Robust decomposition of cell type mixtures in spatial transcriptomics

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature biotechnology Ročník 40; číslo 4; s. 517 - 526
Hlavní autoři: Cable, Dylan M., Murray, Evan, Zou, Luli S., Goeva, Aleksandrina, Macosko, Evan Z., Chen, Fei, Irizarry, Rafael A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.04.2022
Nature Publishing Group
Témata:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD . Cell type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures and differences in sequencing technologies.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions
These authors contributed equally
D.M.C., F.C., R.A.I, and E.Z.M. conceived the study; F.C., E.M., and E.Z.M. designed the Slide-seq experiment; E.M. generated the Slide-seq data; D.M.C., R.A.I., and F.C. developed the statistical methods; D.M.C., F.C., R.A.I, and E.Z.M. designed the analysis; D.M.C., R.A.I., F.C, A.G., and L.S.Z. analyzed the data; D.M.C., F.C., R.A.I., E.Z.M., and L.S.Z. wrote the manuscript; all authors read and approved the final manuscript.
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/s41587-021-00830-w