The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress

Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death discovery Jg. 6; H. 1; S. 110
Hauptverfasser: Coates, James T. T., Rodriguez-Berriguete, Gonzalo, Puliyadi, Rathi, Ashton, Thomas, Prevo, Remko, Wing, Archie, Granata, Giovanna, Pirovano, Giacomo, McKenna, Gillies W., Higgins, Geoff S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 27.10.2020
Springer Nature B.V
Schlagworte:
ISSN:2058-7716, 2058-7716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.
AbstractList Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.
Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.
ArticleNumber 110
Author Puliyadi, Rathi
Granata, Giovanna
Ashton, Thomas
Higgins, Geoff S.
Coates, James T. T.
McKenna, Gillies W.
Pirovano, Giacomo
Rodriguez-Berriguete, Gonzalo
Prevo, Remko
Wing, Archie
Author_xml – sequence: 1
  givenname: James T. T.
  surname: Coates
  fullname: Coates, James T. T.
  organization: Department of Oncology, University of Oxford
– sequence: 2
  givenname: Gonzalo
  surname: Rodriguez-Berriguete
  fullname: Rodriguez-Berriguete, Gonzalo
  organization: Department of Oncology, University of Oxford
– sequence: 3
  givenname: Rathi
  surname: Puliyadi
  fullname: Puliyadi, Rathi
  organization: Department of Oncology, University of Oxford
– sequence: 4
  givenname: Thomas
  surname: Ashton
  fullname: Ashton, Thomas
  organization: Department of Oncology, University of Oxford
– sequence: 5
  givenname: Remko
  surname: Prevo
  fullname: Prevo, Remko
  organization: Department of Oncology, University of Oxford
– sequence: 6
  givenname: Archie
  surname: Wing
  fullname: Wing, Archie
  organization: Department of Oncology, University of Oxford
– sequence: 7
  givenname: Giovanna
  surname: Granata
  fullname: Granata, Giovanna
  organization: Department of Oncology, University of Oxford
– sequence: 8
  givenname: Giacomo
  surname: Pirovano
  fullname: Pirovano, Giacomo
  organization: Department of Oncology, University of Oxford
– sequence: 9
  givenname: Gillies W.
  surname: McKenna
  fullname: McKenna, Gillies W.
  organization: Department of Oncology, University of Oxford
– sequence: 10
  givenname: Geoff S.
  surname: Higgins
  fullname: Higgins, Geoff S.
  email: geoffrey.higgins@oncology.ox.ac.uk
  organization: Department of Oncology, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33133645$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v3CAQRVWqJt3mD_RQIfXSi1swYPClUhX1S4rUS3pGs3i8S2SDA_Yq-ffF2qRNc8hhBBree7yZ95qchBiQkLecfeRMmE9Zclmziq3FhBRV84Kc1UyZSmvenDy6n5LznK8ZY1xpqY14RU6F4EI0Up2R6WqPFMLsqxEGSB4G2qVlR2GOB7hZyp90ijMWAMyY6TTA7MMyViN2a6ejDoLDRB0OhYkw7-n2jvrgEkL2YUfjre8K54A0zwlzfkNe9jBkPL8_N-T3t69XFz-qy1_ff158uayckmyunHZYm6bhrMNWcQ4INfZattC5VhgnHe9dzWqnBetKC3pjGmAaJAoht63YkM9H3WnZFrOujJBgsFPyI6Q7G8Hb_1-C39tdPFitWq6YKQIf7gVSvFkwz3b0eR0TAsYl21qqxigpFSvQ90-g13FJoYxXUJqrmsuy7w1599jRXysPYRSAOQJcijkn7K3zc9ldXA36wXJm1-jtMXrL1lqjt02h1k-oD-rPksSRlAs47DD9s_0M6w-wXML1
CitedBy_id crossref_primary_10_3390_ijms26072969
crossref_primary_10_1002_agt2_545
crossref_primary_10_1016_j_canlet_2023_216509
crossref_primary_10_1016_j_xhgg_2024_100386
crossref_primary_10_1186_s12964_025_02160_9
crossref_primary_10_1242_dmm_049029
crossref_primary_10_1186_s12967_023_04498_5
crossref_primary_10_1093_infdis_jiad315
crossref_primary_10_3389_fcimb_2024_1368019
crossref_primary_10_1016_j_biomaterials_2023_122447
crossref_primary_10_1016_j_semcancer_2022_02_002
crossref_primary_10_3390_cancers15041344
crossref_primary_10_1007_s00262_024_03628_2
crossref_primary_10_3389_fonc_2021_632181
crossref_primary_10_1016_j_matdes_2025_114389
crossref_primary_10_1016_j_yexcr_2025_114551
Cites_doi 10.1002/pst.1585
10.1200/JCO.2005.03.045
10.1073/pnas.1416611112
10.1038/nature10167
10.1016/j.bbrc.2018.06.049
10.2147/IJN.S38354
10.1016/j.bbrc.2018.11.182
10.1038/nrd1691
10.2174/0929867323666161214114948
10.1038/ncomms5029
10.1039/c0ob00124d
10.18632/oncotarget.24708
10.1046/j.1432-1327.2000.01606.x
10.1038/222385a0
10.1016/S0020-7519(00)00053-9
10.1158/1078-0432.CCR-17-3070
10.1056/NEJMoa1513749
10.1016/j.chembiol.2006.09.018
10.1158/0008-5472.CAN-09-1947
10.3892/ol.2018.9563
10.1038/s41419-019-1414-7
10.1002/jat.1284
10.1093/jac/dks504
10.1074/jbc.M110.214460
10.1038/nm.4291
10.1016/S1470-2045(20)30142-X
10.1038/onc.2011.384
10.1007/s00280-016-2976-z
10.1016/j.bbabio.2011.11.009
10.1007/BF02100114
10.1021/ja802355u
10.1038/ncomms12308
10.1158/0008-5472.CAN-14-0247
10.1016/0020-711X(94)90072-8
10.1371/journal.pone.0081162
10.1038/nrc2167
10.1016/j.ccr.2006.08.015
10.1016/j.leukres.2018.06.005
10.2478/raon-2019-0018
10.1080/19466315.2018.1437071
10.1177/1087057114521867
10.1016/j.ctrv.2016.01.003
10.1038/sj.onc.1206933
10.1038/s41467-017-02603-z
10.18632/oncotarget.9122
10.1006/abbi.1997.0341
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41420-020-00343-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
CrossRef
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-7716
ExternalDocumentID PMC7591508
33133645
10_1038_s41420_020_00343_6
Genre Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 19590
– fundername: Cancer Research UK
  grantid: 28736
GroupedDBID 0R~
3V.
53G
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABUWG
ACSMW
ADBBV
ADRAZ
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
LK8
M48
M7P
M~E
NAO
OK1
PGMZT
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
EJD
NPM
PHGZM
PHGZT
PQGLB
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-c7ce286610de9511aea2ef749adc938c4c1fc202c730ddc9af886a07a4e334b93
IEDL.DBID M7P
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588474200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2058-7716
IngestDate Tue Nov 04 01:32:43 EST 2025
Sun Nov 09 14:29:26 EST 2025
Sat Nov 29 14:55:55 EST 2025
Mon Jul 21 06:04:59 EDT 2025
Tue Nov 18 22:10:17 EST 2025
Sat Nov 29 03:43:59 EST 2025
Fri Feb 21 02:38:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Chemotherapy
Preclinical research
Language English
License The Author(s) 2020.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c7ce286610de9511aea2ef749adc938c4c1fc202c730ddc9af886a07a4e334b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://dx.doi.org/10.1038/s41420-020-00343-6
PMID 33133645
PQID 2471521413
PQPubID 2041962
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591508
proquest_miscellaneous_2456854450
proquest_journals_2471521413
pubmed_primary_33133645
crossref_citationtrail_10_1038_s41420_020_00343_6
crossref_primary_10_1038_s41420_020_00343_6
springer_journals_10_1038_s41420_020_00343_6
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: New York
PublicationTitle Cell death discovery
PublicationTitleAbbrev Cell Death Discov
PublicationTitleAlternate Cell Death Discov
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References BovenENautaMMSchluperHMMPinedoHMvan der VijghWJFComparative activity and distribution studies of five platinum analogues in nude mice bearing human ovarian carcinoma xenograftsCancer Res.19854586901:CAS:528:DyaL2MXhtVGrsLk%3D4038381
Lee, D. W. et al. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J. Biol. Chem.https://doi.org/10.1074/jbc.M110.214460 (2011).
Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov.https://doi.org/10.1038/nrd1691 (2005).
BrunoPMA subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stressNat. Med.2017234614711:CAS:528:DC%2BC2sXkvFahtrw%3D10.1038/nm.4291282633115520548
SiddikZHCisplatin: mode of cytotoxic action and molecular basis of resistanceOncogene200322726572791:CAS:528:DC%2BD3sXotlajtbY%3D10.1038/sj.onc.120693314576837
AtsushiHShujiSKosukeATakafumiKA comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatinInt. J. Biochem.1994261009101610.1016/0020-711X(94)90072-8
Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1416611112 (2015).
Liu, Q., Yin, X., Languino, L. R. & Altieri, D. C. Evaluation of drug combination effect using a bliss independence dose–response surface model. Stat. Biopharm. Res. https://doi.org/10.1080/19466315.2018.1437071 (2018).
Hall, M. D. et al. Say no to DMSO: Dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-0247 (2014).
Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. https://doi.org/10.1021/ja802355u (2008).
Sun, Y., Xu, H., Chen, X., Li, X. & Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2018.11.182 (2019).
Martins, N. M., Santos, N. A. G., Curti, C., Bianchi, M. L. P. & Dos Santos, A. C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. https://doi.org/10.1002/jat.1284 (2008).
Chou, T. C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-09-1947 (2010).
Dilruba, S. & Kalayda, G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol.https://doi.org/10.1007/s00280-016-2976-z (2016).
Ivanova, A. & Xiao, C. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs. Pharm. Stat. https://doi.org/10.1002/pst.1585 (2013).
Catanzaro, D. et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget.https://doi.org/10.18632/oncotarget.24708 (2018).
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer.https://doi.org/10.1038/nrc2167 (2007).
GalluzziLMolecular mechanisms of cisplatin resistanceOncogene201231186918831:CAS:528:DC%2BC3MXhtFWrsr7E10.1038/onc.2011.384
Howell, N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. https://doi.org/10.1007/BF02100114 (1989).
O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. https://doi.org/10.1046/j.1432-1327.2000.01606.x (2000).
Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-3070 (2018).
Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. https://doi.org/10.1177/1087057114521867 (2014).
FiorilloMRepurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cellsOncotarget20167340843409910.18632/oncotarget.9122271368955085139
XiangMGene expression-based discovery of atovaquone as a STAT3 inhibitor and anti-cancer agentBlood2016128blood-2015-07-660506
Gary, R. Greenstein The Merck Index, An Enclyopedia of Chemicals, Drugs, and Biologicals (14th Ed.). The Merck Index (2007).
InapurapuSKudleKRBodigaSBodigaVLCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiaeIran J. Basic Med. Sci.2017208389281335295243979
Liu, D., He, C., Wang, A. Z. & Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed.https://doi.org/10.2147/IJN.S38354 (2013).
MarulloRCisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functionsPLoS ONE2013811510.1371/journal.pone.0081162
D’Addario, G. et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J. Clin. Oncol.https://doi.org/10.1200/JCO.2005.03.045 (2005).
Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa1513749 (2016).
Zsila, F. & Fitos, I. Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds. Org. Biomol. Chem. https://doi.org/10.1039/c0ob00124d (2010).
KeFThe anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibitionBiochem. Biophys. Res. Commun.20185043743791:CAS:528:DC%2BC1cXhtFCmtrzF10.1016/j.bbrc.2018.06.04929902460
Makovec, T. Cisplatin and beyond: in cancer chemotherapy. Radiol. Oncol.https://doi.org/10.2478/raon-2019-0018 (2019).
He, P. J. et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett. https://doi.org/10.3892/ol.2018.9563 (2018).
Smith, P. M., Fox, J. L. & Winge, D. R. Biogenesis of the cytochrome bc 1 complex and role of assembly factors. Biochimica et Biophysica Acta - Bioenergetics.https://doi.org/10.1016/j.bbabio.2011.11.009 (2012).
SluiterWJMulderNHTimmer-BosschaHJan MeersmaGde VriesEGERelationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compoundsCancer Res.199252688568891458477
Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Naturehttps://doi.org/10.1038/nature10167 (2011).
Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. https://doi.org/10.1016/j.chembiol.2006.09.018 (2006).
Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature. https://doi.org/10.1038/222385a0 (1969).
Bakshi, R. P. et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. https://doi.org/10.1038/s41467-017-02603-z (2018).
Cauchetier, E. et al. Therapeutic evaluation of free and liposome-encapsulated atovaquone in the treatment of murine leishmaniasis. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00053-9 (2000).
Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.08.015 (2006).
Basourakos, S. P. et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr. Med. Chem.https://doi.org/10.2174/0929867323666161214114948 (2016).
DasSDielschneiderRChanas-LaRueAJohnstonJBGibsonSBAntimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cellsLeuk. Res.20187079861:CAS:528:DC%2BC1cXhtFWhsLfK10.1016/j.leukres.2018.06.00529902707
AshtonTMThe anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxiaNat. Commun.2016711310.1038/ncomms12308
Pfisterer, J. et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial. Lancet Oncol.https://doi.org/10.1016/S1470-2045(20)30142-X (2020).
Druck, T. et al. Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis. https://doi.org/10.1038/s41419-019-1414-7 (2019).
Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev.https://doi.org/10.1016/j.ctrv.2016.01.003 (2016).
NixonGLAntimalarial pharmacology and therapeutics of atovaquoneJ. Antimicrob. Chemother.2013689779851:CAS:528:DC%2BC3sXlvFWhu74%3D10.1093/jac/dks504232923474344550
BirthDKaoW-CHunteCStructural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug actionNat. Commun.201451:CAS:528:DC%2BC2MXksVCjtr0%3D10.1038/ncomms502924893593
Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. https://doi.org/10.1006/abbi.1997.0341 (1997).
343_CR16
M Fiorillo (343_CR24) 2016; 7
WJ Sluiter (343_CR18) 1992; 52
S Inapurapu (343_CR15) 2017; 20
F Ke (343_CR21) 2018; 504
S Das (343_CR19) 2018; 70
343_CR20
343_CR22
343_CR25
D Birth (343_CR26) 2014; 5
343_CR27
343_CR29
343_CR28
PM Bruno (343_CR14) 2017; 23
M Xiang (343_CR36) 2016; 128
343_CR32
343_CR31
343_CR34
R Marullo (343_CR17) 2013; 8
343_CR33
H Atsushi (343_CR13) 1994; 26
343_CR35
343_CR1
343_CR37
343_CR2
343_CR39
ZH Siddik (343_CR12) 2003; 22
343_CR8
343_CR9
343_CR4
343_CR5
343_CR6
343_CR7
E Boven (343_CR38) 1985; 45
343_CR41
343_CR40
343_CR43
343_CR42
343_CR45
343_CR44
343_CR47
343_CR46
L Galluzzi (343_CR3) 2012; 31
343_CR49
343_CR48
TM Ashton (343_CR30) 2016; 7
GL Nixon (343_CR23) 2013; 68
343_CR50
343_CR51
343_CR10
343_CR11
References_xml – reference: SluiterWJMulderNHTimmer-BosschaHJan MeersmaGde VriesEGERelationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compoundsCancer Res.199252688568891458477
– reference: Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. https://doi.org/10.1021/ja802355u (2008).
– reference: Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-3070 (2018).
– reference: Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. https://doi.org/10.1006/abbi.1997.0341 (1997).
– reference: KeFThe anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibitionBiochem. Biophys. Res. Commun.20185043743791:CAS:528:DC%2BC1cXhtFCmtrzF10.1016/j.bbrc.2018.06.04929902460
– reference: Chou, T. C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-09-1947 (2010).
– reference: Basourakos, S. P. et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr. Med. Chem.https://doi.org/10.2174/0929867323666161214114948 (2016).
– reference: Hall, M. D. et al. Say no to DMSO: Dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-0247 (2014).
– reference: Pfisterer, J. et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial. Lancet Oncol.https://doi.org/10.1016/S1470-2045(20)30142-X (2020).
– reference: Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa1513749 (2016).
– reference: He, P. J. et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett. https://doi.org/10.3892/ol.2018.9563 (2018).
– reference: Liu, Q., Yin, X., Languino, L. R. & Altieri, D. C. Evaluation of drug combination effect using a bliss independence dose–response surface model. Stat. Biopharm. Res. https://doi.org/10.1080/19466315.2018.1437071 (2018).
– reference: AshtonTMThe anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxiaNat. Commun.2016711310.1038/ncomms12308
– reference: Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1416611112 (2015).
– reference: MarulloRCisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functionsPLoS ONE2013811510.1371/journal.pone.0081162
– reference: Druck, T. et al. Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis. https://doi.org/10.1038/s41419-019-1414-7 (2019).
– reference: Lee, D. W. et al. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J. Biol. Chem.https://doi.org/10.1074/jbc.M110.214460 (2011).
– reference: Howell, N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. https://doi.org/10.1007/BF02100114 (1989).
– reference: Catanzaro, D. et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget.https://doi.org/10.18632/oncotarget.24708 (2018).
– reference: BrunoPMA subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stressNat. Med.2017234614711:CAS:528:DC%2BC2sXkvFahtrw%3D10.1038/nm.4291282633115520548
– reference: Cauchetier, E. et al. Therapeutic evaluation of free and liposome-encapsulated atovaquone in the treatment of murine leishmaniasis. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00053-9 (2000).
– reference: O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. https://doi.org/10.1046/j.1432-1327.2000.01606.x (2000).
– reference: Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer.https://doi.org/10.1038/nrc2167 (2007).
– reference: Makovec, T. Cisplatin and beyond: in cancer chemotherapy. Radiol. Oncol.https://doi.org/10.2478/raon-2019-0018 (2019).
– reference: NixonGLAntimalarial pharmacology and therapeutics of atovaquoneJ. Antimicrob. Chemother.2013689779851:CAS:528:DC%2BC3sXlvFWhu74%3D10.1093/jac/dks504232923474344550
– reference: Bakshi, R. P. et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. https://doi.org/10.1038/s41467-017-02603-z (2018).
– reference: Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov.https://doi.org/10.1038/nrd1691 (2005).
– reference: Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. https://doi.org/10.1016/j.chembiol.2006.09.018 (2006).
– reference: InapurapuSKudleKRBodigaSBodigaVLCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiaeIran J. Basic Med. Sci.2017208389281335295243979
– reference: BirthDKaoW-CHunteCStructural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug actionNat. Commun.201451:CAS:528:DC%2BC2MXksVCjtr0%3D10.1038/ncomms502924893593
– reference: GalluzziLMolecular mechanisms of cisplatin resistanceOncogene201231186918831:CAS:528:DC%2BC3MXhtFWrsr7E10.1038/onc.2011.384
– reference: D’Addario, G. et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J. Clin. Oncol.https://doi.org/10.1200/JCO.2005.03.045 (2005).
– reference: Zsila, F. & Fitos, I. Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds. Org. Biomol. Chem. https://doi.org/10.1039/c0ob00124d (2010).
– reference: Martins, N. M., Santos, N. A. G., Curti, C., Bianchi, M. L. P. & Dos Santos, A. C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. https://doi.org/10.1002/jat.1284 (2008).
– reference: Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature. https://doi.org/10.1038/222385a0 (1969).
– reference: FiorilloMRepurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cellsOncotarget20167340843409910.18632/oncotarget.9122271368955085139
– reference: Smith, P. M., Fox, J. L. & Winge, D. R. Biogenesis of the cytochrome bc 1 complex and role of assembly factors. Biochimica et Biophysica Acta - Bioenergetics.https://doi.org/10.1016/j.bbabio.2011.11.009 (2012).
– reference: BovenENautaMMSchluperHMMPinedoHMvan der VijghWJFComparative activity and distribution studies of five platinum analogues in nude mice bearing human ovarian carcinoma xenograftsCancer Res.19854586901:CAS:528:DyaL2MXhtVGrsLk%3D4038381
– reference: Ivanova, A. & Xiao, C. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs. Pharm. Stat. https://doi.org/10.1002/pst.1585 (2013).
– reference: AtsushiHShujiSKosukeATakafumiKA comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatinInt. J. Biochem.1994261009101610.1016/0020-711X(94)90072-8
– reference: SiddikZHCisplatin: mode of cytotoxic action and molecular basis of resistanceOncogene200322726572791:CAS:528:DC%2BD3sXotlajtbY%3D10.1038/sj.onc.120693314576837
– reference: Sun, Y., Xu, H., Chen, X., Li, X. & Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2018.11.182 (2019).
– reference: Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev.https://doi.org/10.1016/j.ctrv.2016.01.003 (2016).
– reference: Dilruba, S. & Kalayda, G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol.https://doi.org/10.1007/s00280-016-2976-z (2016).
– reference: XiangMGene expression-based discovery of atovaquone as a STAT3 inhibitor and anti-cancer agentBlood2016128blood-2015-07-660506
– reference: Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Naturehttps://doi.org/10.1038/nature10167 (2011).
– reference: Gary, R. Greenstein The Merck Index, An Enclyopedia of Chemicals, Drugs, and Biologicals (14th Ed.). The Merck Index (2007).
– reference: Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.08.015 (2006).
– reference: Liu, D., He, C., Wang, A. Z. & Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed.https://doi.org/10.2147/IJN.S38354 (2013).
– reference: Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. https://doi.org/10.1177/1087057114521867 (2014).
– reference: DasSDielschneiderRChanas-LaRueAJohnstonJBGibsonSBAntimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cellsLeuk. Res.20187079861:CAS:528:DC%2BC1cXhtFWhsLfK10.1016/j.leukres.2018.06.00529902707
– ident: 343_CR33
  doi: 10.1002/pst.1585
– ident: 343_CR4
  doi: 10.1200/JCO.2005.03.045
– ident: 343_CR25
  doi: 10.1073/pnas.1416611112
– ident: 343_CR46
  doi: 10.1038/nature10167
– volume: 504
  start-page: 374
  year: 2018
  ident: 343_CR21
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.06.049
– ident: 343_CR42
  doi: 10.2147/IJN.S38354
– ident: 343_CR22
  doi: 10.1016/j.bbrc.2018.11.182
– ident: 343_CR11
  doi: 10.1038/nrd1691
– ident: 343_CR5
  doi: 10.2174/0929867323666161214114948
– volume: 5
  year: 2014
  ident: 343_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5029
– volume: 20
  start-page: 83
  year: 2017
  ident: 343_CR15
  publication-title: Iran J. Basic Med. Sci.
– ident: 343_CR40
  doi: 10.1039/c0ob00124d
– ident: 343_CR43
  doi: 10.18632/oncotarget.24708
– ident: 343_CR39
– ident: 343_CR32
  doi: 10.1046/j.1432-1327.2000.01606.x
– ident: 343_CR10
  doi: 10.1038/222385a0
– ident: 343_CR41
  doi: 10.1016/S0020-7519(00)00053-9
– ident: 343_CR31
  doi: 10.1158/1078-0432.CCR-17-3070
– ident: 343_CR6
  doi: 10.1056/NEJMoa1513749
– ident: 343_CR37
  doi: 10.1016/j.chembiol.2006.09.018
– ident: 343_CR51
  doi: 10.1158/0008-5472.CAN-09-1947
– ident: 343_CR16
  doi: 10.3892/ol.2018.9563
– ident: 343_CR20
  doi: 10.1038/s41419-019-1414-7
– ident: 343_CR47
  doi: 10.1002/jat.1284
– volume: 68
  start-page: 977
  year: 2013
  ident: 343_CR23
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dks504
– ident: 343_CR27
  doi: 10.1074/jbc.M110.214460
– volume: 23
  start-page: 461
  year: 2017
  ident: 343_CR14
  publication-title: Nat. Med.
  doi: 10.1038/nm.4291
– ident: 343_CR7
  doi: 10.1016/S1470-2045(20)30142-X
– volume: 31
  start-page: 1869
  year: 2012
  ident: 343_CR3
  publication-title: Oncogene
  doi: 10.1038/onc.2011.384
– volume: 45
  start-page: 86
  year: 1985
  ident: 343_CR38
  publication-title: Cancer Res.
– ident: 343_CR9
  doi: 10.1007/s00280-016-2976-z
– ident: 343_CR28
  doi: 10.1016/j.bbabio.2011.11.009
– ident: 343_CR29
  doi: 10.1007/BF02100114
– ident: 343_CR34
  doi: 10.1021/ja802355u
– volume: 7
  start-page: 1
  year: 2016
  ident: 343_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12308
– ident: 343_CR48
  doi: 10.1158/0008-5472.CAN-14-0247
– volume: 26
  start-page: 1009
  year: 1994
  ident: 343_CR13
  publication-title: Int. J. Biochem.
  doi: 10.1016/0020-711X(94)90072-8
– volume: 8
  start-page: 1
  year: 2013
  ident: 343_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0081162
– ident: 343_CR1
  doi: 10.1038/nrc2167
– volume: 128
  start-page: blood-2015-07-6
  year: 2016
  ident: 343_CR36
  publication-title: Blood
– ident: 343_CR45
  doi: 10.1016/j.ccr.2006.08.015
– volume: 70
  start-page: 79
  year: 2018
  ident: 343_CR19
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2018.06.005
– ident: 343_CR2
  doi: 10.2478/raon-2019-0018
– ident: 343_CR50
  doi: 10.1080/19466315.2018.1437071
– ident: 343_CR49
  doi: 10.1177/1087057114521867
– ident: 343_CR8
  doi: 10.1016/j.ctrv.2016.01.003
– volume: 22
  start-page: 7265
  year: 2003
  ident: 343_CR12
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206933
– ident: 343_CR44
  doi: 10.1038/s41467-017-02603-z
– volume: 7
  start-page: 34084
  year: 2016
  ident: 343_CR24
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9122
– ident: 343_CR35
  doi: 10.1006/abbi.1997.0341
– volume: 52
  start-page: 6885
  year: 1992
  ident: 343_CR18
  publication-title: Cancer Res.
SSID ssj0001574783
Score 2.242966
Snippet Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms 631/67/1059/99
692/308/2778
Acetylcysteine
Apoptosis
Atovaquone
Biochemistry
Biomedical and Life Sciences
Cancer
Carboplatin
Cell Biology
Cell Cycle Analysis
Cell death
Chemotherapy
Cisplatin
Cytotoxic agents
Cytotoxicity
Electron transport chain
Glutathione
Hypoxia
Life Sciences
Mitochondria
Oxidative stress
Platinum
Reactive oxygen species
Spheroids
Stem Cells
Superoxide dismutase
Tumor cell lines
Title The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress
URI https://link.springer.com/article/10.1038/s41420-020-00343-6
https://www.ncbi.nlm.nih.gov/pubmed/33133645
https://www.proquest.com/docview/2471521413
https://www.proquest.com/docview/2456854450
https://pubmed.ncbi.nlm.nih.gov/PMC7591508
Volume 6
WOSCitedRecordID wos000588474200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2058-7716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001574783
  issn: 2058-7716
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2058-7716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001574783
  issn: 2058-7716
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iG0hc-IYVRmUkbmAtsZPYOSFAnThVFQKpt8ixHYjEkq5tpu3C3857TtqqTOzCJYfEUez45_fl598DeEuHH0WVO65kpnmSOs-NUZZ7p53NRFW60oZiE2o61fN5PhsCbqshrXIjE4Ogdq2lGPmpQCmKqgZl7ofFBaeqUbS7OpTQOIAjYkmQIXVvtouxpMQOL4ezMpHUp6skTtBfIp-JmFkkz_b10Q0j82au5F8bpkEPnT383xE8ggeDBco-9pB5DHd88wTu9TUpr5_CAoHD8HfX_Nyg14vwZG7Z_WDonF-ai65tPFu0a8oxIiuVLSiXrunOeTiCguYrs4SjJaMdAebIwGTlNasbsk4pLsHaq9oFtnHWn1N5Bt_PJt8-f-FDWQZu0bxbc6usFxr1euQ82mex8Ub4SiW5cTaX2iY2rqyIhEXh4fCWqbTOTKRM4qVMylw-h8MGe3sMDAES-bKycYl2kHCZcXHlvY9KJRHhaTSCeDM5hR04y6l0xq8i7J1LXfQTWkQisJwmsshG8G77zqJn7Li19clmsoph9a6K3UyN4M32Ma47-nWm8W1HbdJME5MRdvJFD5Ht56REzz9L0hGoPfBsGxCn9_6Tpv4ZuL1VmhND_wjeb2C269a_R_Hy9lG8gvuCII8qV6gTOFwvO_8a7trLdb1ajuFAzVW46jEcfZpMZ1_HITQxDquJrr8nfwD0zyc3
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqAqIXvlsCBYwEJ7Ca2EnsHBBCQNWqZcWhSHsLju1AJJqku0lh_xS_kZl87Gqp6K0Hromj2Mmb8bM984aQF5j8yPPEMilixcLIOqa1NMxZZU3M88xmpis2IScTNZ0mnzfI7zEXBsMqR5_YOWpbGdwj3-PgRWGqAZ_7tj5jWDUKT1fHEho9LI7c4ics2eZvDj_A_33J-f7Hk_cHbKgqwAywk4YZaRxXMC351gG9CLTT3OUyTLQ1iVAmNEFuuM8NYN_CJZ0rFWtf6tAJEWYovgQu_xr4cYkhZHIqV3s6EarRiyE3xxdqbx4GIazPcI2GSjCCxevz3wVSezE2868D2m7e27_9v32xO-TWwLDpu94k7pINV94jN_qam4v7pAbDoACngp1qWNWD-VE7a79R3VTn-qytSkfrqsEYKmThtMZYwbI9ZV2KDdBzatBOZhRPPKhFAk2zBS1KZN-470KrX4Xt1NRpn4fzgHy5kuFuk80SevuQUDAA32W5CTLgedzG2ga5c87PpAALjnyPBCMYUjNosmNpkB9pFxsgVNoDKPV5p-IaijT2yKvlM3WvSHJp690RHOngnebpChkeeb68DX4FP50uXdVimyhWqNQEndzpIbl8nRCBwONrj8g1sC4boGb5-p2y-N5pl8sowQoEHnk9wnrVrX-P4tHlo3hGbh6cfDpOjw8nR4_JFkdzA3rB5S7ZbGate0Kum_OmmM-edvZKyderhvsfdA5_2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWq8iEufBcCBYwEJ7A2sZM4OSCEKCuqotUeQOotOLYDkWiS7iaF_Wv8OmacZFdLRW89cE0cxU7ejJ_tmTeEvMDkR16khkkRJyyMjGVKSc2sSYyOeZGbXLtiE3I2S46P0_kO-T3mwmBY5egTnaM2tcY98gkHLwpTDfjcSTGERcwPpm-bU4YVpPCkdSyn0UPkyK5-wvJt-ebwAP71S86nHz6__8iGCgNMA1NpmZba8gSmKN9YoBqBsorbQoapMjoViQ51UGjucw12YOCSKpIkVr5UoRUizFGICdz_FYmi5S5scL7Z34lQmV4MeTq-SCbLMAhhrYbrNVSFESzengvPEdzzcZp_Hda6OXB663_-erfJzYF503e9qdwhO7a6S671tThX90gDBkMBZiU7UbDaB7OkZtF9o6qtz9RpV1eWNnWLsVXIzmmDMYRVd8Jc6g3QdqrRfhYUT0KoQWJN8xUtK2TluB9D61-lcSrrtM_PuU--XMpw98huBb19SCgYhm_zQgc58D9uYmWCwlrr51KAZUe-R4IRGJketNqxZMiPzMUMiCTrwZT53Km7hiKLPfJq_UzTK5Vc2Hp_BEo2eK1ltkGJR56vb4O_wU-nKlt32CaKE1Rwgk4-6OG5fp0QgcBjbY_ILeCuG6CW-fadqvzuNM1llGJlAo-8HiG-6da_R_Ho4lE8I9cB5dmnw9nRY3KDo-UB6-Byn-y2i84-IVf1WVsuF0-d6VLy9bLR_gfch4im
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+anti-malarial+drug+atovaquone+potentiates+platinum-mediated+cancer+cell+death+by+increasing+oxidative+stress&rft.jtitle=Cell+death+discovery&rft.au=Coates%2C+James+T+T&rft.au=Rodriguez-Berriguete%2C+Gonzalo&rft.au=Puliyadi%2C+Rathi&rft.au=Ashton%2C+Thomas&rft.date=2020-10-27&rft.issn=2058-7716&rft.eissn=2058-7716&rft.volume=6&rft.spage=110&rft_id=info:doi/10.1038%2Fs41420-020-00343-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon