TidyMass an object-oriented reproducible analysis framework for LC–MS data

Reproducibility, traceability, and transparency have been long-standing issues for metabolomics data analysis. Multiple tools have been developed, but limitations still exist. Here, we present the tidyMass project ( https://www.tidymass.org/ ), a comprehensive R-based computational framework that ca...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 13; číslo 1; s. 4365 - 12
Hlavní autoři: Shen, Xiaotao, Yan, Hong, Wang, Chuchu, Gao, Peng, Johnson, Caroline H., Snyder, Michael P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 28.07.2022
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Reproducibility, traceability, and transparency have been long-standing issues for metabolomics data analysis. Multiple tools have been developed, but limitations still exist. Here, we present the tidyMass project ( https://www.tidymass.org/ ), a comprehensive R-based computational framework that can achieve the traceable, shareable, and reproducible workflow needs of data processing and analysis for LC-MS-based untargeted metabolomics. TidyMass is an ecosystem of R packages that share an underlying design philosophy, grammar, and data structure, which provides a comprehensive, reproducible, and object-oriented computational framework. The modular architecture makes tidyMass a highly flexible and extensible tool, which other users can improve and integrate with other tools to customize their own pipeline. Reproducibility, traceability, and transparency have been long-standing issues in metabolomics data analysis. Here, the authors present tidyMass, an R-based computational framework that allows designing traceable, shareable, and reproducible data processing and analysis workflows for untargeted metabolomics.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-32155-w