A universal standardized method for output capability assessment of nanogenerators
To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhil...
Saved in:
| Published in: | Nature communications Vol. 10; no. 1; pp. 4428 - 9 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
27.09.2019
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen’s law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies.
Figures of merit are used to evaluate output performance of triboelectric nanogenerators, but do not account for the breakdown effect that inhibits maximum output. Here the authors propose a standardized assessment method for output capability of nanogenerators that takes breakdown limits into consideration. |
|---|---|
| AbstractList | Figures of merit are used to evaluate output performance of triboelectric nanogenerators, but do not account for the breakdown effect that inhibits maximum output. Here the authors propose a standardized assessment method for output capability of nanogenerators that takes breakdown limits into consideration. To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen’s law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies. To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen's law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies.To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen's law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies. To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen’s law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies. Figures of merit are used to evaluate output performance of triboelectric nanogenerators, but do not account for the breakdown effect that inhibits maximum output. Here the authors propose a standardized assessment method for output capability of nanogenerators that takes breakdown limits into consideration. To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit, without considering the breakdown effect that seriously affects the effective maximized energy output, are limited for application. Meanwhile, a method to evaluate output capability of nanogenerators is needed. Here, a standardized method that considers the breakdown effect is proposed for output capability assessment of nanogenerators. Contact separation and contact freestanding-triboelectric-layer modes triboelectric nanogenerators are used to demonstrate this method, and the effective maximized energy output and revised figures of merit are calculated based on the experimental results. These results are consistent with those theoretically calculated based on Paschen’s law. This method is also conducted to evaluate a film-based piezoelectric nanogenerator, demonstrating its universal applicability for nanogenerators. This study proposes a standardized method for evaluating the effective output capability of nanogenerators, which is crucial for standardized evaluation and application of nanogenerator technologies. Figures of merit are used to evaluate output performance of triboelectric nanogenerators, but do not account for the breakdown effect that inhibits maximum output. Here the authors propose a standardized assessment method for output capability of nanogenerators that takes breakdown limits into consideration. |
| ArticleNumber | 4428 |
| Author | Zi, Yunlong Xia, Xin Fu, Jingjing |
| Author_xml | – sequence: 1 givenname: Xin surname: Xia fullname: Xia, Xin organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T – sequence: 2 givenname: Jingjing surname: Fu fullname: Fu, Jingjing organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, N.T – sequence: 3 givenname: Yunlong orcidid: 0000-0002-5133-4057 surname: Zi fullname: Zi, Yunlong email: ylzi@cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, N.T |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31562336$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1rHSEYhYeS0qRp_kAXZaCbbqb1VccZN4UQ-hEIFEq7FnXeufEyo7fqBJJfX28maZMs4kbRcx6Oel5XBz54rKq3QD4CYf2nxIGLriEgG6BctA19UR1RwqGBjrKDB-vD6iSlLSmDSeg5f1UdMmgFZUwcVT9P68W7K4xJT3XK2g86Du4Gh3rGfBmGegyxDkveLbm2eqeNm1y-rnVKmNKMPtdhrL32YYMeo84hpjfVy1FPCU_u5uPq99cvv86-Nxc_vp2fnV40tuUkN9agpb0GLrHruhE4ka0YqCVIS_R-gA5KWmO5GHrT2nbsjSGcU86FMEwiO67OV-4Q9Fbtopt1vFZBO3W7EeJG6ZidnVD1Y8FpZKTjhBs-GjpKRODGSDZAywrr88raLWbGwZaLRT09gj4-8e5SbcKVEp1oCekL4MMdIIY_C6asZpcsTpP2GJakKJUSOACTRfr-iXQblujLU-1VfSeAd1BU7x4m-hfl_uuKoF8FNoaUIo7KuqyzC_uAblJA1L4oai2KKkVRt0VRtFjpE-s9_VkTW02piP0G4__Yz7j-AkWt0AI |
| CitedBy_id | crossref_primary_10_1016_j_nanoen_2019_104378 crossref_primary_10_1002_aenm_202203707 crossref_primary_10_1016_j_cej_2020_124369 crossref_primary_10_1016_j_esr_2024_101422 crossref_primary_10_1007_s12274_023_5660_8 crossref_primary_10_1007_s11705_022_2271_y crossref_primary_10_1002_ente_202000533 crossref_primary_10_1002_adma_202209895 crossref_primary_10_1002_eom2_12037 crossref_primary_10_1038_s41467_020_18086_4 crossref_primary_10_1039_D0EE03911J crossref_primary_10_1016_j_nanoen_2020_104993 crossref_primary_10_1002_adma_202209657 crossref_primary_10_1016_j_nanoen_2021_106611 crossref_primary_10_1088_2752_5724_adf132 crossref_primary_10_1002_inf2_12376 crossref_primary_10_1016_j_nanoen_2021_106570 crossref_primary_10_1016_j_nanoen_2021_106015 crossref_primary_10_1016_j_nanoen_2021_106574 crossref_primary_10_1016_j_nanoen_2023_108675 crossref_primary_10_1088_1361_6463_acfb8e crossref_primary_10_1002_aesr_202200051 crossref_primary_10_1039_D2EE04119G crossref_primary_10_1016_j_nanoen_2021_106062 crossref_primary_10_1016_j_ccr_2020_213597 crossref_primary_10_1002_advs_202001757 crossref_primary_10_1039_D3EE00220A crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1039_D5TA04156B crossref_primary_10_1016_j_apmt_2022_101685 crossref_primary_10_1016_j_nanoen_2022_106969 crossref_primary_10_1039_D5LC00321K crossref_primary_10_1002_adfm_202203884 crossref_primary_10_1016_j_nanoen_2021_106186 crossref_primary_10_1016_j_nanoen_2021_106742 crossref_primary_10_1088_1361_6633_ac0a50 crossref_primary_10_1002_advs_202104168 crossref_primary_10_1002_adfm_202425965 crossref_primary_10_1038_s41467_022_33766_z crossref_primary_10_1016_j_nanoen_2020_104968 crossref_primary_10_1063_5_0085850 crossref_primary_10_2516_stet_2024026 crossref_primary_10_1002_adem_202201273 crossref_primary_10_1002_eom2_12059 crossref_primary_10_1038_s41528_022_00160_0 crossref_primary_10_1039_D3EE03216G crossref_primary_10_1088_2631_7990_ad39ba crossref_primary_10_1016_j_nanoen_2021_105864 crossref_primary_10_1016_j_nanoen_2022_107807 crossref_primary_10_1002_smm2_1093 crossref_primary_10_1002_mame_202100843 crossref_primary_10_1038_s41467_024_48456_1 crossref_primary_10_1016_j_cej_2024_155659 crossref_primary_10_1002_aenm_202302099 crossref_primary_10_1039_D5EE00376H crossref_primary_10_1007_s40820_021_00713_4 crossref_primary_10_1016_j_nanoen_2024_109743 crossref_primary_10_1002_adfm_202204322 crossref_primary_10_1007_s12274_022_4142_8 crossref_primary_10_1063_5_0011539 crossref_primary_10_1016_j_nanoen_2022_107196 crossref_primary_10_1002_admt_202000289 crossref_primary_10_1016_j_apenergy_2020_115512 crossref_primary_10_1002_admt_202400179 crossref_primary_10_1016_j_nanoen_2025_111439 crossref_primary_10_1002_adom_202202697 crossref_primary_10_1016_j_nanoen_2023_109190 crossref_primary_10_1039_D4EE01493F crossref_primary_10_1088_1361_6463_ad14bd crossref_primary_10_1002_adfm_202309421 crossref_primary_10_1038_s41467_023_38815_9 crossref_primary_10_1002_idm2_12241 crossref_primary_10_1016_j_isci_2021_102274 crossref_primary_10_1088_1674_4926_42_10_101601 crossref_primary_10_1016_j_nanoen_2020_105174 |
| Cites_doi | 10.1002/adma.201305303 10.1016/j.nanoen.2014.10.034 10.1039/C6TA10709E 10.1002/pip.2573 10.1038/ncomms9376 10.1109/TIA.1977.4503458 10.1002/pip.683 10.1016/j.nanoen.2015.01.013 10.1021/nn404614z 10.1021/acsnano.6b02076 10.1063/1.2034090 10.1016/j.nanoen.2011.09.001 10.1016/j.rser.2009.01.022 10.1002/adma.201302808 10.1103/PhysRevLett.68.313 10.1016/j.nanoen.2018.10.053 10.1021/nl302560k 10.1038/ncomms10987 10.1021/acsami.5b01760 10.1016/j.nanoen.2014.11.034 10.1016/j.mattod.2016.12.001 10.1021/nl303755m 10.1016/j.nanoen.2012.01.004 10.1002/adma.201402491 10.1016/j.nanoen.2019.02.035 10.1002/adfm.201600909 10.1016/j.sna.2007.04.002 10.1016/j.nanoen.2014.11.038 10.1063/1.367051 10.1109/TCSI.2016.2608999 10.1109/TED.2004.841338 10.1002/adma.201401184 10.1021/nl3003039 10.1021/nl9040719 10.1039/c3ee42571a 10.1016/j.apsusc.2012.04.118 10.1038/ncomms12744 10.1016/j.sna.2009.01.017 10.1109/TIE.2011.2167116 10.1002/adfm.201700049 10.1002/0470857854 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-019-12465-2 |
| DatabaseName | SpringerOpen CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_8fd17ae307404b4fb2f9ee14bb93d153 PMC6765008 31562336 10_1038_s41467_019_12465_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: CUHK | Shun Hing Institute of Advanced Engineering (SHIAE) grantid: RNE-p5-18 funderid: https://doi.org/10.13039/501100006355 – fundername: Chinese University of Hong Kong (CUHK) grantid: 4055086 funderid: https://doi.org/10.13039/501100004853 – fundername: Innovation and Technology Fund (ITF) grantid: ITS/085/18 funderid: https://doi.org/10.13039/501100010428 – fundername: ; grantid: 4055086 – fundername: ; grantid: RNE-p5-18 – fundername: ; grantid: ITS/085/18 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-cbec28a149e777f140956d2c0e22048d171184bc46d8b5c5f8bb04424466b39e3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488233300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:42:23 EDT 2025 Tue Nov 04 01:38:48 EST 2025 Thu Oct 02 07:36:52 EDT 2025 Sat Nov 29 14:18:47 EST 2025 Mon Jul 21 05:49:54 EDT 2025 Sat Nov 29 06:20:11 EST 2025 Tue Nov 18 20:53:25 EST 2025 Fri Feb 21 02:38:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-cbec28a149e777f140956d2c0e22048d171184bc46d8b5c5f8bb04424466b39e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5133-4057 |
| OpenAccessLink | https://www.proquest.com/docview/2298761471?pq-origsite=%requestingapplication% |
| PMID | 31562336 |
| PQID | 2298761471 |
| PQPubID | 546298 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8fd17ae307404b4fb2f9ee14bb93d153 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6765008 proquest_miscellaneous_2299141139 proquest_journals_2298761471 pubmed_primary_31562336 crossref_citationtrail_10_1038_s41467_019_12465_2 crossref_primary_10_1038_s41467_019_12465_2 springer_journals_10_1038_s41467_019_12465_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-27 |
| PublicationDateYYYYMMDD | 2019-09-27 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2019 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Wang (CR33) 2016; 7 Chang, Tran, Wang, Fuh, Lin (CR27) 2010; 10 Niu, Wang, Lin, Liu, Zhou, Hu, Wang (CR22) 2013; 6 CR37 Gallo (CR34) 1977; 13 Hu (CR5) 2019; 55 Cui (CR17) 2016; 10 CR32 Niu (CR20) 2013; 25 Green, Emery, Hishikawa, Warta, Dunlop (CR12) 2015; 23 Massines (CR36) 1998; 83 Shirinov, Schomburg (CR28) 2008; 142 Xu (CR31) 2019; 59 Luque, Martí, López, Antolín, Cánovas, Stanley, Farmer, Caballero, Cuadra, Balenzategui (CR15) 2005; 87 Saito (CR40) 2005; 52 Yang (CR1) 2012; 12 Fan, Tian, Lin Wang (CR6) 2012; 1 Wang (CR9) 2017; 20 Niu, Wang (CR30) 2015; 14 Barnes, Keller, Forster, O’Neill, Coultas (CR35) 1992; 68 Wang (CR38) 2017; 5 Liang, Liao (CR42) 2012; 59 Lipscomb, Weaver, Swingler, McBride (CR39) 2009; 151 Wang (CR3) 2012; 1 Wang, Lin, Wang (CR7) 2015; 11 Lee (CR19) 2014; 26 El Achaby, Arrakhiz, Vaudreuil, Essassi, Qaiss (CR29) 2012; 258 Ito (CR14) 2006; 14 Wu, Do, Lee, Ha (CR41) 2017; 64 CR25 Wang (CR18) 2014; 26 CR43 Niu (CR21) 2015; 12 Wang (CR8) 2013; 7 Wang, Xie, Niu, Lin, Wang (CR24) 2014; 26 Zi (CR10) 2016; 7 Mousazadeh (CR13) 2009; 13 Alluri, Saravanakumar, Kim (CR26) 2015; 7 Yang, Wang, Zhang, Wang (CR2) 2012; 12 Zi (CR11) 2015; 6 Su (CR16) 2016; 26 Zhu (CR23) 2012; 12 Hu, Wang (CR4) 2015; 14 C Chang (12465_CR27) 2010; 10 A. Luque (12465_CR15) 2005; 87 12465_CR37 G Xu (12465_CR31) 2019; 59 CF Gallo (12465_CR34) 1977; 13 Simiao Niu (12465_CR22) 2013; 6 F-R Fan (12465_CR6) 2012; 1 KY Lee (12465_CR19) 2014; 26 W Saito (12465_CR40) 2005; 52 Y Yang (12465_CR2) 2012; 12 J Liang (12465_CR42) 2012; 59 X Wang (12465_CR3) 2012; 1 ZL Wang (12465_CR9) 2017; 20 MA Green (12465_CR12) 2015; 23 S Niu (12465_CR20) 2013; 25 NR Alluri (12465_CR26) 2015; 7 Y Hu (12465_CR4) 2015; 14 S Ito (12465_CR14) 2006; 14 Y Wang (12465_CR38) 2017; 5 G Zhu (12465_CR23) 2012; 12 AV Shirinov (12465_CR28) 2008; 142 12465_CR25 J Wang (12465_CR33) 2016; 7 S Niu (12465_CR30) 2015; 14 12465_CR43 H Mousazadeh (12465_CR13) 2009; 13 S Wang (12465_CR18) 2014; 26 MS Barnes (12465_CR35) 1992; 68 Y Yang (12465_CR1) 2012; 12 S Wang (12465_CR7) 2015; 11 ZL Wang (12465_CR8) 2013; 7 Z Su (12465_CR16) 2016; 26 Y Zi (12465_CR11) 2015; 6 S Niu (12465_CR21) 2015; 12 S Wang (12465_CR24) 2014; 26 F Massines (12465_CR36) 1998; 83 Y Zi (12465_CR10) 2016; 7 D Hu (12465_CR5) 2019; 55 IP Lipscomb (12465_CR39) 2009; 151 N Cui (12465_CR17) 2016; 10 M El Achaby (12465_CR29) 2012; 258 L Wu (12465_CR41) 2017; 64 12465_CR32 |
| References_xml | – volume: 26 start-page: 2818 year: 2014 end-page: 2824 ident: CR24 article-title: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – ident: CR43 – volume: 11 start-page: 436 year: 2015 end-page: 462 ident: CR7 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 5 start-page: 4710 year: 2017 end-page: 4718 ident: CR38 article-title: Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10709E – volume: 23 start-page: 1 year: 2015 end-page: 9 ident: CR12 article-title: Solar cell efficiency tables (Version 45) publication-title: Prog. Photovolt. Res Appl doi: 10.1002/pip.2573 – volume: 6 year: 2015 ident: CR11 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 13 start-page: 550 year: 1977 end-page: 557 ident: CR34 article-title: Corona-a brief status report publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.1977.4503458 – ident: CR37 – volume: 14 start-page: 589 year: 2006 end-page: 601 ident: CR14 article-title: Photovoltaic characterization of dye-sensitized solar cells: effect of device masking on conversion efficiency publication-title: Prog. Photovolt. Res Appl doi: 10.1002/pip.683 – volume: 12 start-page: 760 year: 2015 end-page: 774 ident: CR21 article-title: Theory of freestanding triboelectric-layer-based nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 7 start-page: 9533 year: 2013 end-page: 9557 ident: CR8 article-title: Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors publication-title: ACS Nano doi: 10.1021/nn404614z – volume: 10 start-page: 6131 year: 2016 end-page: 6138 ident: CR17 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 – volume: 87 start-page: 083505 issue: 8 year: 2005 ident: CR15 article-title: Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells publication-title: Applied Physics Letters doi: 10.1063/1.2034090 – volume: 1 start-page: 13 year: 2012 end-page: 24 ident: CR3 article-title: Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.09.001 – volume: 13 start-page: 1800 year: 2009 end-page: 1818 ident: CR13 article-title: A review of principle and sun-tracking methods for maximizing solar systems output publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.01.022 – volume: 25 start-page: 6184 year: 2013 end-page: 6193 ident: CR20 article-title: Theory of sliding-mode triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 68 start-page: 313 year: 1992 end-page: 316 ident: CR35 article-title: Transport of dust particles in glow-discharge plasmas publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.313 – volume: 55 start-page: 288 year: 2019 end-page: 304 ident: CR5 article-title: Strategies to achieve high performance piezoelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.053 – volume: 12 start-page: 4960 year: 2012 end-page: 4965 ident: CR23 article-title: Triboelectric-generator-driven pulse electrodeposition for micropatterning publication-title: Nano Lett. doi: 10.1021/nl302560k – volume: 7 year: 2016 ident: CR10 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/ncomms10987 – volume: 7 start-page: 9831 year: 2015 end-page: 9840 ident: CR26 article-title: Flexible, hybrid piezoelectric film (BaTi(1-x)Zr(x)O3)/PVDF nanogenerator as a self-powered fluid velocity sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01760 – volume: 14 start-page: 161 year: 2015 end-page: 192 ident: CR30 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – ident: CR25 – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: CR9 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 12 start-page: 6408 year: 2012 end-page: 6413 ident: CR2 article-title: Pyroelectric nanogenerators for driving wireless sensors publication-title: Nano Lett. doi: 10.1021/nl303755m – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR6 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 26 start-page: 6720 year: 2014 end-page: 6728 ident: CR18 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding publication-title: Adv. Mater. doi: 10.1002/adma.201402491 – volume: 59 start-page: 154 year: 2019 end-page: 161 ident: CR31 article-title: On the force and energy conversion in triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.035 – volume: 26 start-page: 5524 year: 2016 end-page: 5533 ident: CR16 article-title: Asymmetrical triboelectric nanogenerator with controllable direct electrostatic discharge publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600909 – volume: 142 start-page: 48 year: 2008 end-page: 55 ident: CR28 article-title: Pressure sensor from a PVDF film publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2007.04.002 – volume: 14 start-page: 3 year: 2015 end-page: 14 ident: CR4 article-title: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.038 – volume: 83 start-page: 2950 year: 1998 end-page: 2957 ident: CR36 article-title: Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier publication-title: J. Appl. Phys. doi: 10.1063/1.367051 – volume: 64 start-page: 537 year: 2017 end-page: 549 ident: CR41 article-title: A self-powered and optimal SSHI circuit integrated with an active rectifier for piezoelectric energy harvesting publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. doi: 10.1109/TCSI.2016.2608999 – volume: 52 start-page: 106 year: 2005 end-page: 111 ident: CR40 article-title: Design optimization of high breakdown voltage AlGaN–GaN power HEMT on an insulating substrate for R A-V tradeoff characteristics publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2004.841338 – volume: 26 start-page: 5037 year: 2014 end-page: 5042 ident: CR19 article-title: Hydrophobic sponge structure-based triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201401184 – ident: CR32 – volume: 12 start-page: 2833 year: 2012 end-page: 2838 ident: CR1 article-title: Pyroelectric nanogenerators for harvesting thermoelectric energy publication-title: NanoLett. doi: 10.1021/nl3003039 – volume: 10 start-page: 726 year: 2010 end-page: 731 ident: CR27 article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency publication-title: Nano. Lett. doi: 10.1021/nl9040719 – volume: 6 start-page: 3576 issue: 12 year: 2013 ident: CR22 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy & Environmental Science doi: 10.1039/c3ee42571a – volume: 258 start-page: 7668 year: 2012 end-page: 7677 ident: CR29 article-title: Piezoelectric β-polymorph formation and properties enhancement in graphene oxide—PVDF nanocomposite films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.04.118 – volume: 7 year: 2016 ident: CR33 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nat. Commun. doi: 10.1038/ncomms12744 – volume: 151 start-page: 179 year: 2009 end-page: 186 ident: CR39 article-title: The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc bias publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2009.01.017 – volume: 59 start-page: 1950 year: 2012 end-page: 1960 ident: CR42 article-title: Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167116 – volume: 83 start-page: 2950 year: 1998 ident: 12465_CR36 publication-title: J. Appl. Phys. doi: 10.1063/1.367051 – volume: 14 start-page: 161 year: 2015 ident: 12465_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 12 start-page: 2833 year: 2012 ident: 12465_CR1 publication-title: NanoLett. doi: 10.1021/nl3003039 – volume: 25 start-page: 6184 year: 2013 ident: 12465_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201302808 – volume: 7 start-page: 9533 year: 2013 ident: 12465_CR8 publication-title: ACS Nano doi: 10.1021/nn404614z – ident: 12465_CR43 – volume: 12 start-page: 6408 year: 2012 ident: 12465_CR2 publication-title: Nano Lett. doi: 10.1021/nl303755m – volume: 26 start-page: 5524 year: 2016 ident: 12465_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600909 – volume: 10 start-page: 6131 year: 2016 ident: 12465_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 – volume: 26 start-page: 2818 year: 2014 ident: 12465_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.201305303 – volume: 5 start-page: 4710 year: 2017 ident: 12465_CR38 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA10709E – volume: 12 start-page: 4960 year: 2012 ident: 12465_CR23 publication-title: Nano Lett. doi: 10.1021/nl302560k – volume: 11 start-page: 436 year: 2015 ident: 12465_CR7 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 55 start-page: 288 year: 2019 ident: 12465_CR5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.053 – volume: 12 start-page: 760 year: 2015 ident: 12465_CR21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.013 – volume: 13 start-page: 1800 year: 2009 ident: 12465_CR13 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2009.01.022 – volume: 10 start-page: 726 year: 2010 ident: 12465_CR27 publication-title: Nano. Lett. doi: 10.1021/nl9040719 – ident: 12465_CR32 doi: 10.1002/adfm.201700049 – volume: 26 start-page: 5037 year: 2014 ident: 12465_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201401184 – volume: 26 start-page: 6720 year: 2014 ident: 12465_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201402491 – volume: 1 start-page: 13 year: 2012 ident: 12465_CR3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.09.001 – volume: 6 start-page: 3576 issue: 12 year: 2013 ident: 12465_CR22 publication-title: Energy & Environmental Science doi: 10.1039/c3ee42571a – volume: 59 start-page: 1950 year: 2012 ident: 12465_CR42 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2167116 – volume: 7 start-page: 9831 year: 2015 ident: 12465_CR26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01760 – volume: 142 start-page: 48 year: 2008 ident: 12465_CR28 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2007.04.002 – volume: 7 year: 2016 ident: 12465_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms12744 – volume: 7 year: 2016 ident: 12465_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms10987 – volume: 20 start-page: 74 year: 2017 ident: 12465_CR9 publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 151 start-page: 179 year: 2009 ident: 12465_CR39 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2009.01.017 – volume: 1 start-page: 328 year: 2012 ident: 12465_CR6 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 52 start-page: 106 year: 2005 ident: 12465_CR40 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2004.841338 – volume: 6 year: 2015 ident: 12465_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 23 start-page: 1 year: 2015 ident: 12465_CR12 publication-title: Prog. Photovolt. Res Appl doi: 10.1002/pip.2573 – volume: 87 start-page: 083505 issue: 8 year: 2005 ident: 12465_CR15 publication-title: Applied Physics Letters doi: 10.1063/1.2034090 – ident: 12465_CR37 doi: 10.1002/0470857854 – volume: 14 start-page: 3 year: 2015 ident: 12465_CR4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.038 – volume: 64 start-page: 537 year: 2017 ident: 12465_CR41 publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. doi: 10.1109/TCSI.2016.2608999 – volume: 14 start-page: 589 year: 2006 ident: 12465_CR14 publication-title: Prog. Photovolt. Res Appl doi: 10.1002/pip.683 – ident: 12465_CR25 – volume: 59 start-page: 154 year: 2019 ident: 12465_CR31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.035 – volume: 13 start-page: 550 year: 1977 ident: 12465_CR34 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.1977.4503458 – volume: 258 start-page: 7668 year: 2012 ident: 12465_CR29 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.04.118 – volume: 68 start-page: 313 year: 1992 ident: 12465_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.313 |
| SSID | ssj0000391844 |
| Score | 2.5867379 |
| Snippet | To quantitatively evaluate the output performance of triboelectric nanogenerators, figures of merit have been developed. However, the current figures of merit,... Figures of merit are used to evaluate output performance of triboelectric nanogenerators, but do not account for the breakdown effect that inhibits maximum... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4428 |
| SubjectTerms | 639/4077/4072 639/4077/4072/4062 Breakdown Electric power generation Energy Energy output Expected values Humanities and Social Sciences Mathematical analysis multidisciplinary Nanogenerators Piezoelectricity Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwEB2hCiQ2CMorUCojsYOocez4sSyIikVVVQhQd1b8CFwJJVVvUql8PWM7N_Ty3LBNHGl0POM5jsdnAF64limhGS-tt13JtVVli7S59I2VtrZS8FRV-elYnpyoszN9eq3VV6wJy_LAGbgD1Xkq24CuyCtueWfrTodAubWaeQzXuPpWUl_bTKU1mGncuvD5lkzF1MGapzUBGU2JKS2Wdm1loiTY_zuW-Wux5E8npikRHd2FOzODJIfZ8ntwI_S7cCv3lLy6D-8PyZSLLXDQ5kfB6lvwJDeLJshSyTCN59NIHGbKVBx7RdpFoZMMHenbfvicBKljM54H8PHo7Yc378q5cULpkICNpcOJqVWLm58gpeyiplUjfO2qUEedXgQUtxXcOi68so1rOmVtxeOVNyEs04E9hJ1-6MNjIFHbBiHnnirHeWgs9a2TzgcrRBO0K4BuQDRuVhWPzS2-mnS6zZTJwBsE3iTgTV3Ay-Wb86yp8dfRr-PcLCOjHnZ6gF5iZi8x__KSAvY2M2vmIF2butaYCyim5wKeL68xvOKZSduHYUpjNOUUeXIBj7IjLJYwGskjEwXILRfZMnX7Tb_6kiS8hURmXKkCXm2c6YdZf4biyf-A4incrmMUxJM1uQc748UUnsFNdzmu1hf7KYy-A-csIGM priority: 102 providerName: Directory of Open Access Journals |
| Title | A universal standardized method for output capability assessment of nanogenerators |
| URI | https://link.springer.com/article/10.1038/s41467-019-12465-2 https://www.ncbi.nlm.nih.gov/pubmed/31562336 https://www.proquest.com/docview/2298761471 https://www.proquest.com/docview/2299141139 https://pubmed.ncbi.nlm.nih.gov/PMC6765008 https://doaj.org/article/8fd17ae307404b4fb2f9ee14bb93d153 |
| Volume | 10 |
| WOSCitedRecordID | wos000488233300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BC1IvvB-BsjISN4iah2M7J9SiViDBKqoALVys-JGyEkq2uwlS-fWMnUe1PHrhkkPsSHZmxvNlZvINwAtdpoLlKQ2VUVVIcyXCEmFzaDLFVaI4o76q8vN7Pp-LxSIvhoDbZiirHM9Ef1CbRrsY-UGS4Ncx-hIev16dh65rlMuuDi00rsOua5vt9Jwv-BRjcezngtLhX5koFQcb6k8GxDUhOjZX4LXljzxt_9-w5p8lk7_lTb07Orn9vxu5A7cGIEoOe825C9dsfQ9u9q0pL-7D6SHp-poNnDTGG5Y_rSF9z2mCYJc0XbvqWqLR4foa2wtSTkSfpKlIXdbNmee1dj19HsCnk-OPb96GQ_-FUCOOa0ON8k1Eid9QlnNeOWqsjJlERzZxdL8m5vjSqdKUGaEynVVCqYi6P-cYU2lu04ewUze1fQzEUeSopKImFppSm6nYlJprYxVjmc11APEoBakHcnLXI-O79EnyVMhechIlJ73kZBLAy-mZVU_NceXsIyfcaaaj1fY3mvWZHKxUigo3VVo892hEFa1wybm1MVUqTw36hgD2R5nKwdY38lKgATyfhtFKXeqlrG3T-Tl5TGOE2wE86jVpWkkaOwyasgD4lo5tLXV7pF5-80zgjCPAjkQAr0ZtvFzWv1_Fk6t38RT2EmcgLvXG92GnXXf2GdzQP9rlZj3zFuavYga7R8fz4nTmAxkzVzZb4LXIvuJI8e5D8eUXOZc1Hw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUxBc2JdAASPBCaJmcWLngFBZqo46HY1QQe3JxEvKSCgZZjKg4UfxG3l2lmpYeuuBa-JEz_bnt9jP3wN4qvKYp1lMfall4dNMcj9Ht9nXiWQykiylLqvy44iNx_zoKJtswM_uLoxNq-x0olPUulJ2j3w7ijA6RlvCwlezr76tGmVPV7sSGg0s9s3qO4Zsi5fDtzi_z6Jo993hmz2_rSrgK_ROal-h1BHPMTIwjLHCEj4lqY5UYCJLYqtDhj43lYqmmstEJQWXMqD2PliayjgzMf73AmzikyQYwOZkeDA57nd1LN86p7S9nRPEfHtBnS5CT8pHU2pTytYsoCsU8Dfv9s8kzd9Oap0B3L32vw3ddbjautpkp1kbN2DDlDfhUlN8c3UL3u-QZZOVgo26HZXpD6NJU1WboDtPqmU9W9ZEoUvhsohXJO-pTElVkDIvqxPH3G2rFt2GD-fSoTswKKvS3ANiSYBkVFAdckWpSWSoc8WUNjJNE5MpD8Ju1oVq6ddtFZAvwqUBxFw0SBGIFOGQIiIPnvffzBrykTNbv7Zg6lta4nD3oJqfiFYPCV5gp3KDmp0GVNICRc6MCamUWazR-nmw1WFItNpsIU4B5MGT_jXqIXu4lJemWro2WUhDDCg8uNsgt5ckDq2XHacesDVMr4m6_qacfnZc5ynDECLgHrzo0H8q1r-H4v7ZvXgMl_cOD0ZiNBzvP4ArkV2c9qCRbcGgni_NQ7iovtXTxfxRu74JfDrvdfELF3mKbw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFBAX3pSFAkaCE6yS9XrX3gNCLW1E1SqKKkC9mfVjS6RqN-QBCj-NX8fY-6jCo7ceuGadyN58M_ONPf4G4IXOY5FmMQuVUUXIMiXCHGlzaBLFFVU8Zb6q8tMRH43EyUk23oCf7V0YV1bZ-kTvqE2l3R55n1LMjjGW8KhfNGUR473h2-nX0HWQcietbTuNGiKHdvUd07f5m4M9_K9fUjrc__Dufdh0GAg1MpVFqHEFVOSYJVjOeeHEn5LUUD2w1Anamogj_2ZKs9QIleikEEoNmLsblqYqzmyMv3sFNnmMSU8PNnf3R-PjbofHaa8LxpqbOoNY9OfM-yVkVSGGVVdethYNfdOAvzHdPws2fzu19cFweOt_fo234WZDwclObTN3YMOWd-Fa3ZRzdQ-Od8iyrlbBQe1Oy-SHNaTutk2Q5pNquZguF0Qj1fDVxSuSdxKnpCpImZfVqVf0dt2M7sPHS1nQA-iVVWkfAnHiQIoWzERCM2YTFZlcc22sStPEZjqAqEWA1I0su-sOciZ9eUAsZI0aiaiRHjWSBvCq-860FiW5cPSuA1Y30gmK-w-q2als_JMUBS4qt-jx2YApVuCUM2sjplQWG4yKAWy3eJKNl5vLczAF8Lx7jP7JHTrlpa2WfkwWsQgTjQC2ahR3M4kjx77jNAC-hu-1qa4_KSdfvAZ6yjG1GIgAXreWcD6tf7-KRxev4hlcR2OQRwejw8dwgzo7deePfBt6i9nSPoGr-ttiMp89bUydwOfLNotfx5aTCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+standardized+method+for+output+capability+assessment+of+nanogenerators&rft.jtitle=Nature+communications&rft.au=Xia%2C+Xin&rft.au=Fu%2C+Jingjing&rft.au=Zi%2C+Yunlong&rft.date=2019-09-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-12465-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_019_12465_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |