Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expre...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 12; H. 1; S. 9962 - 13 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
15.06.2022
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (
P
< 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. |
|---|---|
| AbstractList | Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated ( P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. Abstract Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted.Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted. |
| ArticleNumber | 9962 |
| Author | Chan, Jacky C. P. Zhang, Xuan Lau, Chung Tai Liang, Feng Bian, Zhaoxiang Zhao, Chenchen Mao, Rui Zhang, Lin Chung, Wai Chak |
| Author_xml | – sequence: 1 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Tianjin University of Traditional Chinese Medicine – sequence: 2 givenname: Rui surname: Mao fullname: Mao, Rui organization: Tianjin University of Traditional Chinese Medicine – sequence: 3 givenname: Chung Tai surname: Lau fullname: Lau, Chung Tai organization: Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University – sequence: 4 givenname: Wai Chak surname: Chung fullname: Chung, Wai Chak organization: Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University – sequence: 5 givenname: Jacky C. P. surname: Chan fullname: Chan, Jacky C. P. organization: Department of Computer Science, HKBU Faculty of Science, Hong Kong Baptist University – sequence: 6 givenname: Feng surname: Liang fullname: Liang, Feng organization: Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University – sequence: 7 givenname: Chenchen surname: Zhao fullname: Zhao, Chenchen organization: Oncology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine – sequence: 8 givenname: Xuan surname: Zhang fullname: Zhang, Xuan email: zhangxuan@hkbu.edu.hk organization: Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University – sequence: 9 givenname: Zhaoxiang surname: Bian fullname: Bian, Zhaoxiang email: bzxiang@hkbu.edu.hk organization: Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35705632$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u3CAUha0qVZOmeYEuKqRuunGLL9jgTaUq6s9Ikbpp1wjjaw8jDFOwI0V5-TLjNE2yCBsQnPNxuZzXxYkPHovibUU_VpTJT4lXdStLClBWnHJZNi-KM6C8LoEBnDxYnxYXKe1oHjW0vGpfFaesFrRuGJwVt5se_WwHa_RsgydhIEvCYXFkRI-JDDFMZFrcbPcOyWRNDDpGfZNPQiSLMxiz8RqJCc7ONpHe6tGHlFedTtiTzJy02VqPxKGO3vqRTDhvQ5_eFC8H7RJe3M3nxe9vX39d_iivfn7fXH65Kk3N6Vz2UnPGuTBMagMVB9aKGoSkFMzQaa37HgwKaFHUPesMdEONHHUnuWiymZ0Xm5XbB71T-2gnHW9U0FYdN0IclY6zNQ4Vmkp0jeyaTrecG6Eb2WfMAAC0lo3IrM8ra790E_YmNy9q9wj6-MTbrRrDtWqBUiGqDPhwB4jhz4JpVpNNBp3THsOSFDRC1AIkgyx9_0S6C0v0uVUHVSNyD9omq949rOi-lH9_nAWwCvLfpRRxuJdUVB2ypNYsqZwldcySOlDlE5Ox8zEi-VXWPW9lqzXle_yI8X_Zz7j-Asu64Aw |
| CitedBy_id | crossref_primary_10_3390_diagnostics14111182 crossref_primary_10_3390_ijms231911945 crossref_primary_10_1177_17562848241272001 crossref_primary_10_1186_s12967_023_04573_x crossref_primary_10_3390_genes13101839 crossref_primary_10_1016_j_tim_2025_06_017 crossref_primary_10_1515_med_2023_0844 crossref_primary_10_3390_jcm14051536 crossref_primary_10_2147_JIR_S499343 crossref_primary_10_3389_fcvm_2022_1044443 crossref_primary_10_1016_j_jad_2022_07_045 crossref_primary_10_3389_bjbs_2025_14362 |
| Cites_doi | 10.1038/ajg.2009.727 10.1186/s13244-021-01107-1 10.1016/j.ejrad.2021.110072 10.1053/j.gastro.2018.12.009 10.1093/ecco-jcc/jjx105 10.7717/peerj.13205 10.1186/s12859-017-1984-2 10.1111/ijlh.13736 10.1038/s41598-020-70583-0 10.1364/boe.8.003426 10.3389/fgene.2021.721949 10.1111/apt.16718 10.1111/cei.13294 10.1038/s41598-021-88489-w 10.7717/peerj.11321 10.1016/j.ejim.2012.12.014 10.1002/ibd.20879 10.1038/s41598-021-02198-y 10.1016/j.biopha.2021.111427 10.1016/s2468-1253(21)00298-3 10.3760/cma.j.cn112137-20200820-02425 10.1016/j.cmpb.2021.106509 10.1053/j.gastro.2020.04.074 10.1136/bcr-2020-235100 10.1007/s13577-021-00641-w 10.3390/jcm10204745 10.3389/fimmu.2021.742080 10.1042/bsr20202384 10.1097/01.mcg.0000225644.75651.f1 10.1038/s41598-021-97366-5 10.1371/journal.pcbi.1009579 10.3389/fimmu.2021.697725 10.1007/s00384-015-2250-6 10.5217/ir.2017.15.1.7 10.1038/s41598-021-85000-3 10.1016/j.intimp.2020.106645 10.1038/s41598-021-01132-6 10.3748/wjg.v27.i17.1920 10.1016/j.bbrc.2021.11.027 10.1002/jcla.24135 10.3389/fphar.2020.587445 10.1038/ajg.2009.175 10.3389/fimmu.2021.734471 10.1002/cnm.3471 10.1002/mp.15366 10.1016/j.crohns.2011.09.013 10.1016/j.gie.2018.10.020 10.1097/MCG.0b013e3181faec51 10.3390/cancers13205189 10.1093/ibd/izab025 10.1155/2018/9208274 10.1155/2021/6627620 10.1016/j.molimm.2012.11.015 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-14048-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Proquest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_ec17b68b6ba944c7a68d847f22205867 PMC9200771 35705632 10_1038_s41598_022_14048_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Health@InnoHK Initiative Fund of the Hong Kong Special Administrative Region Government grantid: ITC RC/IHK/4/7; ITC RC/IHK/4/7 – fundername: China Center for Evidence Based Traditional Chinese Medicine, CCEBTM grantid: 2020YJSZX-5; 2020YJSZX-5; 2020YJSZX-5; 2020YJSZX-5 – fundername: China Center for Evidence Based Traditional Chinese Medicine, CCEBTM grantid: 2020YJSZX-5 – fundername: Health@InnoHK Initiative Fund of the Hong Kong Special Administrative Region Government grantid: ITC RC/IHK/4/7 – fundername: ; grantid: 2020YJSZX-5; 2020YJSZX-5; 2020YJSZX-5; 2020YJSZX-5 – fundername: ; grantid: ITC RC/IHK/4/7; ITC RC/IHK/4/7 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-d8a43447c38ac21423975278002cfbaaadd2ce729e75d3bc2bf5e4eab8476d8a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965283900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:38:05 EDT 2025 Tue Nov 04 01:50:03 EST 2025 Fri Sep 05 07:36:37 EDT 2025 Tue Oct 07 09:07:31 EDT 2025 Thu Jan 02 22:54:20 EST 2025 Tue Nov 18 22:20:40 EST 2025 Sat Nov 29 06:26:16 EST 2025 Fri Feb 21 02:40:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-d8a43447c38ac21423975278002cfbaaadd2ce729e75d3bc2bf5e4eab8476d8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/ec17b68b6ba944c7a68d847f22205867 |
| PMID | 35705632 |
| PQID | 2676727896 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ec17b68b6ba944c7a68d847f22205867 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9200771 proquest_miscellaneous_2677572832 proquest_journals_2676727896 pubmed_primary_35705632 crossref_primary_10_1038_s41598_022_14048_6 crossref_citationtrail_10_1038_s41598_022_14048_6 springer_journals_10_1038_s41598_022_14048_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-15 |
| PublicationDateYYYYMMDD | 2022-06-15 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Cruz-MartinezCReyes-GarciaCAVanelloNA novel event-related fMRI supervoxels-based representation and its application to schizophrenia diagnosisComput. Methods Programs Biomed.202221310650910.1016/j.cmpb.2021.10650934800805 WilliamsHRCharacterization of inflammatory bowel disease with urinary metabolic profilingAm. J. Gastroenterol.2009104143514442009ATel.2307....1W1:CAS:528:DC%2BD1MXms12jtrY%3D10.1038/ajg.2009.17519491857 KalkanIHDağliUOztaşETunçBUlkerAComparison of demographic and clinical characteristics of patients with early vs. adult vs. late onset ulcerative colitisEur. J. Intern. Med.20132427327710.1016/j.ejim.2012.12.01423318090 PenroseHMUlcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapySci. Rep.20211190102021NatSR..11.9010P1:CAS:528:DC%2BB3MXhtVShsr%2FE10.1038/s41598-021-88489-w339072568079702 SuSKongWZhangWWangWGuoHIntegrated analysis of DNA methylation and gene expression profiles identified S100A9 as a potential biomarker in ulcerative colitisBiosci. Rep202010.1042/bsr20202384331852477711060 GubatanJArtificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directionsWorld J. Gastroenterol.202127192019351:CAS:528:DC%2BB3MXhs1ais73N10.3748/wjg.v27.i17.1920340071308108036 NeyaziMOverexpression of cancer-associated stem cell gene OLFM4 in the colonic epithelium of patients with primary sclerosing cholangitisInflamm. Bowel Dis.2021271316132710.1093/ibd/izab025335701278314119 KoCWAGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitisGastroenterology201915674876410.1053/j.gastro.2018.12.00930576644 LinggiBMeta-analysis of gene expression disease signatures in colonic biopsy tissue from patients with ulcerative colitisSci. Rep.202111182432021NatSR..1118243L1:CAS:528:DC%2BB3MXitVCms7vE10.1038/s41598-021-97366-5345218888440637 KhorasaniHMUsefiHPeña-CastilloLDetecting ulcerative colitis from colon samples using efficient feature selection and machine learningSci. Rep.202010137441:CAS:528:DC%2BB3cXhs1CktLfJ10.1038/s41598-020-70583-0327926787426912 DingHIn vivo analysis of mucosal lipids reveals histological disease activity in ulcerative colitis using endoscope-coupled Raman spectroscopyBiomed. Opt. Express20178342634391:CAS:528:DC%2BC1cXmvF2itL8%3D10.1364/boe.8.003426287175785508839 OzawaTNovel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitisGastrointest. Endosc.201989416421.e41110.1016/j.gie.2018.10.02030367878 LaiLLiHFengQShenJRanZMulti-factor mediated functional modules identify novel classification of ulcerative colitis and functional gene panelSci. Rep.20211156692021NatSR..11.5669L1:CAS:528:DC%2BB3MXmslGrtLw%3D10.1038/s41598-021-85000-3337074957952401 BauerMJasinski-BergnerSMandelboimOWickenhauserCSeligerBEpstein–Barr virus-associated malignancies and immune escape: The role of the tumor microenvironment and tumor cell evasion strategiesCancers (Basel)202110.3390/cancers132051898471171 KangTDingWZhangLZiemekDZarringhalamKA biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression dataBMC Bioinform.2017185651:CAS:528:DC%2BC1cXisFajtLbL10.1186/s12859-017-1984-2 KimSHEffectiveness and drug retention of biologic disease modifying antirheumatic drugs in Korean patients with late onset ankylosing spondylitisSci. Rep.202111215552021NatSR..1121555K1:CAS:528:DC%2BB3MXisVSntLnN10.1038/s41598-021-01132-6347328078566570 FujiiTMaeharaKFujitaMOhkawaYDiscriminative feature of cells characterizes cell populations of interest by a small subset of genesPLoS Comput. Biol.202117e10095792021PLSCB..17E9579F1:CAS:528:DC%2BB3MXis12ktbnI10.1371/journal.pcbi.1009579347978488641884 Peyrin-BirouletLEtrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): A phase 3, randomised, controlled trialLancet Gastroenterol. Hepatol.2022712814010.1016/s2468-1253(21)00298-334798039 TianMMaPZhangYMiYFanDGinsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathwayInt. Immunopharmacol.2020851066451:CAS:528:DC%2BB3cXhtFegtb%2FJ10.1016/j.intimp.2020.10664532521491 XvYMachine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: An exploratory and comparative studyInsights Imaging20211217010.1186/s13244-021-01107-1348001798605949 FuYIntestinal CD11b(+) B cells ameliorate colitis by secreting immunoglobulin AFront. Immunol.2021121:CAS:528:DC%2BB38XhtlKgsb7M10.3389/fimmu.2021.697725348040048595478 YangYCase report: IL-21 and Bcl-6 regulate the proliferation and secretion of Tfh and Tfr cells in the intestinal germinal center of patients with inflammatory bowel diseaseFront Pharmacol.20201158744510.3389/fphar.2020.58744533584264 RabeHDistinct patterns of naive, activated and memory T and B cells in blood of patients with ulcerative colitis or Crohn's diseaseClin. Exp. Immunol.20191971111291:CAS:528:DC%2BC1MXht1elur3I10.1111/cei.13294308836916591150 XuLGuoXGuanHSerious consequences of Epstein–Barr virus infection: Hemophagocytic lymphohistocytosisInt. J. Lab Hematol.202244748110.1111/ijlh.1373634709704 RegazzoniFChapelleDMoireauPCombining data assimilation and machine learning to build data-driven models for unknown long time dynamics—applications in cardiovascular modelingInt. J. Numer. Method Biomed. Eng.202137e3471428561110.1002/cnm.3471339136238365699 HarbordMCorrigendum: Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: Current managementJ. Crohns Colitis.201711151210.1093/ecco-jcc/jjx10529088340 GersemannMOlfactomedin-4 is a glycoprotein secreted into mucus in active IBDJ. Crohns Colitis.2012642543410.1016/j.crohns.2011.09.01322398066 ChenXArtificial neural network analysis-based immune-related signatures of primary non-response to infliximab in patients with ulcerative colitisFront. Immunol.2021127420801:CAS:528:DC%2BB38XhtlKgtLfO10.3389/fimmu.2021.742080349925928724249 ZhugeLA novel model based on liquid–liquid phase separation—related genes correlates immune microenvironment profiles and predicts prognosis of lung squamous cell carcinomaJ Clin Lab Anal.202236e241351:CAS:528:DC%2BB38XjsFert7s%3D10.1002/jcla.2413534799879 MitsialisVSingle-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's diseaseGastroenterology2020159591608.e5101:CAS:528:DC%2BB3cXhs1ejsLnF10.1053/j.gastro.2020.04.07432428507 ChoiCHSecond Korean guidelines for the management of ulcerative colitisIntest. Res.20171573710.5217/ir.2017.15.1.7282393135323310 DobreMDifferential intestinal mucosa transcriptomic biomarkers for Crohn's disease and ulcerative colitisJ. Immunol. Res.2018201892082741:CAS:528:DC%2BC1MXpsVCntbc%3D10.1155/2018/9208274304170216207860 KraszewskiSSzczurekWSzymczakJRegułaMNeubauerKMachine learning prediction model for inflammatory bowel disease based on laboratory markers working. Model in a Discovery Cohort StudyJ. Clin. Med.202110.3390/jcm10204745346828688539616 JiangLRisk factors for ulcerative colitis in a Chinese population: An age-matched and sex-matched case-control studyJ. Clin. Gastroenterol.20074128028410.1097/01.mcg.0000225644.75651.f117426467 JunHZeXinZScreening of pyroptosis-related genes influencing the therapeutic effect of dehydroabietic acid in liver cancer and construction of a survival nomogramBiochem. Biophys. Res. Commun.20215851031101:CAS:528:DC%2BB3MXisFagsbzF10.1016/j.bbrc.2021.11.02734800881 SantosATTongJSteinbergAShemenLEpstein–Barr virus-induced natural killer/T cell lymphoma arising in tonsil and cervical node tissueBMJ Case Rep.202110.1136/bcr-2020-235100347641318009209 ZhangDYanPHanTChengXLiJIdentification of key genes and biological processes contributing to colitis associated dysplasia in ulcerative colitisPeerJ20219e1132110.7717/peerj.11321339870078086577 LuJIdentification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learningHum. Cell.2022351791881:CAS:528:DC%2BB3MXisVChtL7K10.1007/s13577-021-00641-w34731452 HanaiHA new paradigm in ulcerative colitis: Regulatory T cells are key factor which induces/exacerbates UC through an immune imbalanceMol. Immunol.2013541731801:CAS:528:DC%2BC3sXhslajsLs%3D10.1016/j.molimm.2012.11.01523280396 CuiXSnapperCMEpstein Barr virus: Development of vaccines and immune cell therapy for EBV-associated diseasesFront Immunol.2021127344711:CAS:528:DC%2BB3MXis1ylsLfM10.3389/fimmu.2021.734471346910428532523 AkazawaMHashimotoKKatsuhikoNKanameYMachine learning approach for the prediction of postpartum hemorrhage in vaginal birthSci. Rep.202111226202021NatSR..1122620A1:CAS:528:DC%2BB3MXisFCmu7rK10.1038/s41598-021-02198-y347996878604915 OlsenJDiagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression dataInflamm. Bowel Dis.2009151032103810.1002/ibd.2087919177426 Yamamoto-FurushoJKInterleukin 1 β (IL-1B) and IL-1 antagonist receptor (IL-1RN) gene polymorphisms are associated with the genetic susceptibility and steroid dependence in patients with ulcerative colitisJ. Clin. Gastroenterol.2011455315351:CAS:528:DC%2BC3MXntlGns7s%3D10.1097/MCG.0b013e3181faec5120975573 StrykerSKapadiaAJGreenbergJAApplication of machine learning classifiers to X-ray diffraction imaging with medically relevant phantomsMed0 Phys.20224953254610.1002/mp.15366 Al-HaraziOKayaIHEl AllaliAColakDA network-based methodology to identify subnetwork markers for diagnosis and prognosis of colorectal cancerFront. Genet.2021121:CAS:528:DC%2BB38XktF2lsb4%3D10.3389/fgene.2021.721949347902208591094 YuYXValue of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinomaZhonghua Yi X T Fujii (14048_CR24) 2021; 17 C Cruz-Martinez (14048_CR18) 2022; 213 HM Penrose (14048_CR40) 2021; 11 HM Khorasani (14048_CR22) 2020; 10 AT Santos (14048_CR43) 2021 SH Kim (14048_CR12) 2021; 11 L Peyrin-Biroulet (14048_CR8) 2022; 7 L Zhuge (14048_CR31) 2022; 36 X Chen (14048_CR32) 2022; 146 S Stryker (14048_CR19) 2022; 49 T Kang (14048_CR50) 2017; 18 M Harbord (14048_CR2) 2017; 11 X Cui (14048_CR46) 2021; 12 L Lai (14048_CR10) 2021; 11 T Ozawa (14048_CR51) 2019; 89 B Bakir-Gungor (14048_CR27) 2022; 10 Y Yang (14048_CR39) 2020; 11 B Linggi (14048_CR41) 2021; 11 D Zhang (14048_CR11) 2021; 9 Y Fu (14048_CR6) 2021; 12 Y Liu (14048_CR47) 2021; 2021 M Gersemann (14048_CR36) 2012; 6 JC Peng (14048_CR49) 2015; 30 L Jiang (14048_CR52) 2007; 41 J Gubatan (14048_CR15) 2021; 27 JK Yamamoto-Furusho (14048_CR53) 2011; 45 IH Kalkan (14048_CR30) 2013; 24 CH Choi (14048_CR7) 2017; 15 X Chen (14048_CR29) 2021; 12 H Ding (14048_CR23) 2017; 8 S Su (14048_CR14) 2020 HR Williams (14048_CR26) 2009; 104 L Xu (14048_CR44) 2022; 44 M Tian (14048_CR3) 2020; 85 Y Xv (14048_CR20) 2021; 12 M Dobre (14048_CR34) 2018; 2018 H Hanai (14048_CR37) 2013; 54 F Regazzoni (14048_CR48) 2021; 37 O Al-Harazi (14048_CR21) 2021; 12 C Ma (14048_CR4) 2022; 55 H Rabe (14048_CR5) 2019; 197 V Mitsialis (14048_CR38) 2020; 159 M Akazawa (14048_CR17) 2021; 11 YX Yu (14048_CR33) 2021; 101 S Kraszewski (14048_CR16) 2021 M Neyazi (14048_CR35) 2021; 27 14048_CR1 Y Zhu (14048_CR42) 2021; 138 J Olsen (14048_CR28) 2009; 15 M Bauer (14048_CR45) 2021 J Lu (14048_CR13) 2022; 35 CW Ko (14048_CR9) 2019; 156 H Jun (14048_CR25) 2021; 585 |
| References_xml | – reference: DingHIn vivo analysis of mucosal lipids reveals histological disease activity in ulcerative colitis using endoscope-coupled Raman spectroscopyBiomed. Opt. Express20178342634391:CAS:528:DC%2BC1cXmvF2itL8%3D10.1364/boe.8.003426287175785508839 – reference: YangYCase report: IL-21 and Bcl-6 regulate the proliferation and secretion of Tfh and Tfr cells in the intestinal germinal center of patients with inflammatory bowel diseaseFront Pharmacol.20201158744510.3389/fphar.2020.58744533584264 – reference: Cruz-MartinezCReyes-GarciaCAVanelloNA novel event-related fMRI supervoxels-based representation and its application to schizophrenia diagnosisComput. Methods Programs Biomed.202221310650910.1016/j.cmpb.2021.10650934800805 – reference: Al-HaraziOKayaIHEl AllaliAColakDA network-based methodology to identify subnetwork markers for diagnosis and prognosis of colorectal cancerFront. Genet.2021121:CAS:528:DC%2BB38XktF2lsb4%3D10.3389/fgene.2021.721949347902208591094 – reference: ZhuYCXCL8 chemokine in ulcerative colitisBiomed. Pharmacother.20211381114271:CAS:528:DC%2BB3MXhsVaiu7jP10.1016/j.biopha.2021.11142733706134 – reference: XvYMachine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: An exploratory and comparative studyInsights Imaging20211217010.1186/s13244-021-01107-1348001798605949 – reference: CuiXSnapperCMEpstein Barr virus: Development of vaccines and immune cell therapy for EBV-associated diseasesFront Immunol.2021127344711:CAS:528:DC%2BB3MXis1ylsLfM10.3389/fimmu.2021.734471346910428532523 – reference: LiuYClinical features of intestinal ulcers complicated by Epstein–Barr virus infection: Importance of active infectionDis Markers2021202166276201:CAS:528:DC%2BB3MXhsVGqtb3L10.1155/2021/6627620340073448110392 – reference: KraszewskiSSzczurekWSzymczakJRegułaMNeubauerKMachine learning prediction model for inflammatory bowel disease based on laboratory markers working. Model in a Discovery Cohort StudyJ. Clin. Med.202110.3390/jcm10204745346828688539616 – reference: ChenXMRI-based radiomics model for distinguishing endometrial carcinoma from benign mimics: A multicenter studyEur J Radiol.202214611007210.1016/j.ejrad.2021.11007234861530 – reference: LaiLLiHFengQShenJRanZMulti-factor mediated functional modules identify novel classification of ulcerative colitis and functional gene panelSci. Rep.20211156692021NatSR..11.5669L1:CAS:528:DC%2BB3MXmslGrtLw%3D10.1038/s41598-021-85000-3337074957952401 – reference: PenroseHMUlcerative colitis immune cell landscapes and differentially expressed gene signatures determine novel regulators and predict clinical response to biologic therapySci. Rep.20211190102021NatSR..11.9010P1:CAS:528:DC%2BB3MXhtVShsr%2FE10.1038/s41598-021-88489-w339072568079702 – reference: StrykerSKapadiaAJGreenbergJAApplication of machine learning classifiers to X-ray diffraction imaging with medically relevant phantomsMed0 Phys.20224953254610.1002/mp.15366 – reference: Yamamoto-FurushoJKInterleukin 1 β (IL-1B) and IL-1 antagonist receptor (IL-1RN) gene polymorphisms are associated with the genetic susceptibility and steroid dependence in patients with ulcerative colitisJ. Clin. Gastroenterol.2011455315351:CAS:528:DC%2BC3MXntlGns7s%3D10.1097/MCG.0b013e3181faec5120975573 – reference: NeyaziMOverexpression of cancer-associated stem cell gene OLFM4 in the colonic epithelium of patients with primary sclerosing cholangitisInflamm. Bowel Dis.2021271316132710.1093/ibd/izab025335701278314119 – reference: LinggiBMeta-analysis of gene expression disease signatures in colonic biopsy tissue from patients with ulcerative colitisSci. Rep.202111182432021NatSR..1118243L1:CAS:528:DC%2BB3MXitVCms7vE10.1038/s41598-021-97366-5345218888440637 – reference: KoCWAGA clinical practice guidelines on the management of mild-to-moderate ulcerative colitisGastroenterology201915674876410.1053/j.gastro.2018.12.00930576644 – reference: Bakir-GungorBInflammatory bowel disease biomarkers of human gut microbiota selected via different feature selection methodsPeerJ202210e1320510.7717/peerj.13205354971939048649 – reference: MitsialisVSingle-cell analyses of colon and blood reveal distinct immune cell signatures of ulcerative colitis and Crohn's diseaseGastroenterology2020159591608.e5101:CAS:528:DC%2BB3cXhs1ejsLnF10.1053/j.gastro.2020.04.07432428507 – reference: ZhangDYanPHanTChengXLiJIdentification of key genes and biological processes contributing to colitis associated dysplasia in ulcerative colitisPeerJ20219e1132110.7717/peerj.11321339870078086577 – reference: BauerMJasinski-BergnerSMandelboimOWickenhauserCSeligerBEpstein–Barr virus-associated malignancies and immune escape: The role of the tumor microenvironment and tumor cell evasion strategiesCancers (Basel)202110.3390/cancers132051898471171 – reference: MaCSystematic review: Disease activity indices for immune checkpoint inhibitor-associated enterocolitisAliment. Pharmacol. Ther.20225517819010.1111/apt.1671834821404 – reference: HarbordMCorrigendum: Third European evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: Current managementJ. Crohns Colitis.201711151210.1093/ecco-jcc/jjx10529088340 – reference: JunHZeXinZScreening of pyroptosis-related genes influencing the therapeutic effect of dehydroabietic acid in liver cancer and construction of a survival nomogramBiochem. Biophys. Res. Commun.20215851031101:CAS:528:DC%2BB3MXisFagsbzF10.1016/j.bbrc.2021.11.02734800881 – reference: TianMMaPZhangYMiYFanDGinsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathwayInt. Immunopharmacol.2020851066451:CAS:528:DC%2BB3cXhtFegtb%2FJ10.1016/j.intimp.2020.10664532521491 – reference: OlsenJDiagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression dataInflamm. Bowel Dis.2009151032103810.1002/ibd.2087919177426 – reference: RabeHDistinct patterns of naive, activated and memory T and B cells in blood of patients with ulcerative colitis or Crohn's diseaseClin. Exp. Immunol.20191971111291:CAS:528:DC%2BC1MXht1elur3I10.1111/cei.13294308836916591150 – reference: KimSHEffectiveness and drug retention of biologic disease modifying antirheumatic drugs in Korean patients with late onset ankylosing spondylitisSci. Rep.202111215552021NatSR..1121555K1:CAS:528:DC%2BB3MXisVSntLnN10.1038/s41598-021-01132-6347328078566570 – reference: SuSKongWZhangWWangWGuoHIntegrated analysis of DNA methylation and gene expression profiles identified S100A9 as a potential biomarker in ulcerative colitisBiosci. Rep202010.1042/bsr20202384331852477711060 – reference: LuJIdentification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learningHum. Cell.2022351791881:CAS:528:DC%2BB3MXisVChtL7K10.1007/s13577-021-00641-w34731452 – reference: Kornbluth, A. & Sachar, D. B. Ulcerative colitis practice guidelines in adults: American College Of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol.105, 501–523; quiz 524. https://doi.org/10.1038/ajg.2009.727 (2010). – reference: SantosATTongJSteinbergAShemenLEpstein–Barr virus-induced natural killer/T cell lymphoma arising in tonsil and cervical node tissueBMJ Case Rep.202110.1136/bcr-2020-235100347641318009209 – reference: XuLGuoXGuanHSerious consequences of Epstein–Barr virus infection: Hemophagocytic lymphohistocytosisInt. J. Lab Hematol.202244748110.1111/ijlh.1373634709704 – reference: HanaiHA new paradigm in ulcerative colitis: Regulatory T cells are key factor which induces/exacerbates UC through an immune imbalanceMol. Immunol.2013541731801:CAS:528:DC%2BC3sXhslajsLs%3D10.1016/j.molimm.2012.11.01523280396 – reference: KalkanIHDağliUOztaşETunçBUlkerAComparison of demographic and clinical characteristics of patients with early vs. adult vs. late onset ulcerative colitisEur. J. Intern. Med.20132427327710.1016/j.ejim.2012.12.01423318090 – reference: RegazzoniFChapelleDMoireauPCombining data assimilation and machine learning to build data-driven models for unknown long time dynamics—applications in cardiovascular modelingInt. J. Numer. Method Biomed. Eng.202137e3471428561110.1002/cnm.3471339136238365699 – reference: YuYXValue of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinomaZhonghua Yi Xue Za Zhi2021101123912451:STN:280:DC%2BB2cbhvVSjug%3D%3D10.3760/cma.j.cn112137-20200820-0242534865392 – reference: DobreMDifferential intestinal mucosa transcriptomic biomarkers for Crohn's disease and ulcerative colitisJ. Immunol. Res.2018201892082741:CAS:528:DC%2BC1MXpsVCntbc%3D10.1155/2018/9208274304170216207860 – reference: KangTDingWZhangLZiemekDZarringhalamKA biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression dataBMC Bioinform.2017185651:CAS:528:DC%2BC1cXisFajtLbL10.1186/s12859-017-1984-2 – reference: WilliamsHRCharacterization of inflammatory bowel disease with urinary metabolic profilingAm. J. Gastroenterol.2009104143514442009ATel.2307....1W1:CAS:528:DC%2BD1MXms12jtrY%3D10.1038/ajg.2009.17519491857 – reference: KhorasaniHMUsefiHPeña-CastilloLDetecting ulcerative colitis from colon samples using efficient feature selection and machine learningSci. Rep.202010137441:CAS:528:DC%2BB3cXhs1CktLfJ10.1038/s41598-020-70583-0327926787426912 – reference: AkazawaMHashimotoKKatsuhikoNKanameYMachine learning approach for the prediction of postpartum hemorrhage in vaginal birthSci. Rep.202111226202021NatSR..1122620A1:CAS:528:DC%2BB3MXisFCmu7rK10.1038/s41598-021-02198-y347996878604915 – reference: FujiiTMaeharaKFujitaMOhkawaYDiscriminative feature of cells characterizes cell populations of interest by a small subset of genesPLoS Comput. Biol.202117e10095792021PLSCB..17E9579F1:CAS:528:DC%2BB3MXis12ktbnI10.1371/journal.pcbi.1009579347978488641884 – reference: FuYIntestinal CD11b(+) B cells ameliorate colitis by secreting immunoglobulin AFront. Immunol.2021121:CAS:528:DC%2BB38XhtlKgsb7M10.3389/fimmu.2021.697725348040048595478 – reference: ChenXArtificial neural network analysis-based immune-related signatures of primary non-response to infliximab in patients with ulcerative colitisFront. Immunol.2021127420801:CAS:528:DC%2BB38XhtlKgtLfO10.3389/fimmu.2021.742080349925928724249 – reference: GubatanJArtificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directionsWorld J. Gastroenterol.202127192019351:CAS:528:DC%2BB3MXhs1ais73N10.3748/wjg.v27.i17.1920340071308108036 – reference: PengJCRanZHShenJSeasonal variation in onset and relapse of IBD and a model to predict the frequency of onset, relapse, and severity of IBD based on artificial neural networkInt. J. Colorectal Dis.2015301267127310.1007/s00384-015-2250-625976931 – reference: Peyrin-BirouletLEtrolizumab as induction and maintenance therapy for ulcerative colitis in patients previously treated with tumour necrosis factor inhibitors (HICKORY): A phase 3, randomised, controlled trialLancet Gastroenterol. Hepatol.2022712814010.1016/s2468-1253(21)00298-334798039 – reference: ChoiCHSecond Korean guidelines for the management of ulcerative colitisIntest. Res.20171573710.5217/ir.2017.15.1.7282393135323310 – reference: OzawaTNovel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitisGastrointest. Endosc.201989416421.e41110.1016/j.gie.2018.10.02030367878 – reference: GersemannMOlfactomedin-4 is a glycoprotein secreted into mucus in active IBDJ. Crohns Colitis.2012642543410.1016/j.crohns.2011.09.01322398066 – reference: ZhugeLA novel model based on liquid–liquid phase separation—related genes correlates immune microenvironment profiles and predicts prognosis of lung squamous cell carcinomaJ Clin Lab Anal.202236e241351:CAS:528:DC%2BB38XjsFert7s%3D10.1002/jcla.2413534799879 – reference: JiangLRisk factors for ulcerative colitis in a Chinese population: An age-matched and sex-matched case-control studyJ. Clin. Gastroenterol.20074128028410.1097/01.mcg.0000225644.75651.f117426467 – ident: 14048_CR1 doi: 10.1038/ajg.2009.727 – volume: 12 start-page: 170 year: 2021 ident: 14048_CR20 publication-title: Insights Imaging doi: 10.1186/s13244-021-01107-1 – volume: 146 start-page: 110072 year: 2022 ident: 14048_CR32 publication-title: Eur J Radiol. doi: 10.1016/j.ejrad.2021.110072 – volume: 156 start-page: 748 year: 2019 ident: 14048_CR9 publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.12.009 – volume: 11 start-page: 1512 year: 2017 ident: 14048_CR2 publication-title: J. Crohns Colitis. doi: 10.1093/ecco-jcc/jjx105 – volume: 10 start-page: e13205 year: 2022 ident: 14048_CR27 publication-title: PeerJ doi: 10.7717/peerj.13205 – volume: 18 start-page: 565 year: 2017 ident: 14048_CR50 publication-title: BMC Bioinform. doi: 10.1186/s12859-017-1984-2 – volume: 44 start-page: 74 year: 2022 ident: 14048_CR44 publication-title: Int. J. Lab Hematol. doi: 10.1111/ijlh.13736 – volume: 10 start-page: 13744 year: 2020 ident: 14048_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-020-70583-0 – volume: 8 start-page: 3426 year: 2017 ident: 14048_CR23 publication-title: Biomed. Opt. Express doi: 10.1364/boe.8.003426 – volume: 12 year: 2021 ident: 14048_CR21 publication-title: Front. Genet. doi: 10.3389/fgene.2021.721949 – volume: 55 start-page: 178 year: 2022 ident: 14048_CR4 publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/apt.16718 – volume: 197 start-page: 111 year: 2019 ident: 14048_CR5 publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.13294 – volume: 11 start-page: 9010 year: 2021 ident: 14048_CR40 publication-title: Sci. Rep. doi: 10.1038/s41598-021-88489-w – volume: 9 start-page: e11321 year: 2021 ident: 14048_CR11 publication-title: PeerJ doi: 10.7717/peerj.11321 – volume: 24 start-page: 273 year: 2013 ident: 14048_CR30 publication-title: Eur. J. Intern. Med. doi: 10.1016/j.ejim.2012.12.014 – volume: 15 start-page: 1032 year: 2009 ident: 14048_CR28 publication-title: Inflamm. Bowel Dis. doi: 10.1002/ibd.20879 – volume: 11 start-page: 22620 year: 2021 ident: 14048_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-021-02198-y – volume: 138 start-page: 111427 year: 2021 ident: 14048_CR42 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.111427 – volume: 7 start-page: 128 year: 2022 ident: 14048_CR8 publication-title: Lancet Gastroenterol. Hepatol. doi: 10.1016/s2468-1253(21)00298-3 – volume: 101 start-page: 1239 year: 2021 ident: 14048_CR33 publication-title: Zhonghua Yi Xue Za Zhi doi: 10.3760/cma.j.cn112137-20200820-02425 – volume: 213 start-page: 106509 year: 2022 ident: 14048_CR18 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106509 – volume: 159 start-page: 591 year: 2020 ident: 14048_CR38 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.04.074 – year: 2021 ident: 14048_CR43 publication-title: BMJ Case Rep. doi: 10.1136/bcr-2020-235100 – volume: 35 start-page: 179 year: 2022 ident: 14048_CR13 publication-title: Hum. Cell. doi: 10.1007/s13577-021-00641-w – year: 2021 ident: 14048_CR16 publication-title: J. Clin. Med. doi: 10.3390/jcm10204745 – volume: 12 start-page: 742080 year: 2021 ident: 14048_CR29 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.742080 – year: 2020 ident: 14048_CR14 publication-title: Biosci. Rep doi: 10.1042/bsr20202384 – volume: 41 start-page: 280 year: 2007 ident: 14048_CR52 publication-title: J. Clin. Gastroenterol. doi: 10.1097/01.mcg.0000225644.75651.f1 – volume: 11 start-page: 18243 year: 2021 ident: 14048_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-021-97366-5 – volume: 17 start-page: e1009579 year: 2021 ident: 14048_CR24 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009579 – volume: 12 year: 2021 ident: 14048_CR6 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.697725 – volume: 30 start-page: 1267 year: 2015 ident: 14048_CR49 publication-title: Int. J. Colorectal Dis. doi: 10.1007/s00384-015-2250-6 – volume: 15 start-page: 7 year: 2017 ident: 14048_CR7 publication-title: Intest. Res. doi: 10.5217/ir.2017.15.1.7 – volume: 11 start-page: 5669 year: 2021 ident: 14048_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-021-85000-3 – volume: 85 start-page: 106645 year: 2020 ident: 14048_CR3 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2020.106645 – volume: 11 start-page: 21555 year: 2021 ident: 14048_CR12 publication-title: Sci. Rep. doi: 10.1038/s41598-021-01132-6 – volume: 27 start-page: 1920 year: 2021 ident: 14048_CR15 publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v27.i17.1920 – volume: 585 start-page: 103 year: 2021 ident: 14048_CR25 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2021.11.027 – volume: 36 start-page: e24135 year: 2022 ident: 14048_CR31 publication-title: J Clin Lab Anal. doi: 10.1002/jcla.24135 – volume: 11 start-page: 587445 year: 2020 ident: 14048_CR39 publication-title: Front Pharmacol. doi: 10.3389/fphar.2020.587445 – volume: 104 start-page: 1435 year: 2009 ident: 14048_CR26 publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2009.175 – volume: 12 start-page: 734471 year: 2021 ident: 14048_CR46 publication-title: Front Immunol. doi: 10.3389/fimmu.2021.734471 – volume: 37 start-page: e3471 year: 2021 ident: 14048_CR48 publication-title: Int. J. Numer. Method Biomed. Eng. doi: 10.1002/cnm.3471 – volume: 49 start-page: 532 year: 2022 ident: 14048_CR19 publication-title: Med0 Phys. doi: 10.1002/mp.15366 – volume: 6 start-page: 425 year: 2012 ident: 14048_CR36 publication-title: J. Crohns Colitis. doi: 10.1016/j.crohns.2011.09.013 – volume: 89 start-page: 416 year: 2019 ident: 14048_CR51 publication-title: Gastrointest. Endosc. doi: 10.1016/j.gie.2018.10.020 – volume: 45 start-page: 531 year: 2011 ident: 14048_CR53 publication-title: J. Clin. Gastroenterol. doi: 10.1097/MCG.0b013e3181faec51 – year: 2021 ident: 14048_CR45 publication-title: Cancers (Basel) doi: 10.3390/cancers13205189 – volume: 27 start-page: 1316 year: 2021 ident: 14048_CR35 publication-title: Inflamm. Bowel Dis. doi: 10.1093/ibd/izab025 – volume: 2018 start-page: 9208274 year: 2018 ident: 14048_CR34 publication-title: J. Immunol. Res. doi: 10.1155/2018/9208274 – volume: 2021 start-page: 6627620 year: 2021 ident: 14048_CR47 publication-title: Dis Markers doi: 10.1155/2021/6627620 – volume: 54 start-page: 173 year: 2013 ident: 14048_CR37 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2012.11.015 |
| SSID | ssj0000529419 |
| Score | 2.473124 |
| Snippet | Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly... Abstract Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9962 |
| SubjectTerms | 631/208 692/4020 Data processing Diagnosis DNA microarrays Gene expression Humanities and Social Sciences Immunoregulation Inflammatory bowel disease Inflammatory bowel diseases Learning algorithms Machine learning Macrophages Mast cells Monocytes multidisciplinary Neural networks Patients Principal components analysis Science Science (multidisciplinary) Ulcerative colitis |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70egICNxg6ibl-2cECAqDqjqAVBvluPYW6RtUpIGqeLPM2M7qZZHL9xWsZ21d8Yzs_P4BuCla3lmSyfT1UrXaYkKK9VZblOtK2OdXDXaA89__SQODuTRUX0YHW5jTKucZaIX1G1vyEe-lxOyGJVt8jen31PqGkXR1dhC4ypcI5SEwqfuHS4-FopilVkda2VWhdwbUV9RTRn-AyNcGZnyLX3kYfv_Zmv-mTL5W9zUq6P92_97kDtwKxqi7G3gnLtwxXb34EZoTXl-H36GCl4XXXqsd2warZs2bE3SkVFZCpuzEdkJpfXpYdDnONIPbNoYGyDFmfEJdiNrQ04ffiLF2TJ854lP5LQsdq5Ys9DOenwAX_Y_fH7_MY2NGlKDBt9Z2kpdEnKgKaQ2hOGGRk6FR0Rpa1yjNcrQ3Fg0462o2qIxeeMqW1rdoGrkuLh4CDtd39nHwJra4OLc1NxmpXCZxi8gv0hVoKVTmTqBbCaXMhHFnJppbJSPphdSBRIrJLHyJFY8gVfLmtOA4XHp7HfEBctMwt_2D_phreJ1VtZkouGy4Y2uy9IIzWWLh3E51S1LLhLYnYmvolAY1QXlE3ixDON1phiN7mw_-TmiEtQ_KoFHgeWWnRSVQHOVRsQWM25tdXuk-3bsIcNrckmLLIHXM9tebOvfP8WTy0_xFG7mdJOok1O1Cztnw2SfwXXzA7lqeO6v4i8k0z0P priority: 102 providerName: ProQuest |
| Title | Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods |
| URI | https://link.springer.com/article/10.1038/s41598-022-14048-6 https://www.ncbi.nlm.nih.gov/pubmed/35705632 https://www.proquest.com/docview/2676727896 https://www.proquest.com/docview/2677572832 https://pubmed.ncbi.nlm.nih.gov/PMC9200771 https://doaj.org/article/ec17b68b6ba944c7a68d847f22205867 |
| Volume | 12 |
| WOSCitedRecordID | wos000965283900042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJvQsjISN4i6cRLbObaoFUh0FSFAy8lyHKdF2mZR0iBV_Hlm7Oy2W14XLla0tjeWZ-z5Ys98A_CyqUXiskbF06kp4gwNVmwS7mJjcusaNa2MJ57__F7OZmo-L8orqb7IJyzQA4eJ23M2kZVQlahMkWVWGqFq3FEbThGiSvg4ckQ9Vz6mAqs3L7KkGKNkpqna69FSUTQZfnsRo4yKxYYl8oT9v0OZvzpLXrsx9Ybo6B7cHREk2w8jvw83XPsAboeckhcP4UcIvW3Gszi2bNjQu2ZYsBPa1hjFk7CVGyE7I38803XmAmuWHRsW1gUucGa9Z1zP6uCMh09k8WqG_3nmPTAdG1NOnLCQh7p_BJ-ODj--eRuPGRZii0jtPK6VyYjyz6bKWCJfQ3SSc0kg0jaVMbj5cesQfzuZ12lledXkLnOmQgkI7Jw-hq122bqnwKrCYmduC-ESFE9i8AV0oJGnCFFyW0SQrGZb25F-nLJgLLS_Bk-VDhLSKCHtJaRFBK_Wfb4F8o2_tj4gIa5bEnG2_wHVSY_qpP-lThHsrlRAj6u515xY7ShkGN_xYl2N65AuV0zrloNvI3NJiZ8ieBI0Zj2SNJeIM6lGbujSxlA3a9qvp57ru6CzZJlE8HqldZfD-vNUPPsfU7EDdzgtF0rUlO_C1nk3uOdwy35H3esmcFPOpS_VBLYPDmflh4lfg1ge85JKieV2-e64_PITz3U1OA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFE3TzsHhHhVrbqseiioN-M49oK0TUrSgFb8J34jM86jWh699cBttX6snf1mPBnPfAPwxBZpYGIr_MlEZX6MB5avgtD4SiXaWDHJlSOe_zjls5k4OMj21uDnkAtDYZWDTnSKuqg0-cg3Q2IWo7TN9OXRV5-qRtHt6lBCo4PFrll-x1e25sXOW_x_n4bh1rv9N9t-X1XA12idHPuFUDHR3OlIKE2EY3giJzgxqgZtc6VQ4ENt0OY0PCmiXIe5TUxsVI56PMXBEc57Ds6jGREKFyq4N_p06NYsDrI-N2cSic0Gz0fKYcM3PuKxEX66cv65MgF_s23_DNH87Z7WHX9bV_-3B3cNrvSGNnvVScZ1WDPlDbjYld5c3oQfXYay7V2WrLKsbYxtF2xO2p9R2g0boi3ZIYUtqrpWS2ypatYutOko05l2AYQNK7qYRfxEhkHBcM5DF6hqWF-ZY866ct3NLfhwJju_DetlVZq7wPJM4-BQZ6kJYm4DhT9Afp8kQksu0ZkHwQAPqXuWdioWspAuWiASsoOUREhJBymZevBsHHPUcZSc2vs1oW7sSfzi7ouqnsteXUmjA56nIk9zlcWx5ioVBW7GhpSXLVLuwcYANtkrvUaeIM2Dx2Mzqiu6g1KlqVrXhyec6mN5cKeD-LiSKOFojlMLXwH_ylJXW8ovnx0lekYudx548HwQk5Nl_ftR3Dt9F4_g0vb--6mc7sx278PlkKSYqlYlG7B-XLfmAVzQ3xBh9UOnBhh8Omvx-QVXfZtB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qZREX9iVQwEhwgmgmm-0cEALKiKrVaA6AejOOYw9IbVKSDmjEP-PX8Z6TTDUsvfXAbTS2Ezt5W-z3vg_giSt5ZFMnw_FY52GKDivUUWxDrTNjnRwX2gPPf9wT06nc389nG_BzqIWhtMrBJnpDXdaG9shHMSGLUdkmH7k-LWK2PXl59DUkBik6aR3oNDoR2bXL7_j51r7Y2cZ3_TSOJ2_fv3kX9gwDocFI5TgspU4J8s4kUhsCH0PvnOFN0EwYV2iNyh8bi_GnFVmZFCYuXGZTqwu06RwHJ3jdc3BeEGi5TxucrfZ36AQtjfK-TmecyFGLvpLq2fDrjzBtZMjXfKGnDPhbnPtnuuZvZ7beFU6u_s8P8Rpc6QNw9qrTmOuwYasbcLGj5FzehB9d5bLrtzJZ7diitbgMNievwKgchw1ZmOyQ0hl10-glttQNWxwY20GpM-MTC1tWdrmM-IsChpLhNQ99AqtlPWPHnHU03u0t-HAmK78Nm1Vd2bvAitzg4Njk3EapcJHGG9B-UJZghJeZPIBoEBVlevR2IhE5UD6LIJGqEy-F4qW8eCkewLPVmKMOu-TU3q9JAlc9CXfc_1E3c9WbMWVNJAouC17oPE2N0FyWuBgXU7225CKArUHwVG8MW3UidQE8XjWjGaOzKV3ZeuH7iEwQb1YAdzpxX80kyQSG6dQi1hRhbarrLdWXzx4qPaeteBEF8HxQmZNp_ftR3Dt9FY_gEmqN2tuZ7t6HyzEpNJFZZVuwedws7AO4YL6hgDUPvUVg8OmstecXl_2j_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+useful+genes+from+multiple+microarrays+for+ulcerative+colitis+diagnosis+based+on+machine+learning+methods&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Lin&rft.au=Mao%2C+Rui&rft.au=Lau%2C+Chung+Tai&rft.au=Chung%2C+Wai+Chak&rft.date=2022-06-15&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-14048-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_14048_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |