Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) Jg. 11; H. 9; S. 1446 - 1457
Hauptverfasser: Sujobert, Pierre, Poulain, Laury, Paubelle, Etienne, Zylbersztejn, Florence, Grenier, Adrien, Lambert, Mireille, Townsend, Elizabeth C., Brusq, Jean-Marie, Nicodeme, Edwige, Decrooqc, Justine, Nepstad, Ina, Green, Alexa S., Mondesir, Johanna, Hospital, Marie-Anne, Jacque, Nathalie, Christodoulou, Alexandra, Desouza, Tiffany A., Hermine, Olivier, Foretz, Marc, Viollet, Benoit, Lacombe, Catherine, Mayeux, Patrick, Weinstock, David M., Moura, Ivan C., Bouscary, Didier, Tamburini, Jerome
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 09.06.2015
Elsevier
Schlagworte:
ISSN:2211-1247, 2211-1247
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. [Display omitted] •AMPK activation blocks AML propagation without toxicity to normal hematopoiesis•Cytotoxicity induced by an AMPK activator (GSK621) involves autophagy in AML•Co-activation of AMPK and mTORC1 is synthetically lethal in AML•AMPK and mTORC1 crosstalk requires eIF2α/ATF4 signaling Sujobert et al. show that specific AMPK activation by GSK621 induces cytotoxicity in AML but not in normal hematopoietic cells. AMPK-mediated cytotoxicity indeed requires mTORC1 activation that is unique to AML cells and involves the eIF2α/ATF4 signaling pathway. This indicates a potential for AMPK-activating agents in the treatment of mTORC1-overactivated cancers.
AbstractList AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.
AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. [Display omitted] •AMPK activation blocks AML propagation without toxicity to normal hematopoiesis•Cytotoxicity induced by an AMPK activator (GSK621) involves autophagy in AML•Co-activation of AMPK and mTORC1 is synthetically lethal in AML•AMPK and mTORC1 crosstalk requires eIF2α/ATF4 signaling Sujobert et al. show that specific AMPK activation by GSK621 induces cytotoxicity in AML but not in normal hematopoietic cells. AMPK-mediated cytotoxicity indeed requires mTORC1 activation that is unique to AML cells and involves the eIF2α/ATF4 signaling pathway. This indicates a potential for AMPK-activating agents in the treatment of mTORC1-overactivated cancers.
AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.
AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.
Author Moura, Ivan C.
Desouza, Tiffany A.
Hermine, Olivier
Lacombe, Catherine
Mayeux, Patrick
Foretz, Marc
Nicodeme, Edwige
Sujobert, Pierre
Brusq, Jean-Marie
Weinstock, David M.
Bouscary, Didier
Jacque, Nathalie
Green, Alexa S.
Mondesir, Johanna
Paubelle, Etienne
Viollet, Benoit
Lambert, Mireille
Christodoulou, Alexandra
Tamburini, Jerome
Nepstad, Ina
Townsend, Elizabeth C.
Poulain, Laury
Zylbersztejn, Florence
Grenier, Adrien
Hospital, Marie-Anne
Decrooqc, Justine
Author_xml – sequence: 1
  givenname: Pierre
  surname: Sujobert
  fullname: Sujobert, Pierre
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 2
  givenname: Laury
  surname: Poulain
  fullname: Poulain, Laury
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 3
  givenname: Etienne
  surname: Paubelle
  fullname: Paubelle, Etienne
  organization: INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, 75015 Paris, France
– sequence: 4
  givenname: Florence
  surname: Zylbersztejn
  fullname: Zylbersztejn, Florence
  organization: INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, 75015 Paris, France
– sequence: 5
  givenname: Adrien
  surname: Grenier
  fullname: Grenier, Adrien
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 6
  givenname: Mireille
  surname: Lambert
  fullname: Lambert, Mireille
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 7
  givenname: Elizabeth C.
  surname: Townsend
  fullname: Townsend, Elizabeth C.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
– sequence: 8
  givenname: Jean-Marie
  surname: Brusq
  fullname: Brusq, Jean-Marie
  organization: GlaxoSmithKline Research Center, 91490 Les Ulis, France
– sequence: 9
  givenname: Edwige
  surname: Nicodeme
  fullname: Nicodeme, Edwige
  organization: GlaxoSmithKline Research Center, 91490 Les Ulis, France
– sequence: 10
  givenname: Justine
  surname: Decrooqc
  fullname: Decrooqc, Justine
  organization: INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, 75015 Paris, France
– sequence: 11
  givenname: Ina
  surname: Nepstad
  fullname: Nepstad, Ina
  organization: Division for Hematology, Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
– sequence: 12
  givenname: Alexa S.
  surname: Green
  fullname: Green, Alexa S.
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 13
  givenname: Johanna
  surname: Mondesir
  fullname: Mondesir, Johanna
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 14
  givenname: Marie-Anne
  surname: Hospital
  fullname: Hospital, Marie-Anne
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 15
  givenname: Nathalie
  surname: Jacque
  fullname: Jacque, Nathalie
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 16
  givenname: Alexandra
  surname: Christodoulou
  fullname: Christodoulou, Alexandra
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
– sequence: 17
  givenname: Tiffany A.
  surname: Desouza
  fullname: Desouza, Tiffany A.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
– sequence: 18
  givenname: Olivier
  surname: Hermine
  fullname: Hermine, Olivier
  organization: INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, 75015 Paris, France
– sequence: 19
  givenname: Marc
  surname: Foretz
  fullname: Foretz, Marc
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 20
  givenname: Benoit
  surname: Viollet
  fullname: Viollet, Benoit
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 21
  givenname: Catherine
  surname: Lacombe
  fullname: Lacombe, Catherine
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 22
  givenname: Patrick
  surname: Mayeux
  fullname: Mayeux, Patrick
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 23
  givenname: David M.
  surname: Weinstock
  fullname: Weinstock, David M.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
– sequence: 24
  givenname: Ivan C.
  surname: Moura
  fullname: Moura, Ivan C.
  organization: INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, 75015 Paris, France
– sequence: 25
  givenname: Didier
  surname: Bouscary
  fullname: Bouscary, Didier
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
– sequence: 26
  givenname: Jerome
  surname: Tamburini
  fullname: Tamburini, Jerome
  email: jerome.tamburini@inserm.fr
  organization: INSERM U1016, Institut Cochin, 75014 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26004183$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAUhC1UREvpP0DIRy4Jduw4CQekVVTKiq0WoXK2bOcZecnGi-1U7L-v25QKcQBfnuX3zViaeYlOJj8BQq8pKSmh4t2uNDAGOJQVoXVJeEkEe4bOqorSgla8OfnjfoouYtyRfAShtOMv0GklCOG0ZWdo2_tCmeRuVXJ-wt7i1fWXz1hNA97fbL_2FK-nYTYQcX9MPvlfzrh0xG7CKzMnwNdHGL0b8AbmH7B36hV6btUY4eJxnqNvHy9v-k_FZnu17lebwtScpMJYqkzLaqGt5ULVhjWioxqMJTV0QjFWw0AJqSkHLVhrGiYa2-Qd44Yzys7RevEdvNrJQ3B7FY7SKycfHnz4LlVIzowgu6qqGsaU1bblVrSdrhqtNRFGMTF0Onu9XbwOwf-cISa5dzHnO6oJ_BwlFW3TdW1NeEbfPKKz3sPw9PHvQDPAF8AEH2MA-4RQIu-rkzu5VCfvq5OEy1xdlr3_S5ZjfqgkBeXG_4k_LGLIgd86CDIaB5OBwQUwKSfi_m1wB5aos-8
CitedBy_id crossref_primary_10_1371_journal_pone_0161017
crossref_primary_10_1007_s10863_018_9750_3
crossref_primary_10_1111_jcmm_13737
crossref_primary_10_1080_14728222_2017_1333600
crossref_primary_10_3390_cells11142136
crossref_primary_10_4049_jimmunol_1901310
crossref_primary_10_1182_bloodadvances_2022009444
crossref_primary_10_1016_j_bbrc_2018_02_082
crossref_primary_10_1016_j_apsb_2021_02_016
crossref_primary_10_1016_j_cellsig_2017_10_010
crossref_primary_10_1111_ejh_12690
crossref_primary_10_1096_fj_202000954R
crossref_primary_10_1038_s41375_022_01541_0
crossref_primary_10_1002_2211_5463_13527
crossref_primary_10_1016_j_bbrc_2016_10_001
crossref_primary_10_1016_j_bbrc_2016_10_040
crossref_primary_10_1038_s41467_018_05311_4
crossref_primary_10_1158_0008_5472_CAN_16_1393
crossref_primary_10_1038_nrdp_2016_10
crossref_primary_10_1007_s40778_016_0067_z
crossref_primary_10_3389_fcell_2021_798604
crossref_primary_10_3389_fnins_2015_00442
crossref_primary_10_3390_ijms19102991
crossref_primary_10_1038_aps_2017_186
crossref_primary_10_1007_s12020_018_1657_6
crossref_primary_10_1016_j_fsi_2024_110020
crossref_primary_10_1038_leu_2017_81
crossref_primary_10_1080_17460441_2017_1356818
crossref_primary_10_3389_fendo_2017_00136
crossref_primary_10_1016_j_molcel_2017_05_032
crossref_primary_10_1016_j_bbrc_2018_05_057
crossref_primary_10_1016_j_bbrc_2019_04_196
crossref_primary_10_1038_onc_2017_376
crossref_primary_10_1016_j_phrs_2024_107387
crossref_primary_10_3390_cancers13235966
crossref_primary_10_1016_j_virol_2024_110080
crossref_primary_10_2174_0929867325666180117105522
crossref_primary_10_1002_1878_0261_12661
crossref_primary_10_1016_j_bbrc_2017_04_111
crossref_primary_10_1038_srep32111
crossref_primary_10_1016_j_bcp_2018_01_049
crossref_primary_10_3390_cells8020103
crossref_primary_10_1007_s11033_022_07973_2
crossref_primary_10_1038_leu_2017_284
crossref_primary_10_3389_fphys_2021_657378
crossref_primary_10_1172_JCI133982
crossref_primary_10_3390_cells8090967
crossref_primary_10_1016_j_bbrc_2018_05_003
crossref_primary_10_1016_j_ejmech_2020_112316
crossref_primary_10_1016_j_ejmech_2023_115722
crossref_primary_10_1007_s10565_019_09495_3
crossref_primary_10_1016_j_lfs_2025_123687
crossref_primary_10_3390_cancers11020260
crossref_primary_10_1038_s41401_021_00672_x
crossref_primary_10_1016_j_bbrc_2018_05_108
crossref_primary_10_1016_j_bbrc_2017_11_132
crossref_primary_10_3390_life11080839
crossref_primary_10_1371_journal_pone_0151480
crossref_primary_10_1002_2211_5463_12908
crossref_primary_10_1038_s41392_022_01253_y
crossref_primary_10_1038_s41419_019_1464_x
crossref_primary_10_18632_oncotarget_12866
crossref_primary_10_1038_s41375_023_01835_x
crossref_primary_10_1016_j_tips_2015_11_007
crossref_primary_10_1016_j_exphem_2017_02_004
crossref_primary_10_3390_ijms25115822
crossref_primary_10_1016_j_neurobiolaging_2024_05_009
crossref_primary_10_7717_peerj_3394
crossref_primary_10_1016_j_exphem_2016_04_012
crossref_primary_10_3390_nu14132669
crossref_primary_10_1093_humrep_deac067
crossref_primary_10_3389_fgene_2022_876689
crossref_primary_10_18632_oncotarget_18365
crossref_primary_10_1080_2162402X_2018_1442167
Cites_doi 10.1182/blood-2009-06-229443
10.1073/pnas.0807611106
10.1016/j.ccr.2014.03.015
10.1016/j.molcel.2011.02.009
10.1016/j.molcel.2008.03.003
10.1074/jbc.M112.431056
10.1038/nature13228
10.1016/j.ccr.2011.03.012
10.1016/j.cell.2010.01.028
10.1126/scisignal.2004632
10.1158/0008-5472.CAN-12-3109
10.1126/science.1139851
10.1016/j.ccr.2012.12.008
10.1016/j.ccr.2010.10.032
10.1016/j.cell.2007.12.018
10.1182/blood-2010-02-269837
10.1038/leu.2013.107
10.1038/nature09595
10.1038/nature09572
10.1038/cddis.2013.350
10.1038/nature11066
10.1371/journal.pone.0006529
10.1126/science.1196371
10.1016/S0092-8674(03)00929-2
10.1038/nrm3696
10.1128/MCB.00166-06
10.1073/pnas.0809632106
10.1261/rna.2192803
10.1038/ncomms4017
10.1200/JCO.2012.42.2907
10.1073/pnas.0900465106
10.1158/1078-0432.CCR-09-0842
10.1016/S0076-6879(08)03606-9
10.1158/0008-5472.CAN-04-3640
10.1182/blood-2008-10-184515
10.1182/blood.V96.12.3907
10.1038/nm.3372
10.1126/science.1128294
10.1016/j.molcel.2007.12.023
10.1016/j.cmet.2006.05.005
10.1111/j.1365-2141.2011.08940.x
10.1093/bioinformatics/btr095
10.4161/cc.8.3.7701
10.1038/nrm3311
10.1074/jbc.M400272200
10.1016/j.cmet.2012.12.001
10.1038/ncb839
10.1053/j.gastro.2010.12.006
10.1038/ncb2152
10.1038/nature09571
ContentType Journal Article
Copyright 2015 The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2015.04.063
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1457
ExternalDocumentID oai_doaj_org_article_9222733afbf84f689b27bbb06ca36d9b
26004183
10_1016_j_celrep_2015_04_063
S2211124715004957
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-cf1ac8356bff46a5c37691becf05e96a335ed100514eb638c7367f75e934c4313
IEDL.DBID DOA
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356069500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:50:35 EDT 2025
Fri Jul 11 07:39:46 EDT 2025
Mon Jul 21 05:54:22 EDT 2025
Wed Nov 05 20:41:05 EST 2025
Tue Nov 18 21:55:11 EST 2025
Wed May 17 01:06:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-cf1ac8356bff46a5c37691becf05e96a335ed100514eb638c7367f75e934c4313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9222733afbf84f689b27bbb06ca36d9b
PMID 26004183
PQID 1687998504
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_9222733afbf84f689b27bbb06ca36d9b
proquest_miscellaneous_1687998504
pubmed_primary_26004183
crossref_primary_10_1016_j_celrep_2015_04_063
crossref_citationtrail_10_1016_j_celrep_2015_04_063
elsevier_sciencedirect_doi_10_1016_j_celrep_2015_04_063
PublicationCentury 2000
PublicationDate 2015-06-09
PublicationDateYYYYMMDD 2015-06-09
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2015
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jeon, Chandel, Hay (bib23) 2012; 485
Barabé, Kennedy, Hope, Dick (bib4) 2007; 316
Harding, Zhang, Scheuner, Chen, Kaufman, Ron (bib20) 2009; 106
Clarke, Chambers, Liniker, Marciniak (bib9) 2014; 25
Mizushima, Yoshimori, Levine (bib34) 2010; 140
Green, Chapuis, Maciel, Willems, Lambert, Arnoult, Boyer, Bardet, Park, Foretz (bib16) 2010; 116
Wiederschain, Wee, Chen, Loo, Yang, Huang, Chen, Caponigro, Yao, Lengauer (bib50) 2009; 8
Yeung, Esposito, Gandillet, Zeisig, Griessinger, Bonnet, So (bib52) 2010; 18
Inoki, Zhu, Guan (bib22) 2003; 115
Faubert, Boily, Izreig, Griss, Samborska, Dong, Dupuy, Chambers, Fuerth, Viollet (bib13) 2013; 17
Levine, Kroemer (bib30) 2008; 132
van Galen, Kreso, Mbong, Kent, Fitzmaurice, Chambers, Xie, Laurenti, Hermans, Eppert (bib47) 2014; 510
Kharas, Okabe, Ganis, Gozo, Khandan, Paktinat, Gilliland, Gritsman (bib26) 2010; 115
Kamentsky, Jones, Fraser, Bray, Logan, Madden, Ljosa, Rueden, Eliceiri, Carpenter (bib24) 2011; 27
Kim, Kundu, Viollet, Guan (bib27) 2011; 13
Shackelford, Vasquez, Corbeil, Wu, Leblanc, Wu, Vera, Shaw (bib40) 2009; 106
Babcock, Nguyen, He, Hendricks, Wek, Quilliam (bib3) 2013; 288
Kelsey, Manning (bib25) 2013; 6
Elgendy, Sheridan, Brumatti, Martin (bib12) 2011; 42
Atkins, Liu, Minthorn, Zhang, Figueroa, Moss, Stanley, Sanders, Goetz, Gaul (bib2) 2013; 73
Mirguet, O., and Bouillot, A. (2011). Patent WO 2011138307A1 Pyrrolo [3, 2 -d] pyrimidin-3 -yl derivatives used as activators of ampk.
Ozcan, Yilmaz, Ozcan, Furuhashi, Vaillancourt, Smith, Görgün, Hotamisligil (bib36) 2006; 313
Stewart, Dykxhoorn, Palliser, Mizuno, Yu, An, Sabatini, Chen, Hahn, Sharp (bib43) 2003; 9
Hardie, Ross, Hawley (bib19) 2012; 13
.
Wang, Mora-Jensen, Weniger, Perez-Galan, Wolford, Hai, Ron, Chen, Trenkle, Wiestner, Ye (bib49) 2009; 106
Gan, Hu, Jiang, Liu, Sahin, Zhuang, Fletcher-Sananikone, Colla, Wang, Chin, Depinho (bib15) 2010; 468
Xiao, Sanders, Carmena, Bright, Haire, Underwood, Patel, Heath, Walker, Hallen (bib51) 2013; 4
Inoki, Li, Zhu, Wu, Guan (bib21) 2002; 4
Nakada, Saunders, Morrison (bib35) 2010; 468
Laderoute, Amin, Calaoagan, Knapp, Le, Orduna, Foretz, Viollet (bib28) 2006; 26
Amadori, Stasi, Martelli, Venditti, Meloni, Pane, Martinelli, Lunghi, Pagano, Cilloni (bib1) 2012; 156
Liu, Chhipa, Pooya, Wortman, Yachyshin, Chow, Kumar, Zhou, Sun, Quinn (bib31) 2014; 111
Budovskaya, Stephan, Reggiori, Klionsky, Herman (bib6) 2004; 279
Sheen, Zoncu, Kim, Sabatini (bib42) 2011; 19
Fullerton, Galic, Marcinko, Sikkema, Pulinilkunnil, Chen, O’Neill, Ford, Palanivel, O’Brien (bib14) 2013; 19
Scotland, Saland, Skuli, de Toni, Boutzen, Micklow, Sénégas, Peyraud, Peyriga, Théodoro (bib39) 2013; 27
Tamburini, Green, Bardet, Chapuis, Park, Willems, Uzunov, Ifrah, Dreyfus, Lacombe (bib46) 2009; 114
Egan, Shackelford, Mihaylova, Gelino, Kohnz, Mair, Vasquez, Joshi, Gwinn, Taylor (bib11) 2011; 331
Cool, Zinker, Chiou, Kifle, Cao, Perham, Dickinson, Adler, Gagne, Iyengar (bib10) 2006; 3
Vázquez, Colombo (bib48) 2009; 452
Gurumurthy, Xie, Alagesan, Kim, Yusuf, Saez, Tzatsos, Ozsolak, Milos, Ferrari (bib17) 2010; 468
Campeau, Ruhl, Rodier, Smith, Rahmberg, Fuss, Campisi, Yaswen, Cooper, Kaufman (bib8) 2009; 4
Büchner, Schlenk, Schaich, Döhner, Krahl, Krauter, Heil, Krug, Sauerland, Heinecke (bib5) 2012; 30
Ozcan, Ozcan, Yilmaz, Düvel, Sahin, Manning, Hotamisligil (bib37) 2008; 29
Shackelford, Abt, Gerken, Vasquez, Seki, Leblanc, Wei, Fishbein, Czernin, Mischel, Shaw (bib41) 2013; 23
Takeuchi, Kondo, Fujiwara, Kanzawa, Aoki, Mills, Kondo (bib45) 2005; 65
Mizuki, Fenski, Halfter, Matsumura, Schmidt, Müller, Grüning, Kratz-Albers, Serve, Steur (bib33) 2000; 96
Calvisi, Wang, Ho, Ladu, Lee, Mattu, Destefanis, Delogu, Zimmermann, Ericsson (bib7) 2011; 140
Perl, Kasner, Tsai, Vogl, Loren, Schuster, Porter, Stadtmauer, Goldstein, Frey (bib38) 2009; 15
Gwinn, Shackelford, Egan, Mihaylova, Mery, Vasquez, Turk, Shaw (bib18) 2008; 30
Lamb, Yoshimori, Tooze (bib29) 2013; 14
Sui, Chen, Wang, Huang, Kong, Zhang, Han, Lou, Yang, Zhang (bib44) 2013; 4
Xiao (10.1016/j.celrep.2015.04.063_bib51) 2013; 4
Fullerton (10.1016/j.celrep.2015.04.063_bib14) 2013; 19
van Galen (10.1016/j.celrep.2015.04.063_bib47) 2014; 510
Elgendy (10.1016/j.celrep.2015.04.063_bib12) 2011; 42
Cool (10.1016/j.celrep.2015.04.063_bib10) 2006; 3
Wang (10.1016/j.celrep.2015.04.063_bib49) 2009; 106
Wiederschain (10.1016/j.celrep.2015.04.063_bib50) 2009; 8
Stewart (10.1016/j.celrep.2015.04.063_bib43) 2003; 9
Ozcan (10.1016/j.celrep.2015.04.063_bib36) 2006; 313
Faubert (10.1016/j.celrep.2015.04.063_bib13) 2013; 17
Gwinn (10.1016/j.celrep.2015.04.063_bib18) 2008; 30
Barabé (10.1016/j.celrep.2015.04.063_bib4) 2007; 316
Büchner (10.1016/j.celrep.2015.04.063_bib5) 2012; 30
Kamentsky (10.1016/j.celrep.2015.04.063_bib24) 2011; 27
Mizushima (10.1016/j.celrep.2015.04.063_bib34) 2010; 140
Kelsey (10.1016/j.celrep.2015.04.063_bib25) 2013; 6
Babcock (10.1016/j.celrep.2015.04.063_bib3) 2013; 288
Shackelford (10.1016/j.celrep.2015.04.063_bib40) 2009; 106
Gan (10.1016/j.celrep.2015.04.063_bib15) 2010; 468
Campeau (10.1016/j.celrep.2015.04.063_bib8) 2009; 4
Inoki (10.1016/j.celrep.2015.04.063_bib21) 2002; 4
Sheen (10.1016/j.celrep.2015.04.063_bib42) 2011; 19
Gurumurthy (10.1016/j.celrep.2015.04.063_bib17) 2010; 468
Egan (10.1016/j.celrep.2015.04.063_bib11) 2011; 331
Liu (10.1016/j.celrep.2015.04.063_bib31) 2014; 111
Sui (10.1016/j.celrep.2015.04.063_bib44) 2013; 4
Tamburini (10.1016/j.celrep.2015.04.063_bib46) 2009; 114
Yeung (10.1016/j.celrep.2015.04.063_bib52) 2010; 18
Calvisi (10.1016/j.celrep.2015.04.063_bib7) 2011; 140
Harding (10.1016/j.celrep.2015.04.063_bib20) 2009; 106
Perl (10.1016/j.celrep.2015.04.063_bib38) 2009; 15
Takeuchi (10.1016/j.celrep.2015.04.063_bib45) 2005; 65
Jeon (10.1016/j.celrep.2015.04.063_bib23) 2012; 485
Kim (10.1016/j.celrep.2015.04.063_bib27) 2011; 13
Lamb (10.1016/j.celrep.2015.04.063_bib29) 2013; 14
Nakada (10.1016/j.celrep.2015.04.063_bib35) 2010; 468
Budovskaya (10.1016/j.celrep.2015.04.063_bib6) 2004; 279
Levine (10.1016/j.celrep.2015.04.063_bib30) 2008; 132
Mizuki (10.1016/j.celrep.2015.04.063_bib33) 2000; 96
Laderoute (10.1016/j.celrep.2015.04.063_bib28) 2006; 26
Kharas (10.1016/j.celrep.2015.04.063_bib26) 2010; 115
Hardie (10.1016/j.celrep.2015.04.063_bib19) 2012; 13
Ozcan (10.1016/j.celrep.2015.04.063_bib37) 2008; 29
10.1016/j.celrep.2015.04.063_bib32
Green (10.1016/j.celrep.2015.04.063_bib16) 2010; 116
Atkins (10.1016/j.celrep.2015.04.063_bib2) 2013; 73
Scotland (10.1016/j.celrep.2015.04.063_bib39) 2013; 27
Vázquez (10.1016/j.celrep.2015.04.063_bib48) 2009; 452
Clarke (10.1016/j.celrep.2015.04.063_bib9) 2014; 25
Shackelford (10.1016/j.celrep.2015.04.063_bib41) 2013; 23
Inoki (10.1016/j.celrep.2015.04.063_bib22) 2003; 115
Amadori (10.1016/j.celrep.2015.04.063_bib1) 2012; 156
References_xml – volume: 30
  start-page: 3604
  year: 2012
  end-page: 3610
  ident: bib5
  article-title: Acute Myeloid Leukemia (AML): different treatment strategies versus a common standard arm—combined prospective analysis by the German AML Intergroup
  publication-title: J. Clin. Oncol.
– volume: 26
  start-page: 5336
  year: 2006
  end-page: 5347
  ident: bib28
  article-title: 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
  publication-title: Mol. Cell. Biol.
– volume: 13
  start-page: 251
  year: 2012
  end-page: 262
  ident: bib19
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 30
  start-page: 214
  year: 2008
  end-page: 226
  ident: bib18
  article-title: AMPK phosphorylation of raptor mediates a metabolic checkpoint
  publication-title: Mol. Cell
– volume: 4
  start-page: 3017
  year: 2013
  ident: bib51
  article-title: Structural basis of AMPK regulation by small molecule activators
  publication-title: Nat. Commun.
– volume: 4
  start-page: e6529
  year: 2009
  ident: bib8
  article-title: A versatile viral system for expression and depletion of proteins in mammalian cells
  publication-title: PLoS ONE
– volume: 316
  start-page: 600
  year: 2007
  end-page: 604
  ident: bib4
  article-title: Modeling the initiation and progression of human acute leukemia in mice
  publication-title: Science
– volume: 116
  start-page: 4262
  year: 2010
  end-page: 4273
  ident: bib16
  article-title: The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation
  publication-title: Blood
– volume: 27
  start-page: 2129
  year: 2013
  end-page: 2138
  ident: bib39
  article-title: Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells
  publication-title: Leukemia
– volume: 156
  start-page: 205
  year: 2012
  end-page: 212
  ident: bib1
  article-title: Temsirolimus, an mTOR inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML-1107)
  publication-title: Br. J. Haematol.
– volume: 18
  start-page: 606
  year: 2010
  end-page: 618
  ident: bib52
  article-title: β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells
  publication-title: Cancer Cell
– volume: 313
  start-page: 1137
  year: 2006
  end-page: 1140
  ident: bib36
  article-title: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
  publication-title: Science
– volume: 115
  start-page: 1406
  year: 2010
  end-page: 1415
  ident: bib26
  article-title: Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
  publication-title: Blood
– volume: 96
  start-page: 3907
  year: 2000
  end-page: 3914
  ident: bib33
  article-title: Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways
  publication-title: Blood
– volume: 106
  start-page: 11137
  year: 2009
  end-page: 11142
  ident: bib40
  article-title: mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 106
  start-page: 1832
  year: 2009
  end-page: 1837
  ident: bib20
  article-title: Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: e838
  year: 2013
  ident: bib44
  article-title: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment
  publication-title: Cell Death Dis.
– volume: 25
  start-page: 563
  year: 2014
  end-page: 573
  ident: bib9
  article-title: Endoplasmic reticulum stress in malignancy
  publication-title: Cancer Cell
– volume: 279
  start-page: 20663
  year: 2004
  end-page: 20671
  ident: bib6
  article-title: The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
– volume: 468
  start-page: 659
  year: 2010
  end-page: 663
  ident: bib17
  article-title: The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
  publication-title: Nature
– volume: 132
  start-page: 27
  year: 2008
  end-page: 42
  ident: bib30
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– volume: 140
  start-page: 313
  year: 2010
  end-page: 326
  ident: bib34
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
– volume: 468
  start-page: 653
  year: 2010
  end-page: 658
  ident: bib35
  article-title: Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
  publication-title: Nature
– volume: 29
  start-page: 541
  year: 2008
  end-page: 551
  ident: bib37
  article-title: Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
  publication-title: Mol. Cell
– volume: 14
  start-page: 759
  year: 2013
  end-page: 774
  ident: bib29
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  start-page: 132
  year: 2011
  end-page: 141
  ident: bib27
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
– volume: 42
  start-page: 23
  year: 2011
  end-page: 35
  ident: bib12
  article-title: Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival
  publication-title: Mol. Cell
– volume: 4
  start-page: 648
  year: 2002
  end-page: 657
  ident: bib21
  article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
  publication-title: Nat. Cell Biol.
– volume: 65
  start-page: 3336
  year: 2005
  end-page: 3346
  ident: bib45
  article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
  publication-title: Cancer Res.
– volume: 23
  start-page: 143
  year: 2013
  end-page: 158
  ident: bib41
  article-title: LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
  publication-title: Cancer Cell
– volume: 3
  start-page: 403
  year: 2006
  end-page: 416
  ident: bib10
  article-title: Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
  publication-title: Cell Metab.
– volume: 485
  start-page: 661
  year: 2012
  end-page: 665
  ident: bib23
  article-title: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
  publication-title: Nature
– volume: 15
  start-page: 6732
  year: 2009
  end-page: 6739
  ident: bib38
  article-title: A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia
  publication-title: Clin. Cancer Res.
– volume: 19
  start-page: 613
  year: 2011
  end-page: 628
  ident: bib42
  article-title: Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo
  publication-title: Cancer Cell
– volume: 9
  start-page: 493
  year: 2003
  end-page: 501
  ident: bib43
  article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells
  publication-title: RNA
– volume: 17
  start-page: 113
  year: 2013
  end-page: 124
  ident: bib13
  article-title: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
  publication-title: Cell Metab.
– volume: 111
  start-page: E435
  year: 2014
  end-page: E444
  ident: bib31
  article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 140
  start-page: 1071
  year: 2011
  end-page: 1083
  ident: bib7
  article-title: Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma
  publication-title: Gastroenterology
– volume: 6
  start-page: pe31
  year: 2013
  ident: bib25
  article-title: mTORC1 status dictates tumor response to targeted therapeutics
  publication-title: Sci. Signal.
– volume: 288
  start-page: 15687
  year: 2013
  end-page: 15698
  ident: bib3
  article-title: Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 2200
  year: 2009
  end-page: 2205
  ident: bib49
  article-title: ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 1179
  year: 2011
  end-page: 1180
  ident: bib24
  article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
  publication-title: Bioinformatics
– volume: 114
  start-page: 1618
  year: 2009
  end-page: 1627
  ident: bib46
  article-title: Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia
  publication-title: Blood
– reference: Mirguet, O., and Bouillot, A. (2011). Patent WO 2011138307A1 Pyrrolo [3, 2 -d] pyrimidin-3 -yl derivatives used as activators of ampk.
– volume: 8
  start-page: 498
  year: 2009
  end-page: 504
  ident: bib50
  article-title: Single-vector inducible lentiviral RNAi system for oncology target validation
  publication-title: Cell Cycle
– volume: 331
  start-page: 456
  year: 2011
  end-page: 461
  ident: bib11
  article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
– volume: 452
  start-page: 85
  year: 2009
  end-page: 95
  ident: bib48
  article-title: Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA
  publication-title: Methods Enzymol.
– reference: .
– volume: 510
  start-page: 268
  year: 2014
  end-page: 272
  ident: bib47
  article-title: The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress
  publication-title: Nature
– volume: 19
  start-page: 1649
  year: 2013
  end-page: 1654
  ident: bib14
  article-title: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
  publication-title: Nat. Med.
– volume: 468
  start-page: 701
  year: 2010
  end-page: 704
  ident: bib15
  article-title: Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
  publication-title: Nature
– volume: 73
  start-page: 1993
  year: 2013
  end-page: 2002
  ident: bib2
  article-title: Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity
  publication-title: Cancer Res.
– volume: 115
  start-page: 577
  year: 2003
  end-page: 590
  ident: bib22
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
– volume: 115
  start-page: 1406
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib26
  article-title: Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
  publication-title: Blood
  doi: 10.1182/blood-2009-06-229443
– volume: 106
  start-page: 2200
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib49
  article-title: ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807611106
– volume: 25
  start-page: 563
  year: 2014
  ident: 10.1016/j.celrep.2015.04.063_bib9
  article-title: Endoplasmic reticulum stress in malignancy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.03.015
– volume: 42
  start-page: 23
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib12
  article-title: Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.02.009
– volume: 30
  start-page: 214
  year: 2008
  ident: 10.1016/j.celrep.2015.04.063_bib18
  article-title: AMPK phosphorylation of raptor mediates a metabolic checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.003
– volume: 288
  start-page: 15687
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib3
  article-title: Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.431056
– volume: 510
  start-page: 268
  year: 2014
  ident: 10.1016/j.celrep.2015.04.063_bib47
  article-title: The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress
  publication-title: Nature
  doi: 10.1038/nature13228
– volume: 19
  start-page: 613
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib42
  article-title: Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.03.012
– volume: 140
  start-page: 313
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib34
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.028
– volume: 6
  start-page: pe31
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib25
  article-title: mTORC1 status dictates tumor response to targeted therapeutics
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2004632
– volume: 73
  start-page: 1993
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib2
  article-title: Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3109
– volume: 316
  start-page: 600
  year: 2007
  ident: 10.1016/j.celrep.2015.04.063_bib4
  article-title: Modeling the initiation and progression of human acute leukemia in mice
  publication-title: Science
  doi: 10.1126/science.1139851
– volume: 23
  start-page: 143
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib41
  article-title: LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.12.008
– volume: 18
  start-page: 606
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib52
  article-title: β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.10.032
– volume: 132
  start-page: 27
  year: 2008
  ident: 10.1016/j.celrep.2015.04.063_bib30
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
  doi: 10.1016/j.cell.2007.12.018
– volume: 116
  start-page: 4262
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib16
  article-title: The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation
  publication-title: Blood
  doi: 10.1182/blood-2010-02-269837
– volume: 27
  start-page: 2129
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib39
  article-title: Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells
  publication-title: Leukemia
  doi: 10.1038/leu.2013.107
– volume: 468
  start-page: 701
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib15
  article-title: Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature09595
– volume: 468
  start-page: 659
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib17
  article-title: The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
  publication-title: Nature
  doi: 10.1038/nature09572
– volume: 4
  start-page: e838
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib44
  article-title: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.350
– volume: 485
  start-page: 661
  year: 2012
  ident: 10.1016/j.celrep.2015.04.063_bib23
  article-title: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
  publication-title: Nature
  doi: 10.1038/nature11066
– volume: 4
  start-page: e6529
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib8
  article-title: A versatile viral system for expression and depletion of proteins in mammalian cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006529
– volume: 331
  start-page: 456
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib11
  article-title: Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
  publication-title: Science
  doi: 10.1126/science.1196371
– volume: 115
  start-page: 577
  year: 2003
  ident: 10.1016/j.celrep.2015.04.063_bib22
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
– volume: 14
  start-page: 759
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib29
  article-title: The autophagosome: origins unknown, biogenesis complex
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3696
– volume: 26
  start-page: 5336
  year: 2006
  ident: 10.1016/j.celrep.2015.04.063_bib28
  article-title: 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00166-06
– volume: 106
  start-page: 1832
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib20
  article-title: Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809632106
– volume: 9
  start-page: 493
  year: 2003
  ident: 10.1016/j.celrep.2015.04.063_bib43
  article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells
  publication-title: RNA
  doi: 10.1261/rna.2192803
– volume: 111
  start-page: E435
  year: 2014
  ident: 10.1016/j.celrep.2015.04.063_bib31
  article-title: Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 3017
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib51
  article-title: Structural basis of AMPK regulation by small molecule activators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4017
– volume: 30
  start-page: 3604
  year: 2012
  ident: 10.1016/j.celrep.2015.04.063_bib5
  article-title: Acute Myeloid Leukemia (AML): different treatment strategies versus a common standard arm—combined prospective analysis by the German AML Intergroup
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2012.42.2907
– ident: 10.1016/j.celrep.2015.04.063_bib32
– volume: 106
  start-page: 11137
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib40
  article-title: mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0900465106
– volume: 15
  start-page: 6732
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib38
  article-title: A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-0842
– volume: 452
  start-page: 85
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib48
  article-title: Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)03606-9
– volume: 65
  start-page: 3336
  year: 2005
  ident: 10.1016/j.celrep.2015.04.063_bib45
  article-title: Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-3640
– volume: 114
  start-page: 1618
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib46
  article-title: Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2008-10-184515
– volume: 96
  start-page: 3907
  year: 2000
  ident: 10.1016/j.celrep.2015.04.063_bib33
  article-title: Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways
  publication-title: Blood
  doi: 10.1182/blood.V96.12.3907
– volume: 19
  start-page: 1649
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib14
  article-title: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
  publication-title: Nat. Med.
  doi: 10.1038/nm.3372
– volume: 313
  start-page: 1137
  year: 2006
  ident: 10.1016/j.celrep.2015.04.063_bib36
  article-title: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.1128294
– volume: 29
  start-page: 541
  year: 2008
  ident: 10.1016/j.celrep.2015.04.063_bib37
  article-title: Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.12.023
– volume: 3
  start-page: 403
  year: 2006
  ident: 10.1016/j.celrep.2015.04.063_bib10
  article-title: Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.005
– volume: 156
  start-page: 205
  year: 2012
  ident: 10.1016/j.celrep.2015.04.063_bib1
  article-title: Temsirolimus, an mTOR inhibitor, in combination with lower-dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML-1107)
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2011.08940.x
– volume: 27
  start-page: 1179
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib24
  article-title: Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr095
– volume: 8
  start-page: 498
  year: 2009
  ident: 10.1016/j.celrep.2015.04.063_bib50
  article-title: Single-vector inducible lentiviral RNAi system for oncology target validation
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.3.7701
– volume: 13
  start-page: 251
  year: 2012
  ident: 10.1016/j.celrep.2015.04.063_bib19
  article-title: AMPK: a nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3311
– volume: 279
  start-page: 20663
  year: 2004
  ident: 10.1016/j.celrep.2015.04.063_bib6
  article-title: The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M400272200
– volume: 17
  start-page: 113
  year: 2013
  ident: 10.1016/j.celrep.2015.04.063_bib13
  article-title: AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.12.001
– volume: 4
  start-page: 648
  year: 2002
  ident: 10.1016/j.celrep.2015.04.063_bib21
  article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb839
– volume: 140
  start-page: 1071
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib7
  article-title: Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.12.006
– volume: 13
  start-page: 132
  year: 2011
  ident: 10.1016/j.celrep.2015.04.063_bib27
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2152
– volume: 468
  start-page: 653
  year: 2010
  ident: 10.1016/j.celrep.2015.04.063_bib35
  article-title: Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature09571
SSID ssj0000601194
Score 2.4273546
Snippet AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the...
AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1446
SubjectTerms AMP-Activated Protein Kinases - metabolism
Animals
Antineoplastic Agents - pharmacology
Enzyme Activation - drug effects
Fluorescent Antibody Technique
Heterografts
Humans
Imidazoles - pharmacology
Leukemia, Myeloid, Acute - metabolism
Mechanistic Target of Rapamycin Complex 1
Mice
Mice, Nude
Microscopy, Electron, Transmission
Multiprotein Complexes - agonists
Oligonucleotide Array Sequence Analysis
Polymerase Chain Reaction
Pyrimidinones - pharmacology
RNA Interference
Signal Transduction - drug effects
TOR Serine-Threonine Kinases
Title Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia
URI https://dx.doi.org/10.1016/j.celrep.2015.04.063
https://www.ncbi.nlm.nih.gov/pubmed/26004183
https://www.proquest.com/docview/1687998504
https://doaj.org/article/9222733afbf84f689b27bbb06ca36d9b
Volume 11
WOSCitedRecordID wos000356069500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4t0tUBmJa0QSO-P4uKyokOhLqEh7s2zHlgLbBG2ziP33HdvJqj2gvXDNwxnNjMef45lvCPmoveEAgeXTFJBxLXymZd5k1jLBOHBfulgofCrOz-vlUl7eafUVcsISPXBS3CcZijUZwzF9zT3U0pTCGJOD1QwaaUL0zYW8s5lKMThwmYUj5bIMOVslF1PdXEzusm61doGusqgi0ymwe-tSpO-_tzz9C37GZejkGXk64kc6T3I_Jw9c94I8Th0lty_JxaLPQqlC-tFKe0_nZ5ffqO4aen118X1R0NCrA2MDXWyHfuj_thZhOG07OrebwdGzrVv1bUNP3eaXu271K_Lj5MvV4ms29kzILGKvIbO-0BZRFRjvOegKVQ6yQEP5vHISNGOVa4rIeu4Mzj0rGAgv8B7jFsEEe00Our5zh4RK3BxDw21TWOA5a7QFrRH_GbShyIWYETZpTNmRUDz0tVipKXPsp0p6VkHPKucK9Twj2e6t34lQY8_zn4Mxds8GOux4AZ1EjU6i9jnJjIjJlGpEFgkx4FDtns9_mCyvcOKF0xTduX5zowqoBe5Vq5zPyJvkEjshA-s_x2B59D-Ef0ueBIFifpp8Rw6G9ca9J4_sn6G9WR-Th2JZH0fvvwXw-ARY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-activation+of+AMPK+and+mTORC1+Induces+Cytotoxicity+in+Acute+Myeloid+Leukemia&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Sujobert%2C+Pierre&rft.au=Poulain%2C+Laury&rft.au=Paubelle%2C+Etienne&rft.au=Zylbersztejn%2C+Florence&rft.date=2015-06-09&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=11&rft.issue=9&rft.spage=1446&rft_id=info:doi/10.1016%2Fj.celrep.2015.04.063&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon