Multi-objective optimization for EEG channel selection and accurate intruder detection in an EEG-based subject identification system

We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extrac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 10; číslo 1; s. 5850
Hlavní autoři: Moctezuma, Luis Alfredo, Molinas, Marta
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 03.04.2020
Nature Publishing Group
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a four-objective optimization method for optimal electroencephalographic (EEG) channel selection to provide access to subjects with permission in a system by detecting intruders and identifying the subject. Each instance was represented by four features computed from two sub-bands, extracted using empirical mode decomposition (EMD) for each channel, and the feature vectors were used as input for one-class/multi-class support vector machines (SVMs). We tested the method on data from the event-related potentials (ERPs) of 26 subjects and 56 channels. The optimization process was performed by the non-dominated sorting genetic algorithm (NSGA), which found a three-channel combination that achieved an accuracy of 0.83, with both a true acceptance rate (TAR) and a true rejection rate (TRR) of 1.00. In the best case, we obtained an accuracy of up to 0.98 for subject identification with a TAR of 0.95 and a TRR 0.93, all using seven EEG channels found by NSGA-III in a subset of subjects manually created. The findings were also validated using 10 different subdivisions of subjects randomly created, obtaining up to 0.97 ± 0.02 of accuracy, a TAR of 0.81 ± 0.12 and TRR of 0.85 ± 0.10 using eight channels found by NSGA-III. These results support further studies on larger datasets for potential applications of EEG in identification and authentication systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-62712-6