Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS

Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes...

Full description

Saved in:
Bibliographic Details
Published in:Cell reports (Cambridge) Vol. 12; no. 9; pp. 1377 - 1384
Main Authors: Schreiner, Bettina, Romanelli, Elisa, Liberski, Pawel, Ingold-Heppner, Barbara, Sobottka-Brillout, Bettina, Hartwig, Tom, Chandrasekar, Vijay, Johannssen, Helge, Zeilhofer, Hanns Ulrich, Aguzzi, Adriano, Heppner, Frank, Kerschensteiner, Martin, Becher, Burkhard
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.09.2015
Elsevier
Subjects:
ISSN:2211-1247, 2211-1247
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS. [Display omitted] •When adult GFAP+ astrocytes are depleted in vivo, motor skills are severely impaired•Neuronal loss occurs, whereas astroglial structural support still persists•Astroglial dysfunction disrupts CNS redox homeostasis, independent of microgliosis•Neutralization of ROS/RNS protects from neuronal injury Schreiner et al. examine the functional contribution of astrocytes to tissue homeostasis in the adult CNS and identify the redox-scavenging capacity of GFAP+ astrocytes as a key factor for neuronal health in vivo. The importance of the metabolic integrity of the glia-neuron interface highlights potential therapies for the treatment of neurodegenerative diseases.
AbstractList Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP(+) astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP(+) astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.
Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.
Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP+ astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP+ astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS. [Display omitted] •When adult GFAP+ astrocytes are depleted in vivo, motor skills are severely impaired•Neuronal loss occurs, whereas astroglial structural support still persists•Astroglial dysfunction disrupts CNS redox homeostasis, independent of microgliosis•Neutralization of ROS/RNS protects from neuronal injury Schreiner et al. examine the functional contribution of astrocytes to tissue homeostasis in the adult CNS and identify the redox-scavenging capacity of GFAP+ astrocytes as a key factor for neuronal health in vivo. The importance of the metabolic integrity of the glia-neuron interface highlights potential therapies for the treatment of neurodegenerative diseases.
Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well understood. With the use of conditional, astrocyte-restricted protein synthesis termination, we found that selective paralysis of GFAP(+) astrocytes in vivo led to rapid neuronal cell loss and severe motor deficits. This occurred while structural astroglial support still persisted and in the absence of any major microvascular damage. Whereas loss of astrocyte function did lead to microglial activation, this had no impact on the neuronal loss and clinical decline. Neuronal injury was caused by oxidative stress resulting from the reduced redox scavenging capability of dysfunctional astrocytes and could be prevented by the in vivo treatment with scavengers of reactive oxygen and nitrogen species (ROS/RNS). Our results suggest that the subpopulation of GFAP(+) astrocytes maintain neuronal health by controlling redox homeostasis in the adult CNS.
Author Sobottka-Brillout, Bettina
Johannssen, Helge
Schreiner, Bettina
Aguzzi, Adriano
Hartwig, Tom
Heppner, Frank
Becher, Burkhard
Kerschensteiner, Martin
Ingold-Heppner, Barbara
Romanelli, Elisa
Zeilhofer, Hanns Ulrich
Liberski, Pawel
Chandrasekar, Vijay
Author_xml – sequence: 1
  givenname: Bettina
  surname: Schreiner
  fullname: Schreiner, Bettina
  organization: Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
– sequence: 2
  givenname: Elisa
  surname: Romanelli
  fullname: Romanelli, Elisa
  organization: Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, 81377 Munich, Germany
– sequence: 3
  givenname: Pawel
  surname: Liberski
  fullname: Liberski, Pawel
  organization: Department of Molecular Pathology and Neuropathology, Medical University of Lodz, 92-101 Lodz, Poland
– sequence: 4
  givenname: Barbara
  surname: Ingold-Heppner
  fullname: Ingold-Heppner, Barbara
  organization: Department of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
– sequence: 5
  givenname: Bettina
  surname: Sobottka-Brillout
  fullname: Sobottka-Brillout, Bettina
  organization: Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
– sequence: 6
  givenname: Tom
  surname: Hartwig
  fullname: Hartwig, Tom
  organization: Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
– sequence: 7
  givenname: Vijay
  surname: Chandrasekar
  fullname: Chandrasekar, Vijay
  organization: Institute of Neuropathology, University Hospital Zurich, 8091 Zurich, Switzerland
– sequence: 8
  givenname: Helge
  surname: Johannssen
  fullname: Johannssen, Helge
  organization: Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
– sequence: 9
  givenname: Hanns Ulrich
  surname: Zeilhofer
  fullname: Zeilhofer, Hanns Ulrich
  organization: Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
– sequence: 10
  givenname: Adriano
  surname: Aguzzi
  fullname: Aguzzi, Adriano
  organization: Institute of Neuropathology, University Hospital Zurich, 8091 Zurich, Switzerland
– sequence: 11
  givenname: Frank
  surname: Heppner
  fullname: Heppner, Frank
  organization: Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
– sequence: 12
  givenname: Martin
  surname: Kerschensteiner
  fullname: Kerschensteiner, Martin
  organization: Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, 81377 Munich, Germany
– sequence: 13
  givenname: Burkhard
  surname: Becher
  fullname: Becher, Burkhard
  email: becher@immunology.uzh.ch
  organization: Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26299968$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC1UREvpP0DIRy6b2okTJxyQVlugK62KBOXAyXqxXxavkjjYDqL_Hi9pK8QBfLFlz8yzvnlOTkY3IiEvOcs449XlIdPYe5yynPEyYzJjJX9CzvKc8xXPhTz543xKLkI4sLQqxnkjnpHTvMqbpqnqM_J1HaJ3-i4ivcKpx2jdSLfDBNYH-gmN-0mv3YAuRAg2UBgNvfV2v8f0fIOzdyP0dOdCoHak8RvStZn7SDc3n1-Qpx30AS_u93Py5f272831avfxw3az3q10KVhcGTAaCqOxYRzTn5sSTKehLLHV3IiiBsFqxqBuukJiwTrBi0oaprGEymhTnJPtkmscHNTk7QD-Tjmw6veF83sFPlrdo5KdEVALbHNsRFe3bVvLVkrUvKq6NChlvV6yJu--zxiiGmxIpHsY0c1BcckayeqyyJP01b10bgc0j4Mf0CbBm0WgfcLjsVPaRjjyjR5srzhTxyrVQS1VqmOVikmVqkxm8Zf5If8_treLDRPwHxa9CtriqNFYjzomIvbfAb8AT4S6VA
CitedBy_id crossref_primary_10_1002_glia_23477
crossref_primary_10_1002_jnr_24050
crossref_primary_10_1007_s12035_015_9427_4
crossref_primary_10_1016_j_brainresbull_2017_03_009
crossref_primary_10_1016_j_mcn_2019_103417
crossref_primary_10_1016_j_bbih_2021_100235
crossref_primary_10_1111_jnc_14605
crossref_primary_10_1016_j_pnpbp_2024_111009
crossref_primary_10_1007_s00018_022_04403_1
crossref_primary_10_3390_antiox9080700
crossref_primary_10_1007_s11062_024_09944_8
crossref_primary_10_1016_j_cellsig_2020_109714
crossref_primary_10_1016_j_ejphar_2025_177987
crossref_primary_10_1080_1028415X_2017_1284375
crossref_primary_10_1007_s00018_020_03584_x
crossref_primary_10_1016_j_nbd_2019_104562
crossref_primary_10_1038_s41598_018_37419_4
crossref_primary_10_3390_genes11070804
crossref_primary_10_1007_s11064_021_03239_8
crossref_primary_10_1038_s41586_022_04739_5
crossref_primary_10_3390_ijms25021150
crossref_primary_10_1002_glia_23908
crossref_primary_10_1007_s11064_016_1972_3
crossref_primary_10_1002_ana_24630
crossref_primary_10_1021_acs_est_5c08283
crossref_primary_10_1016_j_brainresbull_2019_07_013
crossref_primary_10_1016_j_wjam_2025_07_003
crossref_primary_10_3390_pharmaceutics14050993
crossref_primary_10_1038_s41598_025_12214_0
crossref_primary_10_3389_fncel_2017_00024
crossref_primary_10_1002_adma_202001945
crossref_primary_10_1002_glia_24594
crossref_primary_10_1007_s11064_024_04147_3
crossref_primary_10_1371_journal_pone_0307577
crossref_primary_10_1186_s12974_016_0723_3
crossref_primary_10_3390_ijms26052050
crossref_primary_10_1002_glia_24353
crossref_primary_10_3389_fnagi_2016_00116
crossref_primary_10_1038_s41593_021_00864_y
crossref_primary_10_1093_jnen_nly121
crossref_primary_10_1177_2041731419897460
crossref_primary_10_1016_j_tins_2023_11_005
crossref_primary_10_1016_j_pnpbp_2017_06_012
crossref_primary_10_1038_s42003_024_07401_0
crossref_primary_10_3390_ijms21093343
crossref_primary_10_1038_s41386_022_01338_w
crossref_primary_10_1093_brain_awac222
crossref_primary_10_1111_jnc_13486
crossref_primary_10_1097_MIB_0000000000000854
crossref_primary_10_1016_S0140_6736_18_30481_1
crossref_primary_10_1093_brain_aww016
crossref_primary_10_1186_s13024_024_00740_w
crossref_primary_10_1007_s12035_017_0469_7
crossref_primary_10_1016_j_conb_2016_09_016
crossref_primary_10_7554_eLife_74295
crossref_primary_10_1007_s11064_021_03338_6
crossref_primary_10_1016_j_tox_2017_06_011
crossref_primary_10_1016_j_fitote_2019_104196
crossref_primary_10_1016_j_bbi_2016_07_003
crossref_primary_10_7554_eLife_95672
crossref_primary_10_1007_s12035_025_04901_w
crossref_primary_10_3390_cells12182221
crossref_primary_10_1002_glia_23058
crossref_primary_10_1002_glia_23135
crossref_primary_10_1124_jpet_123_001836
crossref_primary_10_1007_s11010_016_2917_5
crossref_primary_10_1016_j_aquatox_2025_107355
crossref_primary_10_1111_bph_13426
crossref_primary_10_3390_cells11132068
crossref_primary_10_1016_j_mce_2021_111394
crossref_primary_10_3389_fncel_2020_00074
crossref_primary_10_1016_j_bbadis_2016_06_018
crossref_primary_10_3389_fncel_2024_1521398
crossref_primary_10_1002_glia_24573
crossref_primary_10_1073_pnas_1613701113
crossref_primary_10_3390_membranes12020119
crossref_primary_10_1002_jnr_24922
crossref_primary_10_7554_eLife_95672_3
crossref_primary_10_4103_1673_5374_308078
crossref_primary_10_1007_s12035_023_03714_z
crossref_primary_10_1007_s11064_015_1733_8
crossref_primary_10_1146_annurev_neuro_091922_031205
crossref_primary_10_3389_fnins_2022_1013027
crossref_primary_10_1097_WCO_0000000000000550
crossref_primary_10_1177_09636897221105499
crossref_primary_10_1038_nri_2016_123
crossref_primary_10_1038_s41392_023_01628_9
crossref_primary_10_1007_s40883_025_00410_3
crossref_primary_10_1038_srep42041
crossref_primary_10_3389_fimmu_2021_616301
crossref_primary_10_1016_j_mito_2021_04_013
crossref_primary_10_1016_j_pneurobio_2018_12_007
crossref_primary_10_1038_s41583_020_0322_2
crossref_primary_10_1155_2018_6501031
crossref_primary_10_1007_s12035_016_9981_4
Cites_doi 10.1038/nn1548
10.1126/science.7403847
10.1126/science.8209258
10.1523/JNEUROSCI.16-08-02553.1996
10.1016/S0021-9258(18)62078-2
10.1002/j.1460-2075.1995.tb07147.x
10.1038/sj.emboj.7601623
10.1016/j.neuron.2014.02.040
10.1038/nn.3062
10.1002/glia.20342
10.1002/gene.20162
10.1126/science.1222381
10.1016/j.cell.2004.12.020
10.1002/ana.410380114
10.1523/JNEUROSCI.4178-07.2008
10.1046/j.1471-4159.2001.00399.x
10.1038/nn1750
10.1016/0092-8674(94)90553-3
10.1084/jem.20070304
10.1128/MCB.22.14.5100-5113.2002
10.1038/nmeth762
10.1038/nbt.1957
10.1016/S0896-6273(00)80781-3
10.1038/nm.2324
10.1007/s00401-009-0619-8
10.1016/j.nbd.2013.07.017
10.1038/368059a0
10.1002/glia.20650
10.1111/j.1365-2990.1990.tb01276.x
10.1038/nn1876
10.1038/nature11059
10.1016/j.cell.2013.11.030
10.1038/457675a
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2015.07.051
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1384
ExternalDocumentID oai_doaj_org_article_7fd4a84eb2e94f8bbb87b77ec166f8a4
26299968
10_1016_j_celrep_2015_07_051
S2211124715008293
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-dadca3dce901e22195adfca55ebc1d438a40800a89f37e30f41367d0ce5a6dcd3
IEDL.DBID DOA
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360574200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:48:30 EDT 2025
Fri Jul 11 15:02:25 EDT 2025
Mon Jul 21 06:04:43 EDT 2025
Tue Nov 18 22:30:58 EST 2025
Wed Nov 05 20:53:30 EST 2025
Wed May 17 01:06:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-dadca3dce901e22195adfca55ebc1d438a40800a89f37e30f41367d0ce5a6dcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/7fd4a84eb2e94f8bbb87b77ec166f8a4
PMID 26299968
PQID 1709708532
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_7fd4a84eb2e94f8bbb87b77ec166f8a4
proquest_miscellaneous_1709708532
pubmed_primary_26299968
crossref_citationtrail_10_1016_j_celrep_2015_07_051
crossref_primary_10_1016_j_celrep_2015_07_051
elsevier_sciencedirect_doi_10_1016_j_celrep_2015_07_051
PublicationCentury 2000
PublicationDate 2015-09-01
2015-09-00
2015-Sep-01
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Custer, Garden, Gill, Rueb, Libby, Schultz, Guyenet, Deller, Westrum, Sopher, La Spada (bib10) 2006; 9
Buch, Heppner, Tertilt, Heinen, Kremer, Wunderlich, Jung, Waisman (bib5) 2005; 2
Gropp, Shanabrough, Borok, Xu, Janoschek, Buch, Plum, Balthasar, Hampel, Waisman (bib14) 2005; 8
Allen, Bennett, Foo, Wang, Chakraborty, Smith, Barres (bib2) 2012; 486
Gurney, Pu, Chiu, Dal Canto, Polchow, Alexander, Caliendo, Hentati, Kwon, Deng (bib15) 1994; 264
Banker (bib4) 1980; 209
Christopherson, Ullian, Stokes, Mullowney, Hell, Agah, Lawler, Mosher, Bornstein, Barres (bib8) 2005; 120
Locatelli, Wörtge, Buch, Ingold, Frommer, Sobottka, Krüger, Karram, Bühlmann, Bechmann (bib20) 2012; 15
Colucci-Guyon, Portier, Dunia, Paulin, Pournin, Babinet (bib9) 1994; 79
Honjo, Nishizuka, Kato, Hayaishi (bib18) 1971; 246
Gelderblom, Daehn, Schattling, Ludewig, Bernreuther, Arunachalam, Matschke, Glatzel, Gerloff, Friese, Magnus (bib13) 2013; 59
Wachtel, Bolliger, Ishihara, Frei, Bluethmann, Gloor (bib33) 2001; 78
Haidet-Phillips, Hester, Miranda, Meyer, Braun, Frakes, Song, Likhite, Murtha, Foust (bib16) 2011; 29
Nikić, Merkler, Sorbara, Brinkoetter, Kreutzfeldt, Bareyre, Brück, Bishop, Misgeld, Kerschensteiner (bib23) 2011; 17
Sorensen, Moffat, Thomson, Barnett (bib30) 2008; 56
Paul, Strickland, Melchor (bib25) 2007; 204
Pekny, Levéen, Pekna, Eliasson, Berthold, Westermark, Betsholtz (bib26) 1995; 14
Parkhurst, Yang, Ninan, Savas, Yates, Lafaille, Hempstead, Littman, Gan (bib24) 2013; 155
Desagher, Glowinski, Premont (bib11) 1996; 16
Ivanova, Signore, Caro, Greene, Copp, Martinez-Barbera (bib19) 2005; 43
Elmore, Najafi, Koike, Dagher, Spangenberg, Rice, Kitazawa, Matusow, Nguyen, West, Green (bib12) 2014; 82
Bush, Puvanachandra, Horner, Polito, Ostenfeld, Svendsen, Mucke, Johnson, Sofroniew (bib6) 1999; 23
Hirrlinger, Scheller, Braun, Hirrlinger, Kirchhoff (bib17) 2006; 54
Nagai, Re, Nagata, Chalazonitis, Jessell, Wichterle, Przedborski (bib22) 2007; 10
Allen, Barres (bib1) 2009; 457
Rothstein, Van Kammen, Levey, Martin, Kuncl (bib27) 1995; 38
Cahoy, Emery, Kaushal, Foo, Zamanian, Christopherson, Xing, Lubischer, Krieg, Krupenko (bib7) 2008; 28
Scherz-Shouval, Shvets, Fass, Shorer, Gil, Elazar (bib28) 2007; 26
Tsai, Li, Fuentealba, Molofsky, Taveira-Marques, Zhuang, Tenney, Murnen, Fancy, Merkle (bib32) 2012; 337
Bajenaru, Zhu, Hedrick, Donahoe, Parada, Gutmann (bib3) 2002; 22
Troost, Van den Oord, Vianney de Jong (bib31) 1990; 16
Mennerick, Zorumski (bib21) 1994; 368
Sofroniew, Vinters (bib29) 2010; 119
Scherz-Shouval (10.1016/j.celrep.2015.07.051_bib28) 2007; 26
Allen (10.1016/j.celrep.2015.07.051_bib1) 2009; 457
Allen (10.1016/j.celrep.2015.07.051_bib2) 2012; 486
Pekny (10.1016/j.celrep.2015.07.051_bib26) 1995; 14
Paul (10.1016/j.celrep.2015.07.051_bib25) 2007; 204
Haidet-Phillips (10.1016/j.celrep.2015.07.051_bib16) 2011; 29
Gurney (10.1016/j.celrep.2015.07.051_bib15) 1994; 264
Custer (10.1016/j.celrep.2015.07.051_bib10) 2006; 9
Wachtel (10.1016/j.celrep.2015.07.051_bib33) 2001; 78
Elmore (10.1016/j.celrep.2015.07.051_bib12) 2014; 82
Nikić (10.1016/j.celrep.2015.07.051_bib23) 2011; 17
Gelderblom (10.1016/j.celrep.2015.07.051_bib13) 2013; 59
Parkhurst (10.1016/j.celrep.2015.07.051_bib24) 2013; 155
Ivanova (10.1016/j.celrep.2015.07.051_bib19) 2005; 43
Cahoy (10.1016/j.celrep.2015.07.051_bib7) 2008; 28
Sofroniew (10.1016/j.celrep.2015.07.051_bib29) 2010; 119
Buch (10.1016/j.celrep.2015.07.051_bib5) 2005; 2
Bush (10.1016/j.celrep.2015.07.051_bib6) 1999; 23
Hirrlinger (10.1016/j.celrep.2015.07.051_bib17) 2006; 54
Mennerick (10.1016/j.celrep.2015.07.051_bib21) 1994; 368
Gropp (10.1016/j.celrep.2015.07.051_bib14) 2005; 8
Tsai (10.1016/j.celrep.2015.07.051_bib32) 2012; 337
Rothstein (10.1016/j.celrep.2015.07.051_bib27) 1995; 38
Troost (10.1016/j.celrep.2015.07.051_bib31) 1990; 16
Banker (10.1016/j.celrep.2015.07.051_bib4) 1980; 209
Christopherson (10.1016/j.celrep.2015.07.051_bib8) 2005; 120
Colucci-Guyon (10.1016/j.celrep.2015.07.051_bib9) 1994; 79
Locatelli (10.1016/j.celrep.2015.07.051_bib20) 2012; 15
Sorensen (10.1016/j.celrep.2015.07.051_bib30) 2008; 56
Bajenaru (10.1016/j.celrep.2015.07.051_bib3) 2002; 22
Honjo (10.1016/j.celrep.2015.07.051_bib18) 1971; 246
Desagher (10.1016/j.celrep.2015.07.051_bib11) 1996; 16
Nagai (10.1016/j.celrep.2015.07.051_bib22) 2007; 10
References_xml – volume: 246
  start-page: 4251
  year: 1971
  end-page: 4260
  ident: bib18
  article-title: Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin
  publication-title: J. Biol. Chem.
– volume: 120
  start-page: 421
  year: 2005
  end-page: 433
  ident: bib8
  article-title: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis
  publication-title: Cell
– volume: 457
  start-page: 675
  year: 2009
  end-page: 677
  ident: bib1
  article-title: Neuroscience: Glia - more than just brain glue
  publication-title: Nature
– volume: 368
  start-page: 59
  year: 1994
  end-page: 62
  ident: bib21
  article-title: Glial contributions to excitatory neurotransmission in cultured hippocampal cells
  publication-title: Nature
– volume: 209
  start-page: 809
  year: 1980
  end-page: 810
  ident: bib4
  article-title: Trophic interactions between astroglial cells and hippocampal neurons in culture
  publication-title: Science
– volume: 54
  start-page: 11
  year: 2006
  end-page: 20
  ident: bib17
  article-title: Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2
  publication-title: Glia
– volume: 79
  start-page: 679
  year: 1994
  end-page: 694
  ident: bib9
  article-title: Mice lacking vimentin develop and reproduce without an obvious phenotype
  publication-title: Cell
– volume: 43
  start-page: 129
  year: 2005
  end-page: 135
  ident: bib19
  article-title: In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A
  publication-title: Genesis
– volume: 2
  start-page: 419
  year: 2005
  end-page: 426
  ident: bib5
  article-title: A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration
  publication-title: Nat. Methods
– volume: 8
  start-page: 1289
  year: 2005
  end-page: 1291
  ident: bib14
  article-title: Agouti-related peptide-expressing neurons are mandatory for feeding
  publication-title: Nat. Neurosci.
– volume: 17
  start-page: 495
  year: 2011
  end-page: 499
  ident: bib23
  article-title: A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis
  publication-title: Nat. Med.
– volume: 264
  start-page: 1772
  year: 1994
  end-page: 1775
  ident: bib15
  article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation
  publication-title: Science
– volume: 82
  start-page: 380
  year: 2014
  end-page: 397
  ident: bib12
  article-title: Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain
  publication-title: Neuron
– volume: 16
  start-page: 2553
  year: 1996
  end-page: 2562
  ident: bib11
  article-title: Astrocytes protect neurons from hydrogen peroxide toxicity
  publication-title: J. Neurosci.
– volume: 16
  start-page: 401
  year: 1990
  end-page: 410
  ident: bib31
  article-title: Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 10
  start-page: 615
  year: 2007
  end-page: 622
  ident: bib22
  article-title: Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons
  publication-title: Nat. Neurosci.
– volume: 119
  start-page: 7
  year: 2010
  end-page: 35
  ident: bib29
  article-title: Astrocytes: biology and pathology
  publication-title: Acta Neuropathol.
– volume: 204
  start-page: 1999
  year: 2007
  end-page: 2008
  ident: bib25
  article-title: Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease
  publication-title: J. Exp. Med.
– volume: 22
  start-page: 5100
  year: 2002
  end-page: 5113
  ident: bib3
  article-title: Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation
  publication-title: Mol. Cell. Biol.
– volume: 337
  start-page: 358
  year: 2012
  end-page: 362
  ident: bib32
  article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair
  publication-title: Science
– volume: 14
  start-page: 1590
  year: 1995
  end-page: 1598
  ident: bib26
  article-title: Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally
  publication-title: EMBO J.
– volume: 23
  start-page: 297
  year: 1999
  end-page: 308
  ident: bib6
  article-title: Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice
  publication-title: Neuron
– volume: 56
  start-page: 750
  year: 2008
  end-page: 763
  ident: bib30
  article-title: Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro
  publication-title: Glia
– volume: 29
  start-page: 824
  year: 2011
  end-page: 828
  ident: bib16
  article-title: Astrocytes from familial and sporadic ALS patients are toxic to motor neurons
  publication-title: Nat. Biotechnol.
– volume: 26
  start-page: 1749
  year: 2007
  end-page: 1760
  ident: bib28
  article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
  publication-title: EMBO J.
– volume: 15
  start-page: 543
  year: 2012
  end-page: 550
  ident: bib20
  article-title: Primary oligodendrocyte death does not elicit anti-CNS immunity
  publication-title: Nat. Neurosci.
– volume: 486
  start-page: 410
  year: 2012
  end-page: 414
  ident: bib2
  article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors
  publication-title: Nature
– volume: 9
  start-page: 1302
  year: 2006
  end-page: 1311
  ident: bib10
  article-title: Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport
  publication-title: Nat. Neurosci.
– volume: 59
  start-page: 177
  year: 2013
  end-page: 182
  ident: bib13
  article-title: Plasma levels of neuron specific enolase quantify the extent of neuronal injury in murine models of ischemic stroke and multiple sclerosis
  publication-title: Neurobiol. Dis.
– volume: 28
  start-page: 264
  year: 2008
  end-page: 278
  ident: bib7
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
– volume: 38
  start-page: 73
  year: 1995
  end-page: 84
  ident: bib27
  article-title: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
– volume: 155
  start-page: 1596
  year: 2013
  end-page: 1609
  ident: bib24
  article-title: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor
  publication-title: Cell
– volume: 78
  start-page: 155
  year: 2001
  end-page: 162
  ident: bib33
  article-title: Down-regulation of occludin expression in astrocytes by tumour necrosis factor (TNF) is mediated via TNF type-1 receptor and nuclear factor-kappaB activation
  publication-title: J. Neurochem.
– volume: 8
  start-page: 1289
  year: 2005
  ident: 10.1016/j.celrep.2015.07.051_bib14
  article-title: Agouti-related peptide-expressing neurons are mandatory for feeding
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1548
– volume: 209
  start-page: 809
  year: 1980
  ident: 10.1016/j.celrep.2015.07.051_bib4
  article-title: Trophic interactions between astroglial cells and hippocampal neurons in culture
  publication-title: Science
  doi: 10.1126/science.7403847
– volume: 264
  start-page: 1772
  year: 1994
  ident: 10.1016/j.celrep.2015.07.051_bib15
  article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation
  publication-title: Science
  doi: 10.1126/science.8209258
– volume: 16
  start-page: 2553
  year: 1996
  ident: 10.1016/j.celrep.2015.07.051_bib11
  article-title: Astrocytes protect neurons from hydrogen peroxide toxicity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-08-02553.1996
– volume: 246
  start-page: 4251
  year: 1971
  ident: 10.1016/j.celrep.2015.07.051_bib18
  article-title: Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis by diphtheria toxin
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)62078-2
– volume: 14
  start-page: 1590
  year: 1995
  ident: 10.1016/j.celrep.2015.07.051_bib26
  article-title: Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb07147.x
– volume: 26
  start-page: 1749
  year: 2007
  ident: 10.1016/j.celrep.2015.07.051_bib28
  article-title: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601623
– volume: 82
  start-page: 380
  year: 2014
  ident: 10.1016/j.celrep.2015.07.051_bib12
  article-title: Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.02.040
– volume: 15
  start-page: 543
  year: 2012
  ident: 10.1016/j.celrep.2015.07.051_bib20
  article-title: Primary oligodendrocyte death does not elicit anti-CNS immunity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3062
– volume: 54
  start-page: 11
  year: 2006
  ident: 10.1016/j.celrep.2015.07.051_bib17
  article-title: Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2
  publication-title: Glia
  doi: 10.1002/glia.20342
– volume: 43
  start-page: 129
  year: 2005
  ident: 10.1016/j.celrep.2015.07.051_bib19
  article-title: In vivo genetic ablation by Cre-mediated expression of diphtheria toxin fragment A
  publication-title: Genesis
  doi: 10.1002/gene.20162
– volume: 337
  start-page: 358
  year: 2012
  ident: 10.1016/j.celrep.2015.07.051_bib32
  article-title: Regional astrocyte allocation regulates CNS synaptogenesis and repair
  publication-title: Science
  doi: 10.1126/science.1222381
– volume: 120
  start-page: 421
  year: 2005
  ident: 10.1016/j.celrep.2015.07.051_bib8
  article-title: Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.020
– volume: 38
  start-page: 73
  year: 1995
  ident: 10.1016/j.celrep.2015.07.051_bib27
  article-title: Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410380114
– volume: 28
  start-page: 264
  year: 2008
  ident: 10.1016/j.celrep.2015.07.051_bib7
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4178-07.2008
– volume: 78
  start-page: 155
  year: 2001
  ident: 10.1016/j.celrep.2015.07.051_bib33
  article-title: Down-regulation of occludin expression in astrocytes by tumour necrosis factor (TNF) is mediated via TNF type-1 receptor and nuclear factor-kappaB activation
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2001.00399.x
– volume: 9
  start-page: 1302
  year: 2006
  ident: 10.1016/j.celrep.2015.07.051_bib10
  article-title: Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1750
– volume: 79
  start-page: 679
  year: 1994
  ident: 10.1016/j.celrep.2015.07.051_bib9
  article-title: Mice lacking vimentin develop and reproduce without an obvious phenotype
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90553-3
– volume: 204
  start-page: 1999
  year: 2007
  ident: 10.1016/j.celrep.2015.07.051_bib25
  article-title: Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer’s disease
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20070304
– volume: 22
  start-page: 5100
  year: 2002
  ident: 10.1016/j.celrep.2015.07.051_bib3
  article-title: Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.14.5100-5113.2002
– volume: 2
  start-page: 419
  year: 2005
  ident: 10.1016/j.celrep.2015.07.051_bib5
  article-title: A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration
  publication-title: Nat. Methods
  doi: 10.1038/nmeth762
– volume: 29
  start-page: 824
  year: 2011
  ident: 10.1016/j.celrep.2015.07.051_bib16
  article-title: Astrocytes from familial and sporadic ALS patients are toxic to motor neurons
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1957
– volume: 23
  start-page: 297
  year: 1999
  ident: 10.1016/j.celrep.2015.07.051_bib6
  article-title: Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80781-3
– volume: 17
  start-page: 495
  year: 2011
  ident: 10.1016/j.celrep.2015.07.051_bib23
  article-title: A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.2324
– volume: 119
  start-page: 7
  year: 2010
  ident: 10.1016/j.celrep.2015.07.051_bib29
  article-title: Astrocytes: biology and pathology
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-009-0619-8
– volume: 59
  start-page: 177
  year: 2013
  ident: 10.1016/j.celrep.2015.07.051_bib13
  article-title: Plasma levels of neuron specific enolase quantify the extent of neuronal injury in murine models of ischemic stroke and multiple sclerosis
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.07.017
– volume: 368
  start-page: 59
  year: 1994
  ident: 10.1016/j.celrep.2015.07.051_bib21
  article-title: Glial contributions to excitatory neurotransmission in cultured hippocampal cells
  publication-title: Nature
  doi: 10.1038/368059a0
– volume: 56
  start-page: 750
  year: 2008
  ident: 10.1016/j.celrep.2015.07.051_bib30
  article-title: Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro
  publication-title: Glia
  doi: 10.1002/glia.20650
– volume: 16
  start-page: 401
  year: 1990
  ident: 10.1016/j.celrep.2015.07.051_bib31
  article-title: Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis
  publication-title: Neuropathol. Appl. Neurobiol.
  doi: 10.1111/j.1365-2990.1990.tb01276.x
– volume: 10
  start-page: 615
  year: 2007
  ident: 10.1016/j.celrep.2015.07.051_bib22
  article-title: Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1876
– volume: 486
  start-page: 410
  year: 2012
  ident: 10.1016/j.celrep.2015.07.051_bib2
  article-title: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors
  publication-title: Nature
  doi: 10.1038/nature11059
– volume: 155
  start-page: 1596
  year: 2013
  ident: 10.1016/j.celrep.2015.07.051_bib24
  article-title: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.030
– volume: 457
  start-page: 675
  year: 2009
  ident: 10.1016/j.celrep.2015.07.051_bib1
  article-title: Neuroscience: Glia - more than just brain glue
  publication-title: Nature
  doi: 10.1038/457675a
SSID ssj0000601194
Score 2.4581356
Snippet Although the importance of reactive astrocytes during CNS pathology is well established, the function of astroglia in adult CNS homeostasis is less well...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1377
SubjectTerms Animals
Antioxidants - pharmacology
Astrocytes - metabolism
Brain - cytology
Brain - drug effects
Brain - growth & development
Brain - metabolism
Cell Death
Glial Fibrillary Acidic Protein - genetics
Glial Fibrillary Acidic Protein - metabolism
Mice
Motor Neurons - metabolism
Oxidative Stress
Reactive Nitrogen Species - metabolism
Reactive Oxygen Species - metabolism
Title Astrocyte Depletion Impairs Redox Homeostasis and Triggers Neuronal Loss in the Adult CNS
URI https://dx.doi.org/10.1016/j.celrep.2015.07.051
https://www.ncbi.nlm.nih.gov/pubmed/26299968
https://www.proquest.com/docview/1709708532
https://doaj.org/article/7fd4a84eb2e94f8bbb87b77ec166f8a4
Volume 12
WOSCitedRecordID wos000360574200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtaKGXkr43TYMKvZr6Lem4zYMWylLaFLYnoceoOAQ7rJ3S_PvMWPaSHMpeejWyPHwaeb6xxt8w9sFRGLJeJtKqir5WQUJf2xILWahTY5Sy6dhsQqxWcr1W3-60-qKasCgPHIH7KIIvjSwxAQRVBmmtlcIKAS6r6yDNqASaCnUnmYrvYNIyoyPlPKearbwU839zY3GXg8sNkFxlVkXtzuxeXBrl---Fp3_RzzEMne2zpxN_5Mto9zP2ANrn7HHsKHnzgv1a9gOGpJsB-AlckbB21_IvuOWbTc-_g-_-cmqM3iEn7Juem9bzc8zPfyMJ5KNOB03-FQ3kTcuRG_Il6XPw49WPl-zn2en58edk6p6QOGRhQ-KNd6bwDjDiA6KgKuODM1UF1mW-LBA7YotGqlAIKNJQknqbTx1UpvbOF6_YXtu18IZx0ozLAlIXhLz0oVI1ZNaJspK-zkCIBStm7LSbpMWpw8WlnmvILnREXBPiOhUaEV-wZHvXVZTW2DH-Ey3LdiwJY48X0F305C56l7ssmJgXVU8cI3IHnKrZ8fj3sw9o3IJ0rmJa6K57nYlUCaSuRb5gr6NzbI3M65xSSnnwP4x_y56QQbHE7ZDtDZtreMceuT9D02-O2EOxlkfjPrgFIBULLw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocyte+Depletion+Impairs+Redox+Homeostasis+and+Triggers+Neuronal+Loss+in+the+Adult+CNS&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Bettina+Schreiner&rft.au=Elisa+Romanelli&rft.au=Pawel+Liberski&rft.au=Barbara+Ingold-Heppner&rft.date=2015-09-01&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=12&rft.issue=9&rft.spage=1377&rft.epage=1384&rft_id=info:doi/10.1016%2Fj.celrep.2015.07.051&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7fd4a84eb2e94f8bbb87b77ec166f8a4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon