li, Pritchard (CR1) 2017
Zadeh (CR9) 1965; 8
Guyon, Weston, Barnhill, Vapnik (CR55) 2002
Chiu (CR21) 1994
Wu, Gao, Kasabov (CR2) 2016
Feltes, Chandelier, Grisci, Dorn (CR35) 2019
Galanello, Cao (CR40) 2011; 13
Sumich, Castro, Anilkumar, Zachariah, Kumari (CR52) 2013
Wada (CR37) 2013; 34
Krawczuk, Łukaszuk (CR56) 2016
Vapnik (CR28) 1998
Lana, Ugolini, Giovannini (CR44) 2020
Sumich (CR53) 2018
MK Yu (27132_CR8) 2018
S Timpano (27132_CR36) 2020
T Nogami (27132_CR46) 2011
LA Zadeh (27132_CR9) 1965; 8
JM Alonso (27132_CR17) 2015
BC Feltes (27132_CR35) 2019
A Sumich (27132_CR52) 2013
27132_CR15
27132_CR59
T Akiba (27132_CR34) 2019
D Lana (27132_CR44) 2020
27132_CR18
C Mencar (27132_CR58) 2007
J Lee (27132_CR29) 2013
R Galanello (27132_CR40) 2011; 13
S Anders (27132_CR54) 2010
R Clarke (27132_CR7) 2008
CE Krebs (27132_CR31) 2020
TR Golub (27132_CR4) 1979; 286
Y Lee (27132_CR3) 2018
T Wada (27132_CR37) 2013; 34
H Ishibuchi (27132_CR19) 2005
N Kasabov (27132_CR13) 2001; 31
M Setnes (27132_CR23) 1998
C Schartner (27132_CR51) 2017
WW Bin Goh (27132_CR30) 2017
SL Chiu (27132_CR21) 1994
J Valente De Oliveira (27132_CR25) 1999
Y Hakak (27132_CR5) 2001
S Rajab (27132_CR26) 2019
D Fannon (27132_CR42) 2003
S Guillaume (27132_CR11) 2001
RJ Gibbons (27132_CR39) 1992; 51
R Gugustea (27132_CR45) 2020
R Bellazzi (27132_CR6) 2008
AC Haury (27132_CR57) 2011
J Krawczuk (27132_CR56) 2016
A Sumich (27132_CR43) 2002
WC Mah (27132_CR32) 2014
A Sumich (27132_CR50) 2022
GM Moloney (27132_CR48) 2019
N Kasabov (27132_CR12) 2007; 28
FA Potra (27132_CR27) 2000
P de Monasterio-Schrader (27132_CR49) 2013
MJ Millan (27132_CR47) 2013
F Bähner (27132_CR41) 2017
N Kasabov (27132_CR10) 1996
EA Boyle (27132_CR1) 2017
Z Wang (27132_CR20) 2011; 12
VN Vapnik (27132_CR28) 1998
A Sumich (27132_CR53) 2018
MJ Gacto (27132_CR16) 2011
Y Jin (27132_CR24) 2000
H Wu (27132_CR2) 2016
Q Song (27132_CR14) 2006
H Ishibuchi (27132_CR22) 1997
N Kasabov (27132_CR33) 2007
NG Bérubé (27132_CR38) 2005
I Guyon (27132_CR55) 2002
References_xml – volume: 8
  start-page: 338
  issue: 3
  year: 1965
  end-page: 353
  ident: CR9
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– year: 2014
  ident: CR32
  article-title: Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0104158
– year: 2008
  ident: CR6
  article-title: Predictive data mining in clinical medicine: Current issues and guidelines
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2006.11.006
– year: 2019
  ident: CR48
  article-title: Differential gene expression in the mesocorticolimbic system of innately high- and low-impulsive rats
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2019.01.022
– year: 2018
  ident: CR53
  article-title: Neurophysiological correlates of excitement in men with recent-onset psychosis
  publication-title: Psychiatr. Danub.
  doi: 10.24869/psyd.2018.64
– year: 2019
  ident: CR34
  article-title: Optuna: A next-generation hyperparameter optimization framework
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
  doi: 10.1145/3292500.3330701
– year: 2001
  ident: CR11
  article-title: Designing fuzzy inference systems from data: An interpretability-oriented review
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.928739
– year: 2007
  ident: CR58
  article-title: Distinguishability quantification of fuzzy sets
  publication-title: Inf. Sci. (N. Y.)
  doi: 10.1016/j.ins.2006.04.008
– volume: 12
  start-page: 2
  issue: SUPPL
  year: 2011
  ident: CR20
  article-title: Building interpretable fuzzy models for high dimensional data analysis in cancer diagnosis
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S2-S5
– year: 2019
  ident: CR35
  article-title: CuMiDa: An extensively curated microarray database for benchmarking and testing of machine learning approaches in cancer research
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2018.0238
– year: 1999
  ident: CR25
  article-title: Semantic constraints for membership function optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/3468.736369
– year: 2000
  ident: CR27
  article-title: Interior-point methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00433-7
– year: 2006
  ident: CR14
  article-title: TWNFI - A transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.05.028
– year: 1998
  ident: CR28
  publication-title: Statistical Learning Theory
– volume: 31
  start-page: 902
  issue: 6
  year: 2001
  end-page: 918
  ident: CR13
  article-title: ‘Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/3477.969494
– year: 2011
  ident: CR57
  article-title: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028210
– year: 2005
  ident: CR19
  article-title: Rule weight specification in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.841738
– year: 2018
  ident: CR3
  article-title: Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2018.08.073
– year: 2017
  ident: CR30
  article-title: Can peripheral blood-derived gene expressions characterize individuals at ultra-high risk for psychosis?
  publication-title: Comput. Psychiatry
  doi: 10.1162/cpsy_a_00007
– year: 2022
  ident: CR50
  article-title: Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2022.101101
– ident: CR15
– year: 2020
  ident: CR31
  article-title: Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719002745
– year: 2002
  ident: CR55
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– year: 2013
  ident: CR52
  article-title: ‘Neurophysiological correlates of excitement in schizophrenia
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2013.06.018
– year: 2020
  ident: CR44
  article-title: An overview on the differential interplay among neurons–astrocytes–microglia in CA1 and CA3 hippocampus in hypoxia/ischemia
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2020.585833
– year: 2003
  ident: CR42
  article-title: Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(03)00185-9
– year: 2013
  ident: CR29
  article-title: The longitudinal youth at risk study (LYRIKS) - An Asian UHR perspective
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2013.09.025
– volume: 13
  start-page: 83
  issue: 2
  year: 2011
  end-page: 88
  ident: CR40
  article-title: Alpha-thalassemia
  publication-title: Genet. Med.
  doi: 10.1097/GIM.0b013e3181fcb468
– year: 2013
  ident: CR49
  article-title: Uncoupling of neuroinflammation from axonal degeneration in mice lacking the myelin protein tetraspanin-2
  publication-title: Glia
  doi: 10.1002/glia.22561
– year: 2018
  ident: CR8
  article-title: Visible machine learning for biomedicine
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.056
– ident: CR18
– year: 1994
  ident: CR21
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-1994-2306
– volume: 286
  start-page: 1999
  issue: 5439
  year: 1979
  ident: CR4
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– year: 2002
  ident: CR43
  article-title: Temporal lobe abnormalities in first-episode psychosis
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.159.7.1232
– year: 2016
  ident: CR2
  article-title: Network-based method for inferring cancer progression at the pathway level from cross-sectional mutation data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2520934
– year: 2011
  ident: CR16
  article-title: Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures
  publication-title: Inf. Sci. (N. Y.)
  doi: 10.1016/j.ins.2011.02.021
– year: 2013
  ident: CR47
  article-title: An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2012.11.015
– volume: 51
  start-page: 1136
  issue: 5
  year: 1992
  end-page: 1149
  ident: CR39
  article-title: X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: Localization to Xq12-q21.31 by X inactivation and linkage analysis
  publication-title: Am. J. Hum. Genet.
– year: 2005
  ident: CR38
  article-title: The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI200522329
– year: 2016
  ident: CR56
  article-title: The feature selection bias problem in relation to high-dimensional gene data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.11.001
– year: 2019
  ident: CR26
  article-title: Handling interpretability issues in ANFIS using rule base simplification and constrained learning
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2018.11.010
– year: 2017
  ident: CR1
  article-title: an expanded view of complex traits: From polygenic to omnigenic
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
– year: 2011
  ident: CR46
  article-title: Reduced expression of the ATRX gene, a chromatin-remodeling factor, causes hippocampal dysfunction in mice
  publication-title: Hippocampus
  doi: 10.1002/hipo.20782
– year: 1996
  ident: CR10
  publication-title: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering
  doi: 10.7551/mitpress/3071.001.0001
– year: 1997
  ident: CR22
  article-title: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00098-X
– year: 2017
  ident: CR41
  article-title: Hippocampal–prefrontal connectivity as a translational phenotype for schizophrenia
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2016.12.007
– year: 2017
  ident: CR51
  article-title: The regulation of tetraspanin 8 gene expression—A potential new mechanism in the pathogenesis of bipolar disorder
  publication-title: Am. J. Med. Genet. Part B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.32571
– year: 2007
  ident: CR33
  publication-title: Evolving Connectionist Systems
  doi: 10.1007/978-1-84628-347-5
– year: 2008
  ident: CR7
  article-title: The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2294
– year: 2015
  ident: CR17
  article-title: Interpretability of fuzzy systems: Current research trends and prospects
  publication-title: Springer Handb. Comput. Intell.
  doi: 10.1007/978-3-662-43505-2_14
– year: 2001
  ident: CR5
  article-title: Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.081071198
– year: 2010
  ident: CR54
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– year: 2020
  ident: CR45
  article-title: Inactivation of ATRX in forebrain excitatory neurons affects hippocampal synaptic plasticity
  publication-title: Hippocampus
  doi: 10.1002/hipo.23174
– ident: CR59
– year: 2020
  ident: CR36
  article-title: Neurodevelopmental disorders caused by defective chromatin remodeling: Phenotypic complexity is highlighted by a review of ATRX function
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00885
– year: 1998
  ident: CR23
  article-title: ‘Similarity measures in fuzzy rule base simplification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/3477.678632
– year: 2000
  ident: CR24
  article-title: Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.842154
– volume: 34
  start-page: 2034
  issue: 10
  year: 2013
  end-page: 2038
  ident: CR37
  article-title: Neuroradiologic features in X-linked α-thalassemia/mental retardation syndrome
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3560
– volume: 28
  start-page: 673
  issue: 6
  year: 2007
  end-page: 685
  ident: CR12
  article-title: Global, local and personalised modeling and pattern discovery in bioinformatics: An integrated approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.08.007
– year: 1998
  ident: 27132_CR23
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/3477.678632
– year: 2011
  ident: 27132_CR46
  publication-title: Hippocampus
  doi: 10.1002/hipo.20782
– year: 2001
  ident: 27132_CR11
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.928739
– year: 2020
  ident: 27132_CR45
  publication-title: Hippocampus
  doi: 10.1002/hipo.23174
– volume: 34
  start-page: 2034
  issue: 10
  year: 2013
  ident: 27132_CR37
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A3560
– year: 2002
  ident: 27132_CR43
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.159.7.1232
– year: 2019
  ident: 27132_CR26
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2018.11.010
– year: 2017
  ident: 27132_CR41
  publication-title: Eur. Neuropsychopharmacol.
  doi: 10.1016/j.euroneuro.2016.12.007
– volume: 31
  start-page: 902
  issue: 6
  year: 2001
  ident: 27132_CR13
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
  doi: 10.1109/3477.969494
– year: 2018
  ident: 27132_CR53
  publication-title: Psychiatr. Danub.
  doi: 10.24869/psyd.2018.64
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 27132_CR9
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– year: 2022
  ident: 27132_CR50
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2022.101101
– year: 2006
  ident: 27132_CR14
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2006.05.028
– year: 2019
  ident: 27132_CR35
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2018.0238
– year: 2011
  ident: 27132_CR16
  publication-title: Inf. Sci. (N. Y.)
  doi: 10.1016/j.ins.2011.02.021
– year: 2017
  ident: 27132_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.038
– year: 1997
  ident: 27132_CR22
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00098-X
– ident: 27132_CR15
  doi: 10.1007/978-3-540-30499-9_97
– year: 2007
  ident: 27132_CR58
  publication-title: Inf. Sci. (N. Y.)
  doi: 10.1016/j.ins.2006.04.008
– year: 2013
  ident: 27132_CR47
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2012.11.015
– year: 2019
  ident: 27132_CR48
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2019.01.022
– year: 2020
  ident: 27132_CR31
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291719002745
– year: 2016
  ident: 27132_CR2
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2520934
– ident: 27132_CR18
  doi: 10.1007/978-3-030-71098-9_3
– volume: 51
  start-page: 1136
  issue: 5
  year: 1992
  ident: 27132_CR39
  publication-title: Am. J. Hum. Genet.
– volume: 28
  start-page: 673
  issue: 6
  year: 2007
  ident: 27132_CR12
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.08.007
– year: 2015
  ident: 27132_CR17
  publication-title: Springer Handb. Comput. Intell.
  doi: 10.1007/978-3-662-43505-2_14
– year: 2013
  ident: 27132_CR52
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2013.06.018
– volume: 13
  start-page: 83
  issue: 2
  year: 2011
  ident: 27132_CR40
  publication-title: Genet. Med.
  doi: 10.1097/GIM.0b013e3181fcb468
– year: 2010
  ident: 27132_CR54
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– year: 2017
  ident: 27132_CR30
  publication-title: Comput. Psychiatry
  doi: 10.1162/cpsy_a_00007
– year: 2008
  ident: 27132_CR6
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2006.11.006
– year: 2013
  ident: 27132_CR29
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2013.09.025
– volume: 286
  start-page: 1999
  issue: 5439
  year: 1979
  ident: 27132_CR4
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume-title: Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering
  year: 1996
  ident: 27132_CR10
  doi: 10.7551/mitpress/3071.001.0001
– year: 1994
  ident: 27132_CR21
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-1994-2306
– year: 2005
  ident: 27132_CR38
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI200522329
– year: 2014
  ident: 27132_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0104158
– year: 2002
  ident: 27132_CR55
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: 27132_CR59
  doi: 10.1109/IntelCIS.2015.7397257
– year: 2005
  ident: 27132_CR19
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2004.841738
– volume: 12
  start-page: 2
  issue: SUPPL
  year: 2011
  ident: 27132_CR20
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S2-S5
– year: 2020
  ident: 27132_CR36
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00885
– year: 2017
  ident: 27132_CR51
  publication-title: Am. J. Med. Genet. Part B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.32571
– year: 1999
  ident: 27132_CR25
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/3468.736369
– year: 2019
  ident: 27132_CR34
  publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.
  doi: 10.1145/3292500.3330701
– year: 2003
  ident: 27132_CR42
  publication-title: Biol. Psychiatry
  doi: 10.1016/S0006-3223(03)00185-9
– year: 2018
  ident: 27132_CR3
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2018.08.073
– year: 2001
  ident: 27132_CR5
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.081071198
– year: 2008
  ident: 27132_CR7
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2294
– year: 2020
  ident: 27132_CR44
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2020.585833
– year: 2018
  ident: 27132_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.056
– year: 2016
  ident: 27132_CR56
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.11.001
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 27132_CR28
– year: 2013
  ident: 27132_CR49
  publication-title: Glia
  doi: 10.1002/glia.22561
– volume-title: Evolving Connectionist Systems
  year: 2007
  ident: 27132_CR33
  doi: 10.1007/978-1-84628-347-5
– year: 2000
  ident: 27132_CR27
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(00)00433-7
– year: 2011
  ident: 27132_CR57
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028210
– year: 2000
  ident: 27132_CR24
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.842154
SSID ssj0000529419
Score 2.4077587
Snippet Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and gaining...
Abstract Interpretable machine learning models for gene expression datasets are important for understanding the decision-making process of a classifier and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 456
SubjectTerms 631/114/1305
631/114/2164
Algorithms
Benchmarks
Bipolar Disorder
Case studies
Cognitive ability
Datasets
Decision making
Diagnosis
Early Detection of Cancer
Fuzzy Logic
Gene Expression
Heterogeneity
Humanities and Social Sciences
Humans
Impulsive behavior
Learning algorithms
Machine learning
Medical research
Mental disorders
Mental health
multidisciplinary
Neural networks
Neural Networks, Computer
Schizophrenia
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kUfAivm1dJYI3bbaT9ORxVHHxIIuHRfYW8sSBpWfYmRF3D_52K0n3OOPz4rWTdIdKFfmqk_o-gBde9LiPYXwrOvNtZvRqbc_7lrEuaC-Tj4VL79MHeXKizs70xx2pr3wnrNIDV8MdaeFmFh3PKSF7LaRG_J4wA-ypF1YUCWuGqGcnmaqs3kz3VI9VMh1XRyvcqXI1GcvVKJiCtWpvJyqE_b9Dmb9elvzpxLRsRMe34daIIMnrOvM7cC0Od-FG1ZS8vAffsgRnEX6IgRS2SpI2V1eXZD6V9pGqGl36E8SsJH5dno9FVGQ5gfMVDi8yObleneTftWT3sJssBoK-F_PgepV2IPm26X04PX53-vZ9O4ostB7B2rqNIQXGXMelcsxj9kYT9RjZHjOZwDrb9Wj2GJ1wVFI7444i5LFWxxRS5xN_AAfDYoiPgFCWAmdRCpoiJn3Udamzrg_WJz-LgTVAJ3sbPxKQZ3Ocm3IQzpWpa2RwjUxZI6MaeLkds6z0G3_t_SYv47Znps4uD9ChzOhQ5l8O1cDh5ARmjOcVfkBkuT_EUg083zZjJObjFTvExab04ZznfLyBh9VntjPhQiBUorIBuedNe1Pdbxnmnwvbt1aIGPI7X01-92NafzbF4_9hiidwkyGmK3-c9CEcrC828Slc91_W89XFsxJx3wHsYS7A
  priority: 102
  providerName: Directory of Open Access Journals
Title Constrained neuro fuzzy inference methodology for explainable personalised modelling with applications on gene expression data
URI https://link.springer.com/article/10.1038/s41598-022-27132-8
https://www.ncbi.nlm.nih.gov/pubmed/36624117
https://www.proquest.com/docview/2762570223
https://www.proquest.com/docview/2763334020
https://pubmed.ncbi.nlm.nih.gov/PMC9829920
https://doaj.org/article/96b5a318b86749679148feb341c6a614
Volume 13
WOSCitedRecordID wos000915457700025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsjISN4ga20mcnBBFrUCiqwhVaDlFsWOXlapku9lFtAd-O2PHSVkevXDJYW2v_JgZfzPjmQF4qdIY7zHk74wmKrQZvcIq5nHIWFTnShilXS69zx_FdJrNZnnhDW6df1Y5yEQnqOtWWRv5PkOuTQTeOPzN4jy0VaOsd9WX0NiCHZslgbune8VoY7FerJjmPlYm4tl-h_eVjSljNiYFFbEw27iPXNr-v2HNP59M_uY3ddfR0d3_Xcg9uOOBKHnbU859uKGbB3CrL0158RB-2Eqern6ErolLeknM-vLygsyHCEHSF592_QlCX6K_L858LBZZDBi_w-Gu2o4NeyfW6kt-9ZmTtiFIwtoO7l_kNsQ-Wn0EJ0eHJ-_eh75WQ6gQ861CXZuaMRlxkUmmUAmkhioUEAoVoppFVRSLONdappIKWiVcUkROVZVrU5tIGf4Ytpu20btAKDM1Z1qk1GjUHamMTFTJuK6UUYmuWQB0OLBS-TzmdjvOSudP51nZH3KJW1y6Qy6zAF6NYxZ9Fo9rex9YOhh72gzc7od2eVp6hi7zVCYVCkSZpbiyVOSoVxotERSotELME8DecPylFwtdeXX2AbwYm5GhrZemanS7dn0451atD-BJT3TjTHiaIuKiIgCxQY4bU91saeZfXdLwPEPgYf_z9UC4V9P691Y8vX4Vz-A2Q9DnTFL5Hmyvlmv9HG6qb6t5t5zAlpgJ980msHNwOC0-TZzNA7_HrJg4ZsWW4sNx8eUnwEJFCw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQQX9iVQwEhwgqixncU5IMRWteow6mGEerNix4aRqmSYzADTA_-I_8izs5Rh6a0Hrokd2c5bvvf8FoAnOo1RjyF_C5ro0FX0CouYxyFjUZnrzGrja-l9GGXjsTg8zA824EefC-PCKnuZ6AV1WWvnI99myLVJhhqHv5x9Dl3XKHe72rfQaMli36y-osnWvNh7i__3KWM77yZvdsOuq0CoEZ0sQlPakjEV8UwoptFcoZZqJGWN0L1kURHFWZwbo1JFM1okXFHU8UWRG1vaSFuOnz0H5xFFMOEjBQ8Gl467NItp3qXmRFxsN6geXQobcykwaPeFYk39-S4Bf4O2f0Zo_nZN67XfztX_7NyuwZUOZpNXLV9chw1T3YCLbePN1U347vqU-u4YpiS-pCexy-PjFZn2-Y-kba3txxME9sR8mx11mWZk1lswDU73vYRcUj9xPm3ya0QAqSuCDGrc5DbeuCIuJPcWTM5i77dhs6orcxcIZbbkzGQptQYtY6oiGxUqLgttdWJKFgDt6UPqrkq7O44j6aMFuJAtTUn8o9LTlBQBPBvmzNoaJaeOfu3Ibhjp6ov7B_X8o-zElcxTlRQo7pVIcWdplqPVbI1CyKPTAhFdAFs9tclO6DXyhNQCeDy8RnHl7qCKytRLP4Zz7pwWAdxpaXxYCU9TxJM0CyBbo_61pa6_qaaffEn0XCCsct983vPJybL-fRT3Tt_FI7i0O3k_kqO98f59uMwQ3nrnW74Fm4v50jyAC_rLYtrMH3o5QECeMf_8BD-Fmrc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUX3pRAASPBiUYb29k4OSAElBVVq9UeKtSbFTs2rFQly2YX2B74X_w7xs6jLI_eeuCa2JHtzOOb8TwAnukkRj2G_J3SoQ5dRa8wj3kcMhYVmRZWG19L78OhGI_T4-NssgE_ulwYF1bZyUQvqItKOx_5gCHXDgVqHD6wbVjEZG_0avY5dB2k3E1r106jIZEDs_qK5lv9cn8P__Vzxkbvjt6-D9sOA6FGpLIITWELxlTERaqYRtOFWqqRrDXC-IJFeRSLODNGJYoKmg-5oqjv8zwztrCRthw_ewkuC1ez3EcNTnr3jrtAi2nWpulEPB3UqCpdOhtz6TBoA4bpmir0HQP-BnP_jNb87crWa8LRjf_4DG_C9RZ-k9cNv9yCDVPehqtNQ87VHfju-pf6rhmmIL7UJ7HL09MVmXZ5kaRpue3HEwT8xHybnbQZaGTWWTY1Tvc9hlyyP3G-bvJrpACpSoKMa9zkJg65JC5U9y4cXcTe78FmWZXmPhDKbMGZEQm1Bi1mqiIb5Soucm310BQsANrRitRt9XZ3HCfSRxHwVDb0JfHvSk9fMg3gRT9n1tQuOXf0G0eC_UhXd9w_qOYfZSvGZJaoYY5qQKUJ7iwRGVrT1iiEQjrJEekFsNNRnmyFYS3PyC6Ap_1rFGPubiovTbX0YzjnzpkRwHZD7_1KeJIgzqQiALHGCWtLXX9TTj_5UulZinDLfXO345mzZf37KB6cv4snsIVsIw_3xwcP4RpD1Ot9ctkObC7mS_MIrugvi2k9f-xFAgF5wezzE1hro3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+neuro+fuzzy+inference+methodology+for+explainable+personalised+modelling+with+applications+on+gene+expression+data&rft.jtitle=Scientific+reports&rft.au=Singh%2C+Balkaran&rft.au=Doborjeh%2C+Maryam&rft.au=Doborjeh%2C+Zohreh&rft.au=Budhraja%2C+Sugam&rft.date=2023-01-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-022-27132-8&rft_id=info%3Apmid%2F36624117&rft.externalDocID=PMC9829920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon