Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system

We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extrac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 10; číslo 1; s. 5850
Hlavní autori: Moctezuma, Luis Alfredo, Molinas, Marta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 03.04.2020
Nature Publishing Group
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.
AbstractList We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.
We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.
We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.
ArticleNumber 5850
Author Molinas, Marta
Moctezuma, Luis Alfredo
Author_xml – sequence: 1
  givenname: Luis Alfredo
  surname: Moctezuma
  fullname: Moctezuma, Luis Alfredo
  email: luis.a.moctezuma@ntnu.no
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology
– sequence: 2
  givenname: Marta
  surname: Molinas
  fullname: Molinas, Marta
  organization: Department of Engineering Cybernetics, Norwegian University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32246122$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvFCEUx4mpsbX2C3gwJF68jDLAMHAxMc1aTWq86Jkw8KZlMwsrME3asx9cdmertYdygfB-__f-PN5LdBRiAIRet-R9S5j8kHnbKdkQShpB-5Y24hk6oYR3DWWUHj04H6OznNekro4q3qoX6LjectFSeoJ-f5un4ps4rMEWfwM4bovf-DtTfAx4jAmvVhfYXpsQYMIZph1WIyY4bKydkymAfShpdpCwg3KI-x2y0zaDyeBwnvcVsHcQih-9XQrk21xg8wo9H82U4eywn6Kfn1c_zr80l98vvp5_umxsx0lpHOVuMNwp0ffOGqekHBWowXIhGHVUKACpWNe33LaD6UfJu06w3gEfHBMDO0Ufl7zbediAs9VKMpPeJr8x6VZH4_X_keCv9VW80bW_HVGsJnh3SJDirxly0RufLUyTCRDnrCmTgkolSV_Rt4_QdZxTqM_bU9Vl16tKvXno6K-V-w-qgFwAm2LOCUZtfdn3rhr0k26J3o2DXsZB13HQ-3HQokrpI-l99idFbBHlCocrSP9sP6H6A-plycE
CitedBy_id crossref_primary_10_1088_1741_2552_ac0489
crossref_primary_10_1038_s41598_020_72051_1
crossref_primary_10_1038_s41598_022_18502_3
crossref_primary_10_1109_ACCESS_2025_3539502
crossref_primary_10_3390_s23094239
crossref_primary_10_3390_s23010186
crossref_primary_10_1109_JSEN_2023_3313236
crossref_primary_10_1007_s42979_022_01260_4
crossref_primary_10_1109_TIM_2025_3600822
crossref_primary_10_3390_biomimetics8040378
crossref_primary_10_1016_j_bspc_2023_104783
crossref_primary_10_1007_s13369_023_07798_6
crossref_primary_10_1038_s41598_024_68978_4
crossref_primary_10_3390_math10132266
crossref_primary_10_1109_TITS_2024_3442249
crossref_primary_10_1038_s41598_022_15252_0
crossref_primary_10_1016_j_asoc_2023_110496
crossref_primary_10_3389_fnins_2020_00593
crossref_primary_10_1109_ACCESS_2021_3092840
crossref_primary_10_1016_j_heliyon_2023_e15258
crossref_primary_10_1109_ACCESS_2023_3264266
crossref_primary_10_1155_2022_5974634
Cites_doi 10.1016/0167-2789(88)90081-4
10.1016/j.eswa.2018.10.004
10.1109/ICASSP.1999.758115
10.1109/BTAS.2010.5634515
10.1016/j.eswa.2019.01.080
10.1109/4235.996017
10.1007/978-3-030-12385-7_57
10.12928/telkomnika.v14i4.3956
10.1007/s00500-017-2965-0
10.1109/TEVC.2013.2281534
10.1109/CCST.2012.6393564
10.1109/INDIN41052.2019.8972231
10.1109/TEVC.2013.2281535
10.1109/APSCC.2011.87
10.1016/0013-4694(88)90149-6
10.1109/ISABEL.2010.5702895
10.1098/rspa.1998.0193
10.1162/evco.1994.2.3.221
10.1137/S1052623496307510
10.1109/ICIP.2015.7351055
10.1007/978-3-030-05587-5_43
10.1145/3230632
10.1155/2012/578295
10.5120/ijca2015906480
10.1109/ACCESS.2019.2907644
10.1016/j.csl.2009.05.003
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-62712-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7125093
32246122
10_1038_s41598_020_62712_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-d24dba4d9677dcad988f9e9bc46632d269ee8935714c1ba7f8455637de4bd36b3
IEDL.DBID M7P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563485200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:35:37 EST 2025
Fri Sep 05 10:10:53 EDT 2025
Tue Oct 07 07:21:05 EDT 2025
Thu Apr 03 07:10:00 EDT 2025
Sat Nov 29 05:32:29 EST 2025
Tue Nov 18 22:20:40 EST 2025
Fri Feb 21 02:36:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d24dba4d9677dcad988f9e9bc46632d269ee8935714c1ba7f8455637de4bd36b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2386357579?pq-origsite=%requestingapplication%
PMID 32246122
PQID 2386357579
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125093
proquest_miscellaneous_2386289807
proquest_journals_2386357579
pubmed_primary_32246122
crossref_citationtrail_10_1038_s41598_020_62712_6
crossref_primary_10_1038_s41598_020_62712_6
springer_journals_10_1038_s41598_020_62712_6
PublicationCentury 2000
PublicationDate 2020-04-03
PublicationDateYYYYMMDD 2020-04-03
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Moctezuma, L. A. & Molinas, M. Event-related potential from eeg for a two-step identity authentication system. In IEEE 17th International Conference on Industrial Informatics (INDIN) (IEEE, 2019).
DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraintsIEEE Transactions on Evolutionary Computation20131857760110.1109/TEVC.2013.2281535
FabianiMDefinition, identification, and reliability of measurement of the p300 component of the event-related brain potentialAdvances in psychophysiology1987278
ChughTSindhyaKHakanenJMiettinenKA survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithmsSoft Computing2019233137316610.1007/s00500-017-2965-0
JainHDebKAn evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approachIEEE Transactions on Evolutionary Computation20131860262210.1109/TEVC.2013.2281534
Abdiansah, A. & Wardoyo, R. Time complexity analysis of support vector machines (svm) in libsvm. International journal computer and application (2015).
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE transactions on evolutionary computation2002618219710.1109/4235.996017
Davis, P., Creusere, C. D. & Kroger, J. Subject identification based on eeg responses to video stimuli. In 2015 IEEE International Conference on Image Processing (ICIP), 1523–1527 (IEEE, 2015).
Boutana, D., Benidir, M. & Barkat, B. On the selection of intrinsic mode function in emd method: application on heart sound signal. In 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 1–5 (IEEE, 2010).
SunYLoFP-WLoBEeg-based user identification system using 1d-convolutional long short-term memory neural networksExpert Systems with Applications201912525926710.1016/j.eswa.2019.01.080
Joachims, T. Making large-scale svm learning practical. Tech. Rep., Technical report, SFB 475: Komplexitätsreduktion in Multivariaten (1998).
SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvolutionary computation1994222124810.1162/evco.1994.2.3.221
Jabloun, F. & Cetin, A. E. The teager energy based feature parameters for robust speech recognition in car noise. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), vol. 1, 273–276 (IEEE, 1999).
Petrosian, A. Kolmogorov complexity of finite sequences and recognition of different preictal eeg patterns. In Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems, 212–217 (IEEE, 1995).
SyarifIPrugel-BennettAWillsGSvm parameter optimization using grid search and genetic algorithm to improve classification performanceTelkomnika201614150210.12928/telkomnika.v14i4.3956
GuiQRuiz-BlondetMVLaszloSJinZA survey on brain biometricsACM Comput. Surv.201951112:1112:3810.1145/3230632
DasIDennisJENormal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problemsSIAM journal on optimization19988631657162715610.1137/S1052623496307510
Moctezuma, L. A. & Molinas, M. Eeg-based subjects identification based on biometrics of imagined speech using emd. In International Conference on Brain Informatics, 458–467 (Springer, 2018).
RieraASoria-FrischACaparriniMGrauCRuffiniGUnobtrusive biometric system based on electroencephalogram analysisEURASIP Journal on Advances in Signal Processing200820081184.94130
Chen, J., Mao, Z., Yao, W. & Huang, Y. Eeg-based biometric identification with convolutional neural network. Multimedia Tools and Applications 1–21 (2019).
HuangNEThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences19984549039951998RSPSA.454..903H163159110.1098/rspa.1998.0193
MargauxPEmmanuelMSébastienDOlivierBJérémieMObjective and subjective evaluation of online error correction during p300-based spellingAdvances in Human-Computer Interaction20122012410.1155/2012/578295
Safont, G., Salazar, A., Soriano, A. & Vergara, L. Combination of multiple detectors for eeg based biometric identification/authentication. In 2012 IEEE International Carnahan Conference on Security Technology (ICCST), 230–236 (IEEE, 2012).
MoctezumaLATorres-GarcíaAAVillaseñor-PinedaLCarrilloMSubjects identification using eeg-recorded imagined speechExpert Systems with Applications201911820120810.1016/j.eswa.2018.10.004
FarwellLADonchinETalking off the top of your head: toward a mental prosthesis utilizing event-related brain potentialsElectroencephalography and clinical Neurophysiology1988705105231:STN:280:DyaL1M%2Flt1GktA%3D%3D10.1016/0013-4694(88)90149-6
DidiotEIllinaIFohrDMellaOA wavelet-based parameterization for speech/music discriminationComputer Speech & Language20102434135710.1016/j.csl.2009.05.003
HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhysica D: Nonlinear Phenomena1988312772831988PhyD...31..277H95563210.1016/0167-2789(88)90081-4
Brigham, K. & Kumar, B. V. Subject identification from electroencephalogram (eeg) signals during imagined speech. In 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–8 (IEEE, 2010).
Moctezuma, L. A. & Molinas, M. Subject identification from low-density eeg-recordings of resting-states: A study of feature extraction and classification. In Future of Information and Communication Conference, 830–846 (Springer, 2019).
DiYRobustness analysis of identification using resting-state eeg signalsIEEE Access20197421134212210.1109/ACCESS.2019.2907644
Hu, B., Liu, Q., Zhao, Q., Qi, Y. & Peng, H. A real-time electroencephalogram (eeg) based individual identification interface for mobile security in ubiquitous environment. In 2011 IEEE Asia-Pacific Services Computing Conference, 436–441 (IEEE, 2011).
62712_CR23
Q Gui (62712_CR9) 2019; 51
62712_CR21
62712_CR26
T Chugh (62712_CR27) 2019; 23
NE Huang (62712_CR18) 1998; 454
62712_CR25
62712_CR1
I Syarif (62712_CR24) 2016; 14
T Higuchi (62712_CR22) 1988; 31
H Jain (62712_CR30) 2013; 18
62712_CR19
E Didiot (62712_CR20) 2010; 24
Y Sun (62712_CR15) 2019; 125
62712_CR11
62712_CR4
LA Farwell (62712_CR7) 1988; 70
62712_CR12
P Margaux (62712_CR17) 2012; 2012
62712_CR2
I Das (62712_CR31) 1998; 8
A Riera (62712_CR10) 2008; 2008
62712_CR13
N Srinivas (62712_CR16) 1994; 2
62712_CR6
62712_CR14
K Deb (62712_CR29) 2013; 18
Y Di (62712_CR5) 2019; 7
M Fabiani (62712_CR8) 1987; 2
LA Moctezuma (62712_CR3) 2019; 118
K Deb (62712_CR28) 2002; 6
References_xml – reference: Moctezuma, L. A. & Molinas, M. Subject identification from low-density eeg-recordings of resting-states: A study of feature extraction and classification. In Future of Information and Communication Conference, 830–846 (Springer, 2019).
– reference: Jabloun, F. & Cetin, A. E. The teager energy based feature parameters for robust speech recognition in car noise. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), vol. 1, 273–276 (IEEE, 1999).
– reference: DidiotEIllinaIFohrDMellaOA wavelet-based parameterization for speech/music discriminationComputer Speech & Language20102434135710.1016/j.csl.2009.05.003
– reference: JainHDebKAn evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approachIEEE Transactions on Evolutionary Computation20131860262210.1109/TEVC.2013.2281534
– reference: Davis, P., Creusere, C. D. & Kroger, J. Subject identification based on eeg responses to video stimuli. In 2015 IEEE International Conference on Image Processing (ICIP), 1523–1527 (IEEE, 2015).
– reference: SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvolutionary computation1994222124810.1162/evco.1994.2.3.221
– reference: Boutana, D., Benidir, M. & Barkat, B. On the selection of intrinsic mode function in emd method: application on heart sound signal. In 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 1–5 (IEEE, 2010).
– reference: DiYRobustness analysis of identification using resting-state eeg signalsIEEE Access20197421134212210.1109/ACCESS.2019.2907644
– reference: MargauxPEmmanuelMSébastienDOlivierBJérémieMObjective and subjective evaluation of online error correction during p300-based spellingAdvances in Human-Computer Interaction20122012410.1155/2012/578295
– reference: HiguchiTApproach to an irregular time series on the basis of the fractal theoryPhysica D: Nonlinear Phenomena1988312772831988PhyD...31..277H95563210.1016/0167-2789(88)90081-4
– reference: Abdiansah, A. & Wardoyo, R. Time complexity analysis of support vector machines (svm) in libsvm. International journal computer and application (2015).
– reference: DebKJainHAn evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraintsIEEE Transactions on Evolutionary Computation20131857760110.1109/TEVC.2013.2281535
– reference: MoctezumaLATorres-GarcíaAAVillaseñor-PinedaLCarrilloMSubjects identification using eeg-recorded imagined speechExpert Systems with Applications201911820120810.1016/j.eswa.2018.10.004
– reference: GuiQRuiz-BlondetMVLaszloSJinZA survey on brain biometricsACM Comput. Surv.201951112:1112:3810.1145/3230632
– reference: FarwellLADonchinETalking off the top of your head: toward a mental prosthesis utilizing event-related brain potentialsElectroencephalography and clinical Neurophysiology1988705105231:STN:280:DyaL1M%2Flt1GktA%3D%3D10.1016/0013-4694(88)90149-6
– reference: SunYLoFP-WLoBEeg-based user identification system using 1d-convolutional long short-term memory neural networksExpert Systems with Applications201912525926710.1016/j.eswa.2019.01.080
– reference: HuangNEThe empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysisProceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences19984549039951998RSPSA.454..903H163159110.1098/rspa.1998.0193
– reference: Joachims, T. Making large-scale svm learning practical. Tech. Rep., Technical report, SFB 475: Komplexitätsreduktion in Multivariaten (1998).
– reference: SyarifIPrugel-BennettAWillsGSvm parameter optimization using grid search and genetic algorithm to improve classification performanceTelkomnika201614150210.12928/telkomnika.v14i4.3956
– reference: FabianiMDefinition, identification, and reliability of measurement of the p300 component of the event-related brain potentialAdvances in psychophysiology1987278
– reference: Hu, B., Liu, Q., Zhao, Q., Qi, Y. & Peng, H. A real-time electroencephalogram (eeg) based individual identification interface for mobile security in ubiquitous environment. In 2011 IEEE Asia-Pacific Services Computing Conference, 436–441 (IEEE, 2011).
– reference: Chen, J., Mao, Z., Yao, W. & Huang, Y. Eeg-based biometric identification with convolutional neural network. Multimedia Tools and Applications 1–21 (2019).
– reference: DasIDennisJENormal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problemsSIAM journal on optimization19988631657162715610.1137/S1052623496307510
– reference: Moctezuma, L. A. & Molinas, M. Event-related potential from eeg for a two-step identity authentication system. In IEEE 17th International Conference on Industrial Informatics (INDIN) (IEEE, 2019).
– reference: RieraASoria-FrischACaparriniMGrauCRuffiniGUnobtrusive biometric system based on electroencephalogram analysisEURASIP Journal on Advances in Signal Processing200820081184.94130
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE transactions on evolutionary computation2002618219710.1109/4235.996017
– reference: Petrosian, A. Kolmogorov complexity of finite sequences and recognition of different preictal eeg patterns. In Proceedings Eighth IEEE Symposium on Computer-Based Medical Systems, 212–217 (IEEE, 1995).
– reference: ChughTSindhyaKHakanenJMiettinenKA survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithmsSoft Computing2019233137316610.1007/s00500-017-2965-0
– reference: Moctezuma, L. A. & Molinas, M. Eeg-based subjects identification based on biometrics of imagined speech using emd. In International Conference on Brain Informatics, 458–467 (Springer, 2018).
– reference: Safont, G., Salazar, A., Soriano, A. & Vergara, L. Combination of multiple detectors for eeg based biometric identification/authentication. In 2012 IEEE International Carnahan Conference on Security Technology (ICCST), 230–236 (IEEE, 2012).
– reference: Brigham, K. & Kumar, B. V. Subject identification from electroencephalogram (eeg) signals during imagined speech. In 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–8 (IEEE, 2010).
– ident: 62712_CR25
– ident: 62712_CR23
– volume: 31
  start-page: 277
  year: 1988
  ident: 62712_CR22
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(88)90081-4
– volume: 118
  start-page: 201
  year: 2019
  ident: 62712_CR3
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.10.004
– ident: 62712_CR21
  doi: 10.1109/ICASSP.1999.758115
– ident: 62712_CR1
  doi: 10.1109/BTAS.2010.5634515
– volume: 125
  start-page: 259
  year: 2019
  ident: 62712_CR15
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.01.080
– volume: 6
  start-page: 182
  year: 2002
  ident: 62712_CR28
  publication-title: IEEE transactions on evolutionary computation
  doi: 10.1109/4235.996017
– ident: 62712_CR4
  doi: 10.1007/978-3-030-12385-7_57
– volume: 14
  start-page: 1502
  year: 2016
  ident: 62712_CR24
  publication-title: Telkomnika
  doi: 10.12928/telkomnika.v14i4.3956
– volume: 23
  start-page: 3137
  year: 2019
  ident: 62712_CR27
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2965-0
– volume: 18
  start-page: 602
  year: 2013
  ident: 62712_CR30
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281534
– ident: 62712_CR11
  doi: 10.1109/CCST.2012.6393564
– volume: 2008
  year: 2008
  ident: 62712_CR10
  publication-title: EURASIP Journal on Advances in Signal Processing
– ident: 62712_CR6
  doi: 10.1109/INDIN41052.2019.8972231
– volume: 18
  start-page: 577
  year: 2013
  ident: 62712_CR29
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– ident: 62712_CR12
  doi: 10.1109/APSCC.2011.87
– volume: 70
  start-page: 510
  year: 1988
  ident: 62712_CR7
  publication-title: Electroencephalography and clinical Neurophysiology
  doi: 10.1016/0013-4694(88)90149-6
– ident: 62712_CR19
  doi: 10.1109/ISABEL.2010.5702895
– volume: 454
  start-page: 903
  year: 1998
  ident: 62712_CR18
  publication-title: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.1998.0193
– volume: 2
  start-page: 221
  year: 1994
  ident: 62712_CR16
  publication-title: Evolutionary computation
  doi: 10.1162/evco.1994.2.3.221
– ident: 62712_CR14
– volume: 8
  start-page: 631
  year: 1998
  ident: 62712_CR31
  publication-title: SIAM journal on optimization
  doi: 10.1137/S1052623496307510
– volume: 2
  start-page: 78
  year: 1987
  ident: 62712_CR8
  publication-title: Advances in psychophysiology
– ident: 62712_CR13
  doi: 10.1109/ICIP.2015.7351055
– ident: 62712_CR2
  doi: 10.1007/978-3-030-05587-5_43
– volume: 51
  start-page: 112:1
  year: 2019
  ident: 62712_CR9
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3230632
– volume: 2012
  start-page: 4
  year: 2012
  ident: 62712_CR17
  publication-title: Advances in Human-Computer Interaction
  doi: 10.1155/2012/578295
– ident: 62712_CR26
  doi: 10.5120/ijca2015906480
– volume: 7
  start-page: 42113
  year: 2019
  ident: 62712_CR5
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907644
– volume: 24
  start-page: 341
  year: 2010
  ident: 62712_CR20
  publication-title: Computer Speech & Language
  doi: 10.1016/j.csl.2009.05.003
SSID ssj0000529419
Score 2.4519181
Snippet We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5850
SubjectTerms 631/114/116
631/114/1305
631/114/1314
631/114/2397
631/378/116
631/61/350/59
639/166/985
639/705/1041
692/53
Accuracy
Adult
Algorithms
Brain - physiology
EEG
Electroencephalography - methods
Event-related potentials
Evoked Potentials - physiology
Humanities and Social Sciences
Humans
multidisciplinary
Optimization
Patient Identification Systems - methods
Reproducibility of Results
Science
Science (multidisciplinary)
Support Vector Machine
Title Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system
URI https://link.springer.com/article/10.1038/s41598-020-62712-6
https://www.ncbi.nlm.nih.gov/pubmed/32246122
https://www.proquest.com/docview/2386357579
https://www.proquest.com/docview/2386289807
https://pubmed.ncbi.nlm.nih.gov/PMC7125093
Volume 10
WOSCitedRecordID wos000563485200016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLfYBhIXvgeF8RQkbhCtH2mTnBCgN0BiTxUC9DhVaZKKotGO9T0k7vzhOGlep8fELlx6sas0smO7jv0zwNMiUUqxIqdNbi1leY120NiYxiphWupMGJ_M-fyeLxZiuZRlSLgNoaxyYxO9oTa9djnyQ3QtDjot5_LF6Q_qpka529UwQmMH9hxKQuZL98opx-JusVgiQ69MnInDAf2V6ylz_0wpT1JabPujC0HmxVrJvy5MvR86uvm_O7gFN0IESl6OKnMbrtjuDlwbZ1L-ugu_fUsu7etvoykkPRqV76Fbk2CIS-bzN8T1C3f2hAx-jI6jqM4QpfXaQU-QFnexNvaMGLsK9NaxuHepc5yGDGu_AmlNqFcaFxiRpe_Bp6P5x9dvaRjVQDWGfCtqUmZqxYwsODdaGSlEI62sNcOIJjVpIa3FyCjnqAFJrXgjmEMm48ay2mRFne3Dbtd39gGQmmMIaG0jdCKZabQ0hULDEltkS7WII0g2Aqt0wDF34zROKn-fnolqFHKFQq68kKsigmfTO6cjisel3AcbAVbhRA_VufQieDKR8Sy6CxbV2X498uAPrIh5BPdHtZmWyzxyX5pGwLcUamJwON_blK796vG-8aMwrMsieL5RvfPP-vcuHl6-i0dwPXXHwBUhZQewi2phH8NV_XPVDmcz2OFL7p9iBnuv5ovyw8ynK_B5nJYzf86QUr47Lr_8AQRQLrc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkaCE0RNHCe2Dwgh2NJVt6s9FNSegmM7IqgkpdkF9c7v4TcyzqtaKnrrgbMnseN8nhnbM98APE9CpRRLYj-PrfVZnKEeNDbwAxUyLXUkTHOY82nKZzOxvy_na_C7z4VxYZW9TmwUtam0OyPfRNPiqNNiLt8cffdd1Sh3u9qX0GhhsWNPfuKWrX49eY__9wWlW-O9d9t-V1XA1-idLHxDmckUMzLh3GhlpBC5tDLTDI0vNTSR1qIRjzkONswUzwVzJFrcWJaZKMkifO8lWGcIdjGC9flkd34wnOq4ezMWyi47J4jEZo0W0mWxuV0a5SH1k1ULeMatPRud-dcVbWP5tm78b3N2E653PjZ52y6KW7Bmy9twpa26eXIHfjVJx36VfW2VPalQbX7r8lEJOvFkPP5AXEZ0aQ9J3RQKci2qNERpvXTkGqTAWVsae0yMXXTthRNxz_rONTCkXjY9kMJ0EVltBy139l34eCFTcA9GZVXaB0Ayjk6utbnQoWQm19IkCtEUWBSjWgQehD1AUt0xtbuCIYdpEzEQibQFVYqgShtQpYkHL4dnjlqeknOlN3rApJ3OqtNTtHjwbGhGbeOukFRpq2Urg1t0EXAP7rcwHbqLGm5CSj3gKwAeBByT-WpLWXxpGM1xUOi4Rh686qF-Oqx_f8XD87_iKVzd3tudptPJbOcRXKNuCbqQq2gDRggR-xgu6x-Loj5-0q1iAp8vehH8AQOxhtc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJNnIfjA0KI7kLVarUHQL0Fx3ZEUElKswvqnV_Fr2PGeVRLRW89cPYkdpzPM2N75huAZ2molIrTxC8Ta_04KVAPGhv4gQpjLXWUGXeY82lPzOfZ_r5cbMDvIReGwioHnegUtWk0nZFP0LQQdVoi5KTswyIW27PXh999qiBFN61DOY0OIrv2-Cdu39pXO9v4r59zPpt-ePve7ysM-Bo9laVveGwKFRuZCmG0MjLLSmlloWM0xNzwVFqLBj0ROPCwUKLMYiLUEsbGhYnSIsL3XoCLgkjLXdjgYjzfoRu0OJR9nk4QZZMWbSXls9F-jYuQ--m6LTzl4J6O0_zrstbZwNn1_3n2bsC13vNmb7qlchM2bH0LLne1OI9vwy-Xiuw3xdfOBLAGlem3PkuVoWvPptN3jPKka3vAWlc-iFpUbZjSekWUG6zCGVwZe8SMXfbtFYnQsz45DIa1K9cDq0wfp9V10DFq34GP5zIFd2Gzbmp7H1gh0PW1tsx0KGNTamlShQo1sCjGdRZ4EA5gyXXP305lRA5yF0cQZXkHsBwBljuA5akHL8ZnDjv2kjOltwbw5L0ma_MT5HjwdGxGHUQXS6q2zaqTwY17FggP7nWQHbuLHGMh5x6INTCPAsRvvt5SV18czzkOCt3ZyIOXA-xPhvXvr3hw9lc8gSuI_HxvZ777EK5yWo0UhxVtwSYixD6CS_rHsmqPHrvlzODzea-APy1CjhY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+for+EEG+channel+selection+and+accurate+intruder+detection+in+an+EEG-based+subject+identification+system&rft.jtitle=Scientific+reports&rft.au=Moctezuma%2C+Luis+Alfredo&rft.au=Molinas+Marta&rft.date=2020-04-03&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-62712-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon