Robust decomposition of cell type mixtures in spatial transcriptomics

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature biotechnology Ročník 40; číslo 4; s. 517 - 526
Hlavní autori: Cable, Dylan M., Murray, Evan, Zou, Luli S., Goeva, Aleksandrina, Macosko, Evan Z., Chen, Fei, Irizarry, Rafael A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Nature Publishing Group US 01.04.2022
Nature Publishing Group
Predmet:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD . Cell type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures and differences in sequencing technologies.
AbstractList A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell type-specific spatial patterns of localization and expression. Here, we develop Robust Cell Type Decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures, while correcting for differences across sequencing technologies. We demonstrate RCTD’s ability to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables defining spatial components of cellular identity, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open source R package at https://github.com/dmcable/RCTD. Cell-type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures and differences in sequencing technologies.
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD.Cell type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures and differences in sequencing technologies.
A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD . Cell type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures and differences in sequencing technologies.
Author Cable, Dylan M.
Chen, Fei
Goeva, Aleksandrina
Macosko, Evan Z.
Irizarry, Rafael A.
Zou, Luli S.
Murray, Evan
AuthorAffiliation 2 Broad Institute of Harvard and MIT, Cambridge, MA, 02142
5 Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114
6 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge MA 02138
1 Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139
3 Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215
4 Department of Biostatistics, Harvard University, Boston, MA, 02115
AuthorAffiliation_xml – name: 4 Department of Biostatistics, Harvard University, Boston, MA, 02115
– name: 3 Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215
– name: 2 Broad Institute of Harvard and MIT, Cambridge, MA, 02142
– name: 6 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge MA 02138
– name: 5 Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114
– name: 1 Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139
Author_xml – sequence: 1
  givenname: Dylan M.
  surname: Cable
  fullname: Cable, Dylan M.
  organization: Department of Electrical Engineering and Computer Science, MIT, Broad Institute of Harvard and MIT, Department of Data Science, Dana-Farber Cancer Institute
– sequence: 2
  givenname: Evan
  surname: Murray
  fullname: Murray, Evan
  organization: Broad Institute of Harvard and MIT
– sequence: 3
  givenname: Luli S.
  surname: Zou
  fullname: Zou, Luli S.
  organization: Broad Institute of Harvard and MIT, Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard University
– sequence: 4
  givenname: Aleksandrina
  surname: Goeva
  fullname: Goeva, Aleksandrina
  organization: Broad Institute of Harvard and MIT
– sequence: 5
  givenname: Evan Z.
  orcidid: 0000-0002-2794-5165
  surname: Macosko
  fullname: Macosko, Evan Z.
  organization: Broad Institute of Harvard and MIT, Department of Psychiatry, Massachusetts General Hospital
– sequence: 6
  givenname: Fei
  orcidid: 0000-0003-2308-3649
  surname: Chen
  fullname: Chen, Fei
  email: chenf@broadinstitute.org
  organization: Broad Institute of Harvard and MIT, Department of Stem Cell and Regenerative Biology, Harvard University
– sequence: 7
  givenname: Rafael A.
  orcidid: 0000-0002-3944-4309
  surname: Irizarry
  fullname: Irizarry, Rafael A.
  email: rafa@ds.dfci.harvard.edu
  organization: Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33603203$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LHTEUxUNR6lf_ARcy4KabqTefM7MRRNQWhEKp65CXd8dGZpIxyfjqf2-eT_vhwlUC93cO596zR7Z88EjIIYUvFHh7kgSVbVMDozVAy6FefSC7VApVU9WprfKH9ZhKtUP2UroDACWU-kh2OFfAGfBdcvEjLOaUqyXaME4hueyCr0JfWRyGKj9OWI3ud54jpsr5Kk0mO1MG0fhko5tyGJ1NB2S7N0PCTy_vPrm5vPh5_rW-_n717fzsurZSQK6XYITpBBWG0p5jTwG5MdTCQjadwoZJIUF1UtmGWyXBSmpZzxZGNQax7_k-Od34TvNixKVFX4IMeopuNPFRB-P0_xPvfunb8KBbBYp2UAw-vxjEcD9jynp0ab2q8RjmpJnoaCeU6HhBj9-gd2GOvqynWQEEZ4w3hTr6N9GfKK8XLkC7AWwMKUXstXXZrK9cArpBU9DrMvWmTF3K1M9l6lWRsjfSV_d3RXwjSgX2txj_xn5H9QStGbMY
CitedBy_id crossref_primary_10_15252_msb_202311670
crossref_primary_10_1038_s12276_022_00896_9
crossref_primary_10_1016_j_compbiomed_2024_108541
crossref_primary_10_1186_s13059_023_03138_x
crossref_primary_10_1038_s41467_025_58511_0
crossref_primary_10_1038_s41590_024_01986_8
crossref_primary_10_1186_s13059_024_03396_3
crossref_primary_10_1016_j_cmpb_2025_108929
crossref_primary_10_1186_s13059_024_03407_3
crossref_primary_10_1186_s13059_024_03299_3
crossref_primary_10_1038_s41467_025_59782_3
crossref_primary_10_1016_j_xgen_2025_100950
crossref_primary_10_1038_s41593_022_01061_1
crossref_primary_10_1038_s41467_024_47271_y
crossref_primary_10_1038_s42003_024_06281_8
crossref_primary_10_1038_s41467_023_43220_3
crossref_primary_10_1038_s41587_024_02173_8
crossref_primary_10_1038_s41586_025_08633_8
crossref_primary_10_1016_j_csbj_2024_05_028
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1002_path_6383
crossref_primary_10_1007_s11427_022_2161_3
crossref_primary_10_3389_fimmu_2025_1594879
crossref_primary_10_1371_journal_pcbi_1013354
crossref_primary_10_1038_s41467_022_32111_8
crossref_primary_10_1186_s13578_025_01447_1
crossref_primary_10_1016_j_ccell_2025_06_020
crossref_primary_10_1038_s41467_025_56080_w
crossref_primary_10_3389_fmolb_2025_1611964
crossref_primary_10_1016_j_jncc_2025_06_003
crossref_primary_10_1016_j_ccell_2024_04_010
crossref_primary_10_1038_d41586_022_01743_7
crossref_primary_10_1038_s41596_023_00925_5
crossref_primary_10_1038_s41592_022_01576_2
crossref_primary_10_1038_s43587_025_00857_7
crossref_primary_10_1038_s41592_023_02166_6
crossref_primary_10_1186_s12967_024_05607_8
crossref_primary_10_1038_s41467_024_52555_4
crossref_primary_10_1093_bib_bbac245
crossref_primary_10_1002_1878_0261_70100
crossref_primary_10_1038_s42003_024_06172_y
crossref_primary_10_1016_j_cotox_2024_100475
crossref_primary_10_1016_j_neuron_2022_09_030
crossref_primary_10_1038_s41421_025_00811_2
crossref_primary_10_1093_nar_gkaf087
crossref_primary_10_1186_s13059_025_03631_5
crossref_primary_10_3390_biom15010021
crossref_primary_10_1038_s41467_023_36062_6
crossref_primary_10_1038_s41576_025_00845_y
crossref_primary_10_1038_s41467_023_38121_4
crossref_primary_10_1038_s41467_024_51580_7
crossref_primary_10_1016_j_celrep_2025_115555
crossref_primary_10_3389_fimmu_2024_1506256
crossref_primary_10_1158_2159_8290_CD_24_1712
crossref_primary_10_3389_fnins_2023_1198154
crossref_primary_10_1186_s12967_023_04150_2
crossref_primary_10_1038_s42003_024_06349_5
crossref_primary_10_1126_science_abm5214
crossref_primary_10_1007_s12672_025_02617_w
crossref_primary_10_1038_s43587_023_00446_6
crossref_primary_10_1038_s41585_023_00805_3
crossref_primary_10_1038_s41467_022_35233_1
crossref_primary_10_1002_j_2040_4603_2023_tb00266_x
crossref_primary_10_1126_scitranslmed_adm6783
crossref_primary_10_1038_s41467_022_34271_z
crossref_primary_10_1186_s13073_025_01475_z
crossref_primary_10_1038_s41591_024_03215_z
crossref_primary_10_1038_s41592_022_01575_3
crossref_primary_10_1186_s13073_025_01452_6
crossref_primary_10_1002_smtd_202100722
crossref_primary_10_3389_fonc_2024_1465098
crossref_primary_10_3389_fgene_2025_1512435
crossref_primary_10_1016_j_bbrep_2025_102087
crossref_primary_10_1038_s41592_025_02707_1
crossref_primary_10_1186_s13073_025_01441_9
crossref_primary_10_1002_smtd_202401163
crossref_primary_10_1038_s41467_023_43120_6
crossref_primary_10_1016_j_devcel_2024_06_016
crossref_primary_10_1038_s41587_022_01448_2
crossref_primary_10_1186_s13059_025_03731_2
crossref_primary_10_1186_s40246_024_00712_7
crossref_primary_10_1002_smsc_202400139
crossref_primary_10_1186_s13059_024_03251_5
crossref_primary_10_1158_0008_5472_CAN_24_1472
crossref_primary_10_1002_adhm_202403698
crossref_primary_10_1038_s43587_025_00842_0
crossref_primary_10_1016_j_ccell_2023_01_010
crossref_primary_10_1038_s41467_024_51329_2
crossref_primary_10_1186_s12967_024_05212_9
crossref_primary_10_1186_s13059_024_03416_2
crossref_primary_10_1016_j_cell_2024_12_023
crossref_primary_10_3389_fcvm_2022_948492
crossref_primary_10_1016_j_jgg_2024_08_012
crossref_primary_10_1016_j_cels_2022_09_002
crossref_primary_10_1186_s12859_025_06173_6
crossref_primary_10_1038_s41576_023_00599_5
crossref_primary_10_1038_s41588_025_02314_y
crossref_primary_10_1002_adma_202502617
crossref_primary_10_1093_bib_bbae621
crossref_primary_10_3389_fimmu_2024_1445924
crossref_primary_10_1016_j_molmet_2024_101954
crossref_primary_10_1186_s13059_025_03633_3
crossref_primary_10_1126_scitranslmed_adr2725
crossref_primary_10_1186_s13073_025_01442_8
crossref_primary_10_1038_s41467_024_47329_x
crossref_primary_10_1186_s13046_022_02385_3
crossref_primary_10_1186_s12859_025_06054_y
crossref_primary_10_1186_s12943_024_02113_9
crossref_primary_10_1093_nar_gkad820
crossref_primary_10_1186_s12974_024_03161_0
crossref_primary_10_1007_s13402_024_01025_6
crossref_primary_10_1158_2159_8290_CD_22_1200
crossref_primary_10_1016_j_cmpb_2024_108431
crossref_primary_10_2147_JIR_S458928
crossref_primary_10_1016_j_compbiolchem_2024_108127
crossref_primary_10_1038_s42003_024_06929_5
crossref_primary_10_1038_s41467_023_43629_w
crossref_primary_10_1038_s41588_025_02139_9
crossref_primary_10_1128_mbio_01559_25
crossref_primary_10_1038_s41556_023_01108_w
crossref_primary_10_3389_fonc_2023_1266397
crossref_primary_10_1016_j_cell_2022_06_007
crossref_primary_10_1038_s42003_023_05640_1
crossref_primary_10_1038_s41467_023_36707_6
crossref_primary_10_3389_fimmu_2024_1475235
crossref_primary_10_1109_TBME_2023_3260739
crossref_primary_10_1016_j_crmeth_2022_100325
crossref_primary_10_1038_s41586_024_07578_8
crossref_primary_10_1038_s41587_025_02688_8
crossref_primary_10_7554_eLife_88431
crossref_primary_10_1109_TCBB_2023_3282028
crossref_primary_10_1002_advs_202413124
crossref_primary_10_1016_j_neuron_2023_05_032
crossref_primary_10_1038_s41587_023_01772_1
crossref_primary_10_1038_s41588_025_02161_x
crossref_primary_10_1186_s13059_024_03426_0
crossref_primary_10_1016_j_stem_2024_11_005
crossref_primary_10_1038_s41467_025_58466_2
crossref_primary_10_1016_j_coi_2024_102463
crossref_primary_10_1016_j_immuni_2025_04_002
crossref_primary_10_1038_s41575_024_00915_2
crossref_primary_10_1038_s41580_024_00768_2
crossref_primary_10_3390_cells12151970
crossref_primary_10_1016_j_biomaterials_2024_122685
crossref_primary_10_1038_s41467_023_43600_9
crossref_primary_10_1016_j_csbj_2023_01_016
crossref_primary_10_1038_s41467_024_50308_x
crossref_primary_10_1016_j_engappai_2025_111203
crossref_primary_10_1038_s44319_024_00322_3
crossref_primary_10_1186_s13059_024_03174_1
crossref_primary_10_1038_s42003_023_05455_0
crossref_primary_10_1016_j_isci_2024_110921
crossref_primary_10_1093_biostatistics_kxac021
crossref_primary_10_1016_j_csbj_2023_04_007
crossref_primary_10_1038_s41467_025_62702_0
crossref_primary_10_1038_s41587_021_01075_3
crossref_primary_10_3389_fphys_2021_809346
crossref_primary_10_1007_s12016_024_09001_6
crossref_primary_10_1038_s41586_024_08087_4
crossref_primary_10_1038_s41588_025_02193_3
crossref_primary_10_1038_s41591_022_01986_x
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1038_s41571_024_00926_7
crossref_primary_10_1093_nargab_lqac069
crossref_primary_10_1093_gigascience_giac075
crossref_primary_10_1093_nargab_lqac073
crossref_primary_10_1167_iovs_66_3_52
crossref_primary_10_1038_s41587_023_01697_9
crossref_primary_10_1038_s41467_023_43732_y
crossref_primary_10_1038_s41586_024_08383_z
crossref_primary_10_1038_s41467_023_35947_w
crossref_primary_10_1038_s41467_023_38186_1
crossref_primary_10_1089_genbio_2023_0050
crossref_primary_10_1186_s13046_025_03298_7
crossref_primary_10_3390_genes14071368
crossref_primary_10_1002_ctm2_1668
crossref_primary_10_1016_j_coi_2024_102443
crossref_primary_10_2174_1574893618666230529145130
crossref_primary_10_3389_abp_2025_13922
crossref_primary_10_1089_genbio_2023_0032
crossref_primary_10_1038_s41467_025_56058_8
crossref_primary_10_1038_s41591_025_03530_z
crossref_primary_10_1261_rna_079801_123
crossref_primary_10_1002_advs_202502987
crossref_primary_10_1186_s13059_024_03317_4
crossref_primary_10_1007_s11936_025_01100_7
crossref_primary_10_1038_s41467_023_36796_3
crossref_primary_10_1038_s41592_024_02576_0
crossref_primary_10_1097_HCO_0000000000001014
crossref_primary_10_1016_j_cell_2024_10_011
crossref_primary_10_1186_s12967_024_05138_2
crossref_primary_10_1038_s41467_025_63301_9
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1038_s41592_022_01409_2
crossref_primary_10_1186_s12864_025_11959_2
crossref_primary_10_1038_s41588_024_01664_3
crossref_primary_10_1038_s41467_023_40155_7
crossref_primary_10_3390_biom14040436
crossref_primary_10_1038_s41467_025_59856_2
crossref_primary_10_1038_s41588_023_01435_6
crossref_primary_10_3389_fpls_2023_1185377
crossref_primary_10_1002_advs_202417528
crossref_primary_10_1038_s41467_023_36325_2
crossref_primary_10_1371_journal_pcbi_1012991
crossref_primary_10_1111_cpr_70062
crossref_primary_10_1016_j_kint_2022_06_011
crossref_primary_10_1038_s41588_024_01709_7
crossref_primary_10_1242_jcs_260913
crossref_primary_10_1038_s41587_021_00935_2
crossref_primary_10_1038_s41467_024_54685_1
crossref_primary_10_1038_s41467_024_47152_4
crossref_primary_10_1038_s41592_024_02257_y
crossref_primary_10_1016_j_immuni_2022_09_002
crossref_primary_10_1007_s10585_023_10246_2
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_1101_gr_273300_120
crossref_primary_10_1172_JCI169314
crossref_primary_10_1038_s41467_023_36961_8
crossref_primary_10_1016_j_cell_2022_09_010
crossref_primary_10_1016_j_jgg_2023_03_011
crossref_primary_10_1111_jcmm_70438
crossref_primary_10_1038_s41592_021_01255_8
crossref_primary_10_1016_j_celrep_2025_116250
crossref_primary_10_1016_j_cels_2024_01_007
crossref_primary_10_1038_s41467_023_39608_w
crossref_primary_10_1038_s41592_022_01725_7
crossref_primary_10_1007_s12539_025_00728_0
crossref_primary_10_1038_s41467_025_62593_1
crossref_primary_10_1016_j_stem_2025_08_015
crossref_primary_10_1038_s41392_022_00960_w
crossref_primary_10_1093_nar_gkad419
crossref_primary_10_1097_HC9_0000000000000662
crossref_primary_10_1038_s41467_024_55700_1
crossref_primary_10_1002_ctm2_1515
crossref_primary_10_1002_advs_202301428
crossref_primary_10_1016_j_jgg_2024_11_009
crossref_primary_10_1093_nar_gkaf714
crossref_primary_10_1093_nar_gkae986
crossref_primary_10_1097_BS9_0000000000000141
crossref_primary_10_3389_fimmu_2025_1518771
crossref_primary_10_1016_j_jgg_2023_04_012
crossref_primary_10_1038_s41467_023_37168_7
crossref_primary_10_1038_s41588_024_01687_w
crossref_primary_10_1016_j_postharvbio_2024_112954
crossref_primary_10_1038_s41467_022_35288_0
crossref_primary_10_1038_s41586_024_07563_1
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1016_j_xgen_2025_100893
crossref_primary_10_1038_s41467_025_64035_4
crossref_primary_10_3389_fimmu_2025_1601533
crossref_primary_10_1016_j_ebiom_2024_105087
crossref_primary_10_1038_s41576_024_00750_w
crossref_primary_10_1186_s13059_025_03543_4
crossref_primary_10_1038_s41597_025_05450_6
crossref_primary_10_1016_j_cell_2024_03_029
crossref_primary_10_1093_nar_gkae876
crossref_primary_10_1158_0008_5472_CAN_23_2650
crossref_primary_10_1093_nsr_nwaf030
crossref_primary_10_1101_gr_275224_121
crossref_primary_10_1038_s41467_023_36983_2
crossref_primary_10_1007_s00109_025_02575_4
crossref_primary_10_1038_s41467_024_47068_z
crossref_primary_10_1093_bioinformatics_btae426
crossref_primary_10_1093_gigascience_giae042
crossref_primary_10_15252_msb_202110571
crossref_primary_10_1016_j_gpb_2022_06_006
crossref_primary_10_15252_msb_202211080
crossref_primary_10_1038_s41586_024_07663_y
crossref_primary_10_1080_24754269_2025_2495651
crossref_primary_10_1038_s41698_025_00893_x
crossref_primary_10_1038_s41435_024_00297_0
crossref_primary_10_1038_s41467_024_49448_x
crossref_primary_10_1016_j_cels_2025_101195
crossref_primary_10_1038_s41588_024_01914_4
crossref_primary_10_1038_s41592_025_02622_5
crossref_primary_10_1038_s41467_022_34879_1
crossref_primary_10_1038_s41467_025_57117_w
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_1186_s13059_025_03573_y
crossref_primary_10_1038_s43588_024_00721_5
crossref_primary_10_1016_j_xcrm_2025_102043
crossref_primary_10_1038_s41551_024_01217_3
crossref_primary_10_1093_bioinformatics_btaf419
crossref_primary_10_1038_s41467_023_42658_9
crossref_primary_10_1109_JBHI_2024_3370868
crossref_primary_10_1136_gutjnl_2024_332105
crossref_primary_10_1038_s41467_023_43458_x
crossref_primary_10_1038_s41467_025_62478_3
crossref_primary_10_1093_bib_bbaf160
crossref_primary_10_1093_bjd_ljae459
crossref_primary_10_1016_j_csbj_2022_12_001
crossref_primary_10_1016_j_cels_2023_06_003
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_1002_ctm2_696
crossref_primary_10_1038_s41587_025_02612_0
crossref_primary_10_1038_s41467_023_42021_y
crossref_primary_10_1186_s12943_024_02040_9
crossref_primary_10_1096_fj_202500965R
crossref_primary_10_1038_s41586_021_03634_9
crossref_primary_10_3390_cells14141060
crossref_primary_10_1038_s44161_023_00419_3
crossref_primary_10_1016_j_isci_2025_112214
crossref_primary_10_1002_wrna_1865
crossref_primary_10_3390_genes14112033
crossref_primary_10_1038_s41587_021_01139_4
crossref_primary_10_1093_bfgp_elac011
crossref_primary_10_1158_0008_5472_CAN_24_2829
crossref_primary_10_1038_s41587_021_00895_7
crossref_primary_10_1038_s42003_024_07165_7
crossref_primary_10_1002_smtd_202201091
crossref_primary_10_1038_s42003_024_07043_2
crossref_primary_10_1186_s43556_023_00144_0
crossref_primary_10_1038_s41467_024_51708_9
crossref_primary_10_1186_s13059_022_02684_0
crossref_primary_10_1186_s40478_024_01769_0
crossref_primary_10_1016_j_biosystems_2025_105576
crossref_primary_10_1038_s41576_021_00370_8
crossref_primary_10_1186_s10020_024_01036_x
crossref_primary_10_1016_j_csbj_2024_01_016
crossref_primary_10_1038_s41467_024_49445_0
crossref_primary_10_1093_bioadv_vbaf091
crossref_primary_10_1038_s41531_025_00995_0
crossref_primary_10_1038_s42256_023_00737_y
crossref_primary_10_1186_s13059_023_03078_6
crossref_primary_10_1186_s12864_024_10434_8
crossref_primary_10_1038_s41592_023_01884_1
crossref_primary_10_1016_j_jaci_2025_01_009
crossref_primary_10_1093_bib_bbaf136
crossref_primary_10_1038_s41698_025_01028_y
crossref_primary_10_1186_s13073_022_01075_1
crossref_primary_10_1038_s41581_024_00841_1
crossref_primary_10_1093_bib_bbaf490
crossref_primary_10_1093_bioinformatics_btaf201
crossref_primary_10_1016_j_tig_2025_05_002
crossref_primary_10_3390_biom13020221
crossref_primary_10_1186_s12882_025_04103_5
crossref_primary_10_1093_bioinformatics_btaf451
crossref_primary_10_59717_j_xinn_life_2024_100097
crossref_primary_10_7554_eLife_88431_3
crossref_primary_10_3390_biom15030450
crossref_primary_10_1093_gpbjnl_qzae057
crossref_primary_10_1002_advs_202306066
crossref_primary_10_1186_s13073_023_01168_5
crossref_primary_10_1038_s41586_023_06837_4
crossref_primary_10_1038_s41698_024_00764_x
crossref_primary_10_1038_s41467_024_51728_5
crossref_primary_10_1038_s41587_022_01233_1
crossref_primary_10_1016_j_xpro_2025_103687
crossref_primary_10_1093_nargab_lqaf109
crossref_primary_10_1016_j_scib_2024_02_030
crossref_primary_10_1038_s42003_024_07001_y
crossref_primary_10_12688_f1000research_126243_2
crossref_primary_10_12688_f1000research_126243_1
crossref_primary_10_1093_nargab_lqaf106
crossref_primary_10_1186_s13059_021_02404_0
crossref_primary_10_1038_s41592_022_01481_8
crossref_primary_10_1016_j_ijbiomac_2025_142415
crossref_primary_10_1093_neuonc_noaf179
crossref_primary_10_1007_s40472_024_00450_8
crossref_primary_10_1093_gigascience_giae103
crossref_primary_10_1038_s41467_024_54973_w
crossref_primary_10_1186_s13059_025_03608_4
crossref_primary_10_1038_s41467_024_48868_z
crossref_primary_10_1038_s41593_025_02022_0
crossref_primary_10_1016_j_xhgg_2025_100494
crossref_primary_10_1038_s41467_024_45752_8
crossref_primary_10_1038_s41467_025_57072_6
crossref_primary_10_1093_bib_bbae063
crossref_primary_10_1038_s41467_025_62135_9
crossref_primary_10_1038_s44318_024_00298_9
crossref_primary_10_1186_s13059_024_03213_x
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1093_lifemedi_lnac053
crossref_primary_10_1186_s13059_024_03421_5
crossref_primary_10_1038_s41467_024_50281_5
crossref_primary_10_1038_s41592_021_01203_6
crossref_primary_10_1016_j_cels_2024_07_001
crossref_primary_10_1038_s41467_025_62793_9
crossref_primary_10_1038_s41467_025_61667_4
crossref_primary_10_1007_s44272_024_00018_8
crossref_primary_10_1002_advs_202412373
crossref_primary_10_1055_a_2299_7880
crossref_primary_10_1038_s43588_025_00809_6
crossref_primary_10_1186_s13059_023_03045_1
crossref_primary_10_1038_s44320_023_00006_5
crossref_primary_10_1093_bfgp_elae002
crossref_primary_10_1186_s12967_025_06706_w
crossref_primary_10_1038_s41588_021_00972_2
crossref_primary_10_1093_bib_bbae052
crossref_primary_10_1093_bib_bbae173
crossref_primary_10_1002_wrna_1839
crossref_primary_10_1093_bib_bbaf021
crossref_primary_10_3389_fphys_2021_812947
crossref_primary_10_1038_s41592_022_01480_9
crossref_primary_10_1093_bioadv_vbae081
crossref_primary_10_1038_s42256_023_00734_1
crossref_primary_10_1186_s12859_024_05676_y
crossref_primary_10_1200_PO_24_00744
crossref_primary_10_1007_s10489_023_05190_3
crossref_primary_10_1371_journal_pgen_1011423
crossref_primary_10_1016_j_gpb_2022_10_001
crossref_primary_10_1038_s41467_025_62782_y
crossref_primary_10_3389_fimmu_2025_1618591
crossref_primary_10_1038_s41467_022_30033_z
crossref_primary_10_3390_cancers17132117
crossref_primary_10_1038_s41592_025_02773_5
crossref_primary_10_3389_fnmol_2024_1466302
crossref_primary_10_1038_s41598_022_19391_2
crossref_primary_10_1007_s10238_025_01760_6
crossref_primary_10_1038_s41698_025_01104_3
crossref_primary_10_1038_s41467_022_29439_6
crossref_primary_10_1038_s42003_022_03175_5
crossref_primary_10_1186_s12967_024_05495_y
crossref_primary_10_1089_cbr_2023_0116
crossref_primary_10_1093_bioinformatics_btaf131
crossref_primary_10_1038_s41596_024_01001_2
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1002_smtd_202401123
crossref_primary_10_1016_j_trac_2024_117818
crossref_primary_10_1186_s13059_023_02951_8
crossref_primary_10_1038_s41467_023_43201_6
crossref_primary_10_1093_hmg_ddad107
crossref_primary_10_3390_ijms25179182
crossref_primary_10_1016_j_jid_2025_03_018
crossref_primary_10_1038_s41586_025_08927_x
crossref_primary_10_1038_s41592_024_02284_9
crossref_primary_10_1038_s41592_024_02503_3
crossref_primary_10_1038_s41592_023_01992_y
crossref_primary_10_1097_COH_0000000000000961
crossref_primary_10_1038_s41596_024_01013_y
crossref_primary_10_1097_TP_0000000000004466
crossref_primary_10_1038_s41467_021_25557_9
crossref_primary_10_1038_s41467_023_43213_2
crossref_primary_10_1093_bioinformatics_btaf268
crossref_primary_10_1186_s12859_025_06044_0
crossref_primary_10_1017_S0960258524000199
crossref_primary_10_1038_s41467_025_59874_0
crossref_primary_10_3389_fmed_2023_1155057
crossref_primary_10_1186_s12943_024_02017_8
crossref_primary_10_1080_21645515_2023_2282803
crossref_primary_10_1186_s13059_021_02362_7
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_1016_j_tibtech_2025_08_020
crossref_primary_10_1038_s41587_022_01272_8
crossref_primary_10_1016_j_ccell_2024_09_001
crossref_primary_10_1016_j_cell_2024_07_040
crossref_primary_10_1002_smtd_202401145
crossref_primary_10_1016_j_isci_2024_111596
crossref_primary_10_1038_s41388_025_03569_9
crossref_primary_10_1186_s13059_024_03441_1
crossref_primary_10_1016_j_neo_2025_101230
crossref_primary_10_3389_fimmu_2025_1554114
crossref_primary_10_3390_cells12162042
crossref_primary_10_1093_bib_bbae250
crossref_primary_10_1186_s12943_024_02191_9
crossref_primary_10_1093_bib_bbae130
crossref_primary_10_1155_humu_5530325
crossref_primary_10_1038_s41467_024_51780_1
crossref_primary_10_3389_fimmu_2025_1536545
crossref_primary_10_1002_advs_202206939
crossref_primary_10_1186_s13059_024_03245_3
crossref_primary_10_3390_cancers15215300
crossref_primary_10_1073_pnas_2319804121
crossref_primary_10_1016_j_cels_2025_101394
crossref_primary_10_1038_s41593_022_01097_3
crossref_primary_10_1093_bib_bbae202
crossref_primary_10_1002_path_6457
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1016_j_ccell_2025_03_004
crossref_primary_10_1038_s41423_025_01299_2
crossref_primary_10_1038_s41586_023_06818_7
crossref_primary_10_1360_SSM_2024_0318
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1093_bib_bbad469
crossref_primary_10_1016_j_cels_2023_03_008
crossref_primary_10_1016_j_celrep_2025_115612
crossref_primary_10_1038_s41467_023_43980_y
crossref_primary_10_1186_s13059_023_02879_z
crossref_primary_10_1371_journal_pcbi_1013169
crossref_primary_10_1016_j_postharvbio_2024_113223
crossref_primary_10_12677_aam_2024_1311470
crossref_primary_10_1016_j_cels_2023_03_004
crossref_primary_10_1038_s41698_023_00444_2
crossref_primary_10_1016_j_brainresbull_2024_111076
crossref_primary_10_1093_intimm_dxaf014
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_1038_s41592_024_02501_5
crossref_primary_10_1038_s41586_025_09449_2
crossref_primary_10_1128_mmbr_00119_23
crossref_primary_10_1038_s42003_023_04761_x
crossref_primary_10_1093_bioadv_vbae101
crossref_primary_10_3389_fimmu_2022_1076700
crossref_primary_10_1016_j_jgg_2025_02_006
crossref_primary_10_1038_s41592_024_02438_9
crossref_primary_10_1186_s13059_023_03159_6
crossref_primary_10_1038_s41698_024_00660_4
crossref_primary_10_1186_s13059_025_03638_y
crossref_primary_10_1186_s12859_024_06003_1
crossref_primary_10_1016_j_oraloncology_2024_107097
crossref_primary_10_1038_s41588_022_01268_9
crossref_primary_10_1146_annurev_biodatasci_040324_030052
crossref_primary_10_1186_s12864_023_09722_6
crossref_primary_10_1242_dev_204555
crossref_primary_10_1038_s41586_021_04217_4
crossref_primary_10_1158_1078_0432_CCR_24_0049
crossref_primary_10_1371_journal_pgen_1010983
crossref_primary_10_1002_mco2_765
crossref_primary_10_1038_s41586_023_05769_3
crossref_primary_10_1038_s41467_024_54710_3
crossref_primary_10_1111_andr_70043
crossref_primary_10_1158_1078_0432_CCR_24_3679
crossref_primary_10_1186_s13059_024_03353_0
crossref_primary_10_1038_s41587_023_01657_3
crossref_primary_10_1007_s11427_023_2636_9
crossref_primary_10_1038_s41586_022_05385_7
crossref_primary_10_1016_j_ejphar_2025_178062
crossref_primary_10_1073_pnas_2404203121
crossref_primary_10_1007_s12539_024_00603_4
crossref_primary_10_1038_s41467_025_59070_0
crossref_primary_10_1038_s41588_022_01157_1
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1038_s41590_023_01503_3
crossref_primary_10_1016_j_kint_2025_07_021
crossref_primary_10_1038_s41586_024_07504_y
crossref_primary_10_1093_bioinformatics_btaf083
crossref_primary_10_1145_3641284
crossref_primary_10_1038_s41698_024_00716_5
crossref_primary_10_1038_s41467_023_40458_9
Cites_doi 10.1002/ajmg.a.36761
10.7554/eLife.27041
10.1038/nbt.3711
10.1186/s13059-019-1874-1
10.1186/s13059-019-1861-6
10.1038/nn.4216
10.1038/nmeth.4634
10.7554/eLife.37701
10.1101/2020.03.04.976407
10.1016/j.cell.2018.07.028
10.1109/ICASSP.2000.860231
10.1038/nbt.4231
10.1371/journal.pone.0209648
10.1101/2020.06.04.105700
10.1093/nar/gks1042
10.1038/nmeth.4636
10.1038/nn.3235
10.1038/s41467-019-10802-z
10.1016/j.copbio.2019.03.001
10.1038/s41592-019-0535-3
10.1038/nrg2825
10.1113/jphysiol.2010.201004
10.1152/physrev.00007.2017
10.1038/s41592-019-0548-y
10.1007/s00401-005-0017-9
10.1126/science.aaw1219
10.1016/j.cell.2019.05.031
10.1038/s41598-018-38264-1
10.1002/stem.1846
10.1038/s41592-019-0701-7
10.1038/s41587-019-0392-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41587-021-00830-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep (ProQuest)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 526
ExternalDocumentID PMC8606190
33603203
10_1038_s41587_021_00830_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSF Graduate Research Fellowship
– fundername: Hertz Foundation (Fannie and John Hertz Foundation)
  funderid: https://doi.org/10.13039/100005883
– fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
  grantid: R01HG010647; R01HG010647; R01HG005220
  funderid: https://doi.org/10.13039/100000051
– fundername: U.S. Department of Health & Human Services | NIH | NIH Office of the Director (OD)
  grantid: 1DP5OD024583
  funderid: https://doi.org/10.13039/100000052
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM131802
  funderid: https://doi.org/10.13039/100000057
– fundername: Burroughs Wellcome Fund (BWF)
  funderid: https://doi.org/10.13039/100000861
– fundername: NCI NIH HHS
  grantid: R33 CA246455
– fundername: NIH HHS
  grantid: DP5 OD024583
– fundername: NHGRI NIH HHS
  grantid: R01 HG010647
– fundername: NIGMS NIH HHS
  grantid: R35 GM131802
– fundername: NHGRI NIH HHS
  grantid: R01 HG005220
– fundername: NHGRI NIH HHS
  grantid: U24 HG004059
– fundername: NHGRI NIH HHS
  grantid: R01 HG011139
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
4.4
4R4
53G
5M7
5RE
5S5
70F
7X7
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAHBH
AAIKC
AAMNW
AARCD
ABDBF
ABDPE
ABEFU
ABFSG
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACSTC
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFFHD
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGSTI
AHBCP
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESTFP
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XOL
Y6R
YZZ
ZGI
ZXP
~KM
AAYXX
CITATION
AAYZH
ABAWZ
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7XB
88A
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-d0a4a9414a11f3ef10e3aa1c0b5796e7254506956c73c650c51c2f2ba67aeeff3
IEDL.DBID BENPR
ISICitedReferencesCount 653
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000619505800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1087-0156
1546-1696
IngestDate Tue Nov 04 02:06:57 EST 2025
Wed Oct 01 15:04:30 EDT 2025
Tue Oct 07 05:17:33 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Tue Nov 18 21:08:59 EST 2025
Sat Nov 29 06:22:26 EST 2025
Mon Nov 10 01:23:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d0a4a9414a11f3ef10e3aa1c0b5796e7254506956c73c650c51c2f2ba67aeeff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author Contributions
These authors contributed equally
D.M.C., F.C., R.A.I, and E.Z.M. conceived the study; F.C., E.M., and E.Z.M. designed the Slide-seq experiment; E.M. generated the Slide-seq data; D.M.C., R.A.I., and F.C. developed the statistical methods; D.M.C., F.C., R.A.I, and E.Z.M. designed the analysis; D.M.C., R.A.I., F.C, A.G., and L.S.Z. analyzed the data; D.M.C., F.C., R.A.I., E.Z.M., and L.S.Z. wrote the manuscript; all authors read and approved the final manuscript.
ORCID 0000-0002-3944-4309
0000-0002-2794-5165
0000-0003-2308-3649
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8606190
PMID 33603203
PQID 2649432237
PQPubID 47191
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8606190
proquest_miscellaneous_2491946493
proquest_journals_2649432237
pubmed_primary_33603203
crossref_citationtrail_10_1038_s41587_021_00830_w
crossref_primary_10_1038_s41587_021_00830_w
springer_journals_10_1038_s41587_021_00830_w
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2022
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References PelkeyKAHippocampal GABAergic inhibitory interneuronsPhysiol. Rev.201797161917471:CAS:528:DC%2BC1MXisFekt7k%3D10.1152/physrev.00007.2017289548536151493
HalpernKBPaired-cell sequencing enables spatial gene expression mapping of liver endothelial cellsNat. Biotechnol.2018369629701:CAS:528:DC%2BC1cXhslahtLjO10.1038/nbt.4231302221696546596
RodriquesSGSlide-seq: a scalable technology for measuring genome-wide expression at high spatial resolutionScience2019363146314671:CAS:528:DC%2BC1MXlvVSmsLw%3D10.1126/science.aaw1219309232256927209
SunkinSMAllen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous systemNucleic Acids Res.201241D996D100810.1093/nar/gks1042231932823531093
GampeKNTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brainStem Cells2015332532641:CAS:528:DC%2BC2MXis1OjtLs%3D10.1002/stem.1846252052484270857
LeeT-SGAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampusActa Neuropathol.20061113513631:CAS:528:DC%2BD28XjsFSmu7s%3D10.1007/s00401-005-0017-916456667
Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE13, e0209648 (2018).
TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242
10x Genomics. 10x Genomics: Visium spatial gene expression (2020).
Duchi, J. Sequential convex programming, notes for EE364b: Convex Optimization II (Stanford University, 2018).
TsoucasDAccurate estimation of cell-type composition from gene expression dataNat. Commun.201910297510.1038/s41467-019-10802-z312782656611906
BrownAMMolecular layer interneurons shape the spike activity of cerebellar Purkinje cellsSci. Rep.20199174210.1038/s41598-018-38264-1307420026370775
StuartTComprehensive integration of single-cell dataCell2019177188819021:CAS:528:DC%2BC1MXhtFens77L10.1016/j.cell.2019.05.031311781186687398
CembrowskiMSThe subiculum is a patchwork of discrete subregionselife20187e3770110.7554/eLife.37701303759716226292
LeekJTTackling the widespread and critical impact of batch effects in high-throughput dataNat. Rev. Genet.2010117337391:CAS:528:DC%2BC3cXhtFyju7%2FK10.1038/nrg282520838408
CapognaMNeurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal–hippocampal dialogueJ. Physiol.2011589187518831:CAS:528:DC%2BC3MXls1Oht78%3D10.1113/jphysiol.2010.20100421135049
MoncadaRIntegrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomasNat. Biotechnol.2020383333421:CAS:528:DC%2BB3cXotFGltA%3D%3D10.1038/s41587-019-0392-831932730
SunSZhuJZhouXStatistical analysis of spatial expression patterns for spatially resolved transcriptomic studiesNat. Methods2020171932001:CAS:528:DC%2BB3cXislektbw%3D10.1038/s41592-019-0701-7319885187233129
HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019202961:CAS:528:DC%2BC1MXisVyht7fF10.1186/s13059-019-1874-1318704236927181
ZhouMLiLDunsonDCarinLLognormal and gamma mixed negative binomial regressionProc. Int. Conf. Mach. Learn.2012201213431350252793914180062
SaundersAMolecular diversity and specializations among the cells of the adult mouse brainCell2018174101510301:CAS:528:DC%2BC1cXhsVyltrrK10.1016/j.cell.2018.07.028300962996447408
Zhang, M. et al. Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics. Preprint at bioRxivhttps://doi.org/10.1101/2020.06.04.105700 (2020).
Swami, A. Non-Gaussian mixture models for detection and estimation in heavy-tailed noise. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing 3802–3805 (IEEE, 2000).
PlinerHAShendureJTrapnellCSupervised classification enables rapid annotation of cell atlasesNat. Methods2019169839861:CAS:528:DC%2BC1MXhsleltLnM10.1038/s41592-019-0535-3315015456791524
SatijaLab. Analysis, visualization, and integration of spatial datasets with Seurat. https://satijalab.org/seurat/articles/spatial_vignette.html (2020).
Stickels, R. R. et al. Sensitive spatial genome wide expression profiling at cellular resolution. Nature Biotechnology (in the press).
Turlach, B. A. & Weingessel, A. quadprog: functions to solve quadratic programming problems. R package version 1.5-5 (2013).
RegevAScience forum: the Human Cell AtlaseLife20176e2704110.7554/eLife.27041292061045762154
SvenssonVTeichmannSAStegleOSpatialDE: identification of spatially variable genesNat. Methods2018153433461:CAS:528:DC%2BC1cXltVKnsL4%3D10.1038/nmeth.4636295535796350895
LeãoRNOLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neuronsNat. Neurosci.2012151524–153010.1038/nn.32353483451
Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics 1st edn, Vol. 1 (Springer Netherlands, 1986).
EdsgärdDJohnssonPSandbergRIdentification of spatial expression trends in single-cell gene expression dataNat. Methods201815339–34210.1038/nmeth.4634295535786314435
WagnerARegevAYosefNRevealing the vectors of cellular identity with single-cell genomicsNat. Biotechnol.2016341145–116010.1038/nbt.3711278248545465644
KulkarniAAndersonAGMerulloDPKonopkaGBeyond bulk: a review of single cell transcriptomics methodologies and applicationsCurr. Opin. Biotechnol.2019581291361:CAS:528:DC%2BC1MXlvV2qsLw%3D10.1016/j.copbio.2019.03.001309786436710112
TownesFWHicksSCAryeeMJIrizarryRAFeature selection and dimension reduction for single-cell RNA-seq based on a multinomial modelGenome Biol.2019202951:CAS:528:DC%2BC1MXisVyht7fE10.1186/s13059-019-1861-6318704126927135
VickovicSHigh-definition spatial transcriptomics for in situ tissue profilingNat. Methods2019169879901:CAS:528:DC%2BC1MXhsleltLjP10.1038/s41592-019-0548-y315015476765407
DikowN3p25.3 microdeletion of GABA transporters SLC6A1 and SLC6A11 results in intellectual disability, epilepsy and stereotypic behaviorAm. J. Med. Genet. A2014164306130681:CAS:528:DC%2BC2cXhvFCitr3K10.1002/ajmg.a.36761
Kozareva, V. et al. A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types. Preprint at bioRxivhttps://doi.org/10.1101/2020.03.04.976407 (2020).
K Gampe (830_CR28) 2015; 33
KA Pelkey (830_CR4) 2017; 97
M Zhou (830_CR34) 2012; 2012
MS Cembrowski (830_CR5) 2018; 7
830_CR1
AM Brown (830_CR22) 2019; 9
830_CR2
SM Sunkin (830_CR25) 2012; 41
D Tsoucas (830_CR19) 2019; 10
M Capogna (830_CR26) 2011; 589
R Moncada (830_CR13) 2020; 38
B Tasic (830_CR23) 2016; 19
SG Rodriques (830_CR11) 2019; 363
S Sun (830_CR7) 2020; 17
D Edsgärd (830_CR6) 2018; 15
S Vickovic (830_CR3) 2019; 16
830_CR35
V Svensson (830_CR8) 2018; 15
830_CR33
830_CR38
830_CR36
830_CR37
T Stuart (830_CR12) 2019; 177
FW Townes (830_CR14) 2019; 20
HA Pliner (830_CR16) 2019; 16
830_CR18
A Wagner (830_CR9) 2016; 34
A Kulkarni (830_CR31) 2019; 58
JT Leek (830_CR17) 2010; 11
KB Halpern (830_CR32) 2018; 36
N Dikow (830_CR29) 2014; 164
C Hafemeister (830_CR15) 2019; 20
T-S Lee (830_CR30) 2006; 111
830_CR20
830_CR24
A Regev (830_CR10) 2017; 6
RN Leão (830_CR27) 2012; 15
A Saunders (830_CR21) 2018; 174
References_xml – reference: SunkinSMAllen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous systemNucleic Acids Res.201241D996D100810.1093/nar/gks1042231932823531093
– reference: Kozareva, V. et al. A transcriptomic atlas of the mouse cerebellum reveals regional specializations and novel cell types. Preprint at bioRxivhttps://doi.org/10.1101/2020.03.04.976407 (2020).
– reference: BrownAMMolecular layer interneurons shape the spike activity of cerebellar Purkinje cellsSci. Rep.20199174210.1038/s41598-018-38264-1307420026370775
– reference: DikowN3p25.3 microdeletion of GABA transporters SLC6A1 and SLC6A11 results in intellectual disability, epilepsy and stereotypic behaviorAm. J. Med. Genet. A2014164306130681:CAS:528:DC%2BC2cXhvFCitr3K10.1002/ajmg.a.36761
– reference: WagnerARegevAYosefNRevealing the vectors of cellular identity with single-cell genomicsNat. Biotechnol.2016341145–116010.1038/nbt.3711278248545465644
– reference: Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics 1st edn, Vol. 1 (Springer Netherlands, 1986).
– reference: HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019202961:CAS:528:DC%2BC1MXisVyht7fF10.1186/s13059-019-1874-1318704236927181
– reference: Zhang, M. et al. Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics. Preprint at bioRxivhttps://doi.org/10.1101/2020.06.04.105700 (2020).
– reference: CapognaMNeurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal–hippocampal dialogueJ. Physiol.2011589187518831:CAS:528:DC%2BC3MXls1Oht78%3D10.1113/jphysiol.2010.20100421135049
– reference: Turlach, B. A. & Weingessel, A. quadprog: functions to solve quadratic programming problems. R package version 1.5-5 (2013).
– reference: LeekJTTackling the widespread and critical impact of batch effects in high-throughput dataNat. Rev. Genet.2010117337391:CAS:528:DC%2BC3cXhtFyju7%2FK10.1038/nrg282520838408
– reference: SvenssonVTeichmannSAStegleOSpatialDE: identification of spatially variable genesNat. Methods2018153433461:CAS:528:DC%2BC1cXltVKnsL4%3D10.1038/nmeth.4636295535796350895
– reference: SatijaLab. Analysis, visualization, and integration of spatial datasets with Seurat. https://satijalab.org/seurat/articles/spatial_vignette.html (2020).
– reference: SunSZhuJZhouXStatistical analysis of spatial expression patterns for spatially resolved transcriptomic studiesNat. Methods2020171932001:CAS:528:DC%2BB3cXislektbw%3D10.1038/s41592-019-0701-7319885187233129
– reference: LeeT-SGAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampusActa Neuropathol.20061113513631:CAS:528:DC%2BD28XjsFSmu7s%3D10.1007/s00401-005-0017-916456667
– reference: SaundersAMolecular diversity and specializations among the cells of the adult mouse brainCell2018174101510301:CAS:528:DC%2BC1cXhsVyltrrK10.1016/j.cell.2018.07.028300962996447408
– reference: EdsgärdDJohnssonPSandbergRIdentification of spatial expression trends in single-cell gene expression dataNat. Methods201815339–34210.1038/nmeth.4634295535786314435
– reference: MoncadaRIntegrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomasNat. Biotechnol.2020383333421:CAS:528:DC%2BB3cXotFGltA%3D%3D10.1038/s41587-019-0392-831932730
– reference: HalpernKBPaired-cell sequencing enables spatial gene expression mapping of liver endothelial cellsNat. Biotechnol.2018369629701:CAS:528:DC%2BC1cXhslahtLjO10.1038/nbt.4231302221696546596
– reference: Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE13, e0209648 (2018).
– reference: KulkarniAAndersonAGMerulloDPKonopkaGBeyond bulk: a review of single cell transcriptomics methodologies and applicationsCurr. Opin. Biotechnol.2019581291361:CAS:528:DC%2BC1MXlvV2qsLw%3D10.1016/j.copbio.2019.03.001309786436710112
– reference: Duchi, J. Sequential convex programming, notes for EE364b: Convex Optimization II (Stanford University, 2018).
– reference: GampeKNTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brainStem Cells2015332532641:CAS:528:DC%2BC2MXis1OjtLs%3D10.1002/stem.1846252052484270857
– reference: TownesFWHicksSCAryeeMJIrizarryRAFeature selection and dimension reduction for single-cell RNA-seq based on a multinomial modelGenome Biol.2019202951:CAS:528:DC%2BC1MXisVyht7fE10.1186/s13059-019-1861-6318704126927135
– reference: Stickels, R. R. et al. Sensitive spatial genome wide expression profiling at cellular resolution. Nature Biotechnology (in the press).
– reference: RodriquesSGSlide-seq: a scalable technology for measuring genome-wide expression at high spatial resolutionScience2019363146314671:CAS:528:DC%2BC1MXlvVSmsLw%3D10.1126/science.aaw1219309232256927209
– reference: ZhouMLiLDunsonDCarinLLognormal and gamma mixed negative binomial regressionProc. Int. Conf. Mach. Learn.2012201213431350252793914180062
– reference: CembrowskiMSThe subiculum is a patchwork of discrete subregionselife20187e3770110.7554/eLife.37701303759716226292
– reference: RegevAScience forum: the Human Cell AtlaseLife20176e2704110.7554/eLife.27041292061045762154
– reference: VickovicSHigh-definition spatial transcriptomics for in situ tissue profilingNat. Methods2019169879901:CAS:528:DC%2BC1MXhsleltLjP10.1038/s41592-019-0548-y315015476765407
– reference: TasicBAdult mouse cortical cell taxonomy revealed by single cell transcriptomicsNat. Neurosci.2016193353461:CAS:528:DC%2BC28XitFWqsw%3D%3D10.1038/nn.4216267275484985242
– reference: Swami, A. Non-Gaussian mixture models for detection and estimation in heavy-tailed noise. In Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing 3802–3805 (IEEE, 2000).
– reference: TsoucasDAccurate estimation of cell-type composition from gene expression dataNat. Commun.201910297510.1038/s41467-019-10802-z312782656611906
– reference: 10x Genomics. 10x Genomics: Visium spatial gene expression (2020).
– reference: StuartTComprehensive integration of single-cell dataCell2019177188819021:CAS:528:DC%2BC1MXhtFens77L10.1016/j.cell.2019.05.031311781186687398
– reference: PlinerHAShendureJTrapnellCSupervised classification enables rapid annotation of cell atlasesNat. Methods2019169839861:CAS:528:DC%2BC1MXhsleltLnM10.1038/s41592-019-0535-3315015456791524
– reference: LeãoRNOLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neuronsNat. Neurosci.2012151524–153010.1038/nn.32353483451
– reference: PelkeyKAHippocampal GABAergic inhibitory interneuronsPhysiol. Rev.201797161917471:CAS:528:DC%2BC1MXisFekt7k%3D10.1152/physrev.00007.2017289548536151493
– volume: 164
  start-page: 3061
  year: 2014
  ident: 830_CR29
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.36761
– ident: 830_CR38
– volume: 6
  start-page: e27041
  year: 2017
  ident: 830_CR10
  publication-title: eLife
  doi: 10.7554/eLife.27041
– volume: 34
  start-page: 1145–1160
  year: 2016
  ident: 830_CR9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3711
– volume: 20
  start-page: 296
  year: 2019
  ident: 830_CR15
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1874-1
– volume: 20
  start-page: 295
  year: 2019
  ident: 830_CR14
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1861-6
– volume: 19
  start-page: 335
  year: 2016
  ident: 830_CR23
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4216
– volume: 15
  start-page: 339–342
  year: 2018
  ident: 830_CR6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4634
– volume: 7
  start-page: e37701
  year: 2018
  ident: 830_CR5
  publication-title: elife
  doi: 10.7554/eLife.37701
– ident: 830_CR20
  doi: 10.1101/2020.03.04.976407
– volume: 174
  start-page: 1015
  year: 2018
  ident: 830_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.028
– ident: 830_CR35
  doi: 10.1109/ICASSP.2000.860231
– ident: 830_CR1
– volume: 36
  start-page: 962
  year: 2018
  ident: 830_CR32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4231
– ident: 830_CR18
  doi: 10.1371/journal.pone.0209648
– ident: 830_CR24
  doi: 10.1101/2020.06.04.105700
– volume: 41
  start-page: D996
  year: 2012
  ident: 830_CR25
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1042
– volume: 15
  start-page: 343
  year: 2018
  ident: 830_CR8
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 15
  start-page: 1524–1530
  year: 2012
  ident: 830_CR27
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3235
– ident: 830_CR36
– volume: 10
  start-page: 2975
  year: 2019
  ident: 830_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10802-z
– volume: 58
  start-page: 129
  year: 2019
  ident: 830_CR31
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2019.03.001
– volume: 16
  start-page: 983
  year: 2019
  ident: 830_CR16
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0535-3
– volume: 11
  start-page: 733
  year: 2010
  ident: 830_CR17
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2825
– volume: 2012
  start-page: 1343
  year: 2012
  ident: 830_CR34
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 589
  start-page: 1875
  year: 2011
  ident: 830_CR26
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2010.201004
– volume: 97
  start-page: 1619
  year: 2017
  ident: 830_CR4
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00007.2017
– ident: 830_CR2
– volume: 16
  start-page: 987
  year: 2019
  ident: 830_CR3
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– volume: 111
  start-page: 351
  year: 2006
  ident: 830_CR30
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-005-0017-9
– volume: 363
  start-page: 1463
  year: 2019
  ident: 830_CR11
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 177
  start-page: 1888
  year: 2019
  ident: 830_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 9
  start-page: 1742
  year: 2019
  ident: 830_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-38264-1
– ident: 830_CR33
– volume: 33
  start-page: 253
  year: 2015
  ident: 830_CR28
  publication-title: Stem Cells
  doi: 10.1002/stem.1846
– volume: 17
  start-page: 193
  year: 2020
  ident: 830_CR7
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0701-7
– ident: 830_CR37
– volume: 38
  start-page: 333
  year: 2020
  ident: 830_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0392-8
SSID ssj0006466
Score 2.7439075
Snippet A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 517
SubjectTerms 631/114/2415
631/61
631/61/212
631/61/212/2019
Agriculture
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Computational neuroscience
Datasets
Decomposition
Exome Sequencing
Life Sciences
Localization
Mapping
Mice
Mixtures
Sequence Analysis, RNA
Single-Cell Analysis
Software
Tissues
Transcriptome - genetics
Transcriptomics
Title Robust decomposition of cell type mixtures in spatial transcriptomics
URI https://link.springer.com/article/10.1038/s41587-021-00830-w
https://www.ncbi.nlm.nih.gov/pubmed/33603203
https://www.proquest.com/docview/2649432237
https://www.proquest.com/docview/2491946493
https://pubmed.ncbi.nlm.nih.gov/PMC8606190
Volume 40
WOSCitedRecordID wos000619505800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Research Library
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2O
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1087-0156
  databaseCode: M2P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcERbqOiBx_JKKVWQuEHUOM7GzqkqaCsuXVYFpL1FjmOrK0HSNlkKf8-M401ZKnrhYinxRLYzY8-M5wXwJs0yzUVuIytRRUl5WkVlmbNI2SqTWpfIMypXbEJMp3I-z2f-wq31bpWrM9Ed1FWj6Y78ABl3niL1cXF4fhFR1SiyrvoSGhuwRZnKkM633k-ms9PhLM56ayWLJTlYjjMfNhNzedDiNOhtguo0yiFxdLXOmm7ImzfdJv-ynTqWdPzwfxfzCB54YTQ86qnnMdwx9Qju9eUpf41g549khSPYPvFm-CcwOW3KZduFlSGPdO_2FTY2JDNASLe64ffFT7JNtOGiDlvy2sZxOuKL7pSiUOj2KXw9nnz58DHy9RgijXJdF1WxSlWeslQxZrmxLDZcKabjkgJajUBdcxxnqHBpwTVKfnrMdGKTUmVCGWMtfwabdVObFxAmlIZGSyUqSvlmWVmVilXSMGYynuQyALZCRaF9snKqmfGtcEZzLosefQWir3DoK64CeDt8c96n6rgVem-FmsJv27a4xksAr4du3HD0-1RtmiXCpDnLUwTkATzvCWIYjvOMCtJjj1gjlQGAknmv99SLM5fUW6ImicJZAO9WRHU9rX-vYvf2VbyE-wmFazhPoz3Y7C6X5hXc1T-6RXu5DxtiLlwr9_3GwaeT5JNrZ9SKvv38Gx9AIPY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAgUOPJZXoICR6Ami-pFNnANCCFq1aruqUJF6C45jqytBUposS_8Uv5Gx8yhLRW89cI2dh5Mv8_B8MwPwKopjLZLUhlaiixKJqAjzPGWhskUstc5RZxS-2UQymcjDw3R_CX71uTCOVtnLRC-oi0q7PfJ1VNxphOgTybvj76HrGuWiq30LjRYWO-Z0ji5b_Xb7I37fNc43Nw4-bIVdV4FQo3XShAVVkUojFinGrDCWUSOUYprmLi3TJOgxjWmMboNOhEb7RY-Z5pbnKk6UMdYKvO4VuIpmBKeeKrg_SP64jY0yKh2dcxx3STpUyPUaF-2OcnTe0eqh4XxREZ6zbs-TNP-K1HoFuHnnf3t1d-F2Z2qT9-2_cQ-WTDmC623zzdMR3PqjFOMIVvY6ksF92PhU5bO6IYVxfPuO1EYqS1yQg7g9a_Jt-tNFXmoyLUntOOl4n8ZpfS-DXaJ3_QA-X8riHsJyWZXmMRDuiuxoqZLCFbSzLC9yxQppGDOx4KkMgPWfPtNdKXbXEeRr5ikBQmYtXDKES-bhks0DeD2cc9wWIrlw9moPhawTSnV2hoMAXg7DKE7c61OlqWY4J0pZGuFEEcCjFoDD7YSIqeAUR5IFaA4TXKnyxZFyeuRLlkv0k9H0DOBND-Kzx_r3Kp5cvIoXcGPrYG83292e7DyFm9wlpnhO1SosNycz8wyu6R_NtD557n9TAl8uG9y_ATNPduQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAhUceCyvQIEgwQmijR-bOAeEEO2KqnSpEEi9BcexxUqQlCbL0r_Gr2Mmr7JU9NYD17WTrJ3P88h8MwPwVEaREXHiAqfQRZFC5kGWJSzQLo-UMRnqjLxpNhHPZurgINlfg199LgzRKnuZ2AjqvDT0jXyMijuRiD4Rj11Hi9jfmr46_B5QBymKtPbtNFqI7NrjJbpv1cudLXzXzzifbn988zboOgwEBi2VOshDLXUimdSMOWEdC63QmpkwoxRNG6P3NAkjdCFMLAzaMmbCDHc801GsrXVO4H0vwMVYTiSdrj3-ftACURsnZaEiauck6hJ2QqHGFW4A_crRkUcLKAyWq0rxlKV7mrD5V9S2UYbT6__zNt6Aa50J7r9uz8xNWLPFCC63TTmPR3D1jxKNI9jY68gHt2D7Q5ktqtrPLfHwO7KbXzqfgh8-fcv2v81_UkSm8ueFXxFXHZ9TkzXQyGZKAK9uw6dzWdwdWC_Kwt4Dn1PxHaN0nFOhO8eyPNMsV5YxGwmeKA9YD4PUdCXaqVPI17ShCgiVttBJETppA5106cHz4ZrDtkDJmbM3e1iknbCq0hNMePBkGEYxQ9unC1sucI5MWCJxovDgbgvG4XFCRKHgIY7EKzAdJlAJ89WRYv6lKWWu0H9Gk9SDFz2gT_7Wv1dx_-xVPIYNxHT6bme2-wCucMpXaahWm7BeHy3sQ7hkftTz6uhRc2J9-Hze2P4NP5R_pQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+decomposition+of+cell+type+mixtures+in+spatial+transcriptomics&rft.jtitle=Nature+biotechnology&rft.au=Cable%2C+Dylan+M.&rft.au=Murray%2C+Evan&rft.au=Zou%2C+Luli+S.&rft.au=Goeva%2C+Aleksandrina&rft.date=2022-04-01&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=40&rft.issue=4&rft.spage=517&rft.epage=526&rft_id=info:doi/10.1038%2Fs41587-021-00830-w&rft_id=info%3Apmid%2F33603203&rft.externalDocID=PMC8606190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon