The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress
Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malar...
Gespeichert in:
| Veröffentlicht in: | Cell death discovery Jg. 6; H. 1; S. 110 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
27.10.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2058-7716, 2058-7716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent. |
|---|---|
| AbstractList | Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent. Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent. |
| ArticleNumber | 110 |
| Author | Puliyadi, Rathi Granata, Giovanna Ashton, Thomas Higgins, Geoff S. Coates, James T. T. McKenna, Gillies W. Pirovano, Giacomo Rodriguez-Berriguete, Gonzalo Prevo, Remko Wing, Archie |
| Author_xml | – sequence: 1 givenname: James T. T. surname: Coates fullname: Coates, James T. T. organization: Department of Oncology, University of Oxford – sequence: 2 givenname: Gonzalo surname: Rodriguez-Berriguete fullname: Rodriguez-Berriguete, Gonzalo organization: Department of Oncology, University of Oxford – sequence: 3 givenname: Rathi surname: Puliyadi fullname: Puliyadi, Rathi organization: Department of Oncology, University of Oxford – sequence: 4 givenname: Thomas surname: Ashton fullname: Ashton, Thomas organization: Department of Oncology, University of Oxford – sequence: 5 givenname: Remko surname: Prevo fullname: Prevo, Remko organization: Department of Oncology, University of Oxford – sequence: 6 givenname: Archie surname: Wing fullname: Wing, Archie organization: Department of Oncology, University of Oxford – sequence: 7 givenname: Giovanna surname: Granata fullname: Granata, Giovanna organization: Department of Oncology, University of Oxford – sequence: 8 givenname: Giacomo surname: Pirovano fullname: Pirovano, Giacomo organization: Department of Oncology, University of Oxford – sequence: 9 givenname: Gillies W. surname: McKenna fullname: McKenna, Gillies W. organization: Department of Oncology, University of Oxford – sequence: 10 givenname: Geoff S. surname: Higgins fullname: Higgins, Geoff S. email: geoffrey.higgins@oncology.ox.ac.uk organization: Department of Oncology, University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33133645$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UU1v3CAQRVWqJt3mD_RQIfXSi1swYPClUhX1S4rUS3pGs3i8S2SDA_Yq-ffF2qRNc8hhBBree7yZ95qchBiQkLecfeRMmE9Zclmziq3FhBRV84Kc1UyZSmvenDy6n5LznK8ZY1xpqY14RU6F4EI0Up2R6WqPFMLsqxEGSB4G2qVlR2GOB7hZyp90ijMWAMyY6TTA7MMyViN2a6ejDoLDRB0OhYkw7-n2jvrgEkL2YUfjre8K54A0zwlzfkNe9jBkPL8_N-T3t69XFz-qy1_ff158uayckmyunHZYm6bhrMNWcQ4INfZattC5VhgnHe9dzWqnBetKC3pjGmAaJAoht63YkM9H3WnZFrOujJBgsFPyI6Q7G8Hb_1-C39tdPFitWq6YKQIf7gVSvFkwz3b0eR0TAsYl21qqxigpFSvQ90-g13FJoYxXUJqrmsuy7w1599jRXysPYRSAOQJcijkn7K3zc9ldXA36wXJm1-jtMXrL1lqjt02h1k-oD-rPksSRlAs47DD9s_0M6w-wXML1 |
| CitedBy_id | crossref_primary_10_3390_ijms26072969 crossref_primary_10_1002_agt2_545 crossref_primary_10_1016_j_canlet_2023_216509 crossref_primary_10_1016_j_xhgg_2024_100386 crossref_primary_10_1186_s12964_025_02160_9 crossref_primary_10_1242_dmm_049029 crossref_primary_10_1186_s12967_023_04498_5 crossref_primary_10_1093_infdis_jiad315 crossref_primary_10_3389_fcimb_2024_1368019 crossref_primary_10_1016_j_biomaterials_2023_122447 crossref_primary_10_1016_j_semcancer_2022_02_002 crossref_primary_10_3390_cancers15041344 crossref_primary_10_1007_s00262_024_03628_2 crossref_primary_10_3389_fonc_2021_632181 crossref_primary_10_1016_j_matdes_2025_114389 crossref_primary_10_1016_j_yexcr_2025_114551 |
| Cites_doi | 10.1002/pst.1585 10.1200/JCO.2005.03.045 10.1073/pnas.1416611112 10.1038/nature10167 10.1016/j.bbrc.2018.06.049 10.2147/IJN.S38354 10.1016/j.bbrc.2018.11.182 10.1038/nrd1691 10.2174/0929867323666161214114948 10.1038/ncomms5029 10.1039/c0ob00124d 10.18632/oncotarget.24708 10.1046/j.1432-1327.2000.01606.x 10.1038/222385a0 10.1016/S0020-7519(00)00053-9 10.1158/1078-0432.CCR-17-3070 10.1056/NEJMoa1513749 10.1016/j.chembiol.2006.09.018 10.1158/0008-5472.CAN-09-1947 10.3892/ol.2018.9563 10.1038/s41419-019-1414-7 10.1002/jat.1284 10.1093/jac/dks504 10.1074/jbc.M110.214460 10.1038/nm.4291 10.1016/S1470-2045(20)30142-X 10.1038/onc.2011.384 10.1007/s00280-016-2976-z 10.1016/j.bbabio.2011.11.009 10.1007/BF02100114 10.1021/ja802355u 10.1038/ncomms12308 10.1158/0008-5472.CAN-14-0247 10.1016/0020-711X(94)90072-8 10.1371/journal.pone.0081162 10.1038/nrc2167 10.1016/j.ccr.2006.08.015 10.1016/j.leukres.2018.06.005 10.2478/raon-2019-0018 10.1080/19466315.2018.1437071 10.1177/1087057114521867 10.1016/j.ctrv.2016.01.003 10.1038/sj.onc.1206933 10.1038/s41467-017-02603-z 10.18632/oncotarget.9122 10.1006/abbi.1997.0341 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.1038/s41420-020-00343-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2058-7716 |
| ExternalDocumentID | PMC7591508 33133645 10_1038_s41420_020_00343_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 19590 – fundername: Cancer Research UK grantid: 28736 |
| GroupedDBID | 0R~ 3V. 53G 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ ABUWG ACSMW ADBBV ADRAZ AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE LK8 M48 M7P M~E NAO OK1 PGMZT PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION EJD NPM PHGZM PHGZT PQGLB 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c540t-c7ce286610de9511aea2ef749adc938c4c1fc202c730ddc9af886a07a4e334b93 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588474200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2058-7716 |
| IngestDate | Tue Nov 04 01:32:43 EST 2025 Sun Nov 09 14:29:26 EST 2025 Sat Nov 29 14:55:55 EST 2025 Mon Jul 21 06:04:59 EDT 2025 Tue Nov 18 22:10:17 EST 2025 Sat Nov 29 03:43:59 EST 2025 Fri Feb 21 02:38:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Chemotherapy Preclinical research |
| Language | English |
| License | The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-c7ce286610de9511aea2ef749adc938c4c1fc202c730ddc9af886a07a4e334b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1038/s41420-020-00343-6 |
| PMID | 33133645 |
| PQID | 2471521413 |
| PQPubID | 2041962 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591508 proquest_miscellaneous_2456854450 proquest_journals_2471521413 pubmed_primary_33133645 crossref_citationtrail_10_1038_s41420_020_00343_6 crossref_primary_10_1038_s41420_020_00343_6 springer_journals_10_1038_s41420_020_00343_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-27 |
| PublicationDateYYYYMMDD | 2020-10-27 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States – name: New York |
| PublicationTitle | Cell death discovery |
| PublicationTitleAbbrev | Cell Death Discov |
| PublicationTitleAlternate | Cell Death Discov |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Springer Nature B.V |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
| References | BovenENautaMMSchluperHMMPinedoHMvan der VijghWJFComparative activity and distribution studies of five platinum analogues in nude mice bearing human ovarian carcinoma xenograftsCancer Res.19854586901:CAS:528:DyaL2MXhtVGrsLk%3D4038381 Lee, D. W. et al. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J. Biol. Chem.https://doi.org/10.1074/jbc.M110.214460 (2011). Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov.https://doi.org/10.1038/nrd1691 (2005). BrunoPMA subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stressNat. Med.2017234614711:CAS:528:DC%2BC2sXkvFahtrw%3D10.1038/nm.4291282633115520548 SiddikZHCisplatin: mode of cytotoxic action and molecular basis of resistanceOncogene200322726572791:CAS:528:DC%2BD3sXotlajtbY%3D10.1038/sj.onc.120693314576837 AtsushiHShujiSKosukeATakafumiKA comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatinInt. J. Biochem.1994261009101610.1016/0020-711X(94)90072-8 Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1416611112 (2015). Liu, Q., Yin, X., Languino, L. R. & Altieri, D. C. Evaluation of drug combination effect using a bliss independence dose–response surface model. Stat. Biopharm. Res. https://doi.org/10.1080/19466315.2018.1437071 (2018). Hall, M. D. et al. Say no to DMSO: Dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-0247 (2014). Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. https://doi.org/10.1021/ja802355u (2008). Sun, Y., Xu, H., Chen, X., Li, X. & Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2018.11.182 (2019). Martins, N. M., Santos, N. A. G., Curti, C., Bianchi, M. L. P. & Dos Santos, A. C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. https://doi.org/10.1002/jat.1284 (2008). Chou, T. C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-09-1947 (2010). Dilruba, S. & Kalayda, G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol.https://doi.org/10.1007/s00280-016-2976-z (2016). Ivanova, A. & Xiao, C. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs. Pharm. Stat. https://doi.org/10.1002/pst.1585 (2013). Catanzaro, D. et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget.https://doi.org/10.18632/oncotarget.24708 (2018). Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer.https://doi.org/10.1038/nrc2167 (2007). GalluzziLMolecular mechanisms of cisplatin resistanceOncogene201231186918831:CAS:528:DC%2BC3MXhtFWrsr7E10.1038/onc.2011.384 Howell, N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. https://doi.org/10.1007/BF02100114 (1989). O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. https://doi.org/10.1046/j.1432-1327.2000.01606.x (2000). Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-3070 (2018). Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. https://doi.org/10.1177/1087057114521867 (2014). FiorilloMRepurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cellsOncotarget20167340843409910.18632/oncotarget.9122271368955085139 XiangMGene expression-based discovery of atovaquone as a STAT3 inhibitor and anti-cancer agentBlood2016128blood-2015-07-660506 Gary, R. Greenstein The Merck Index, An Enclyopedia of Chemicals, Drugs, and Biologicals (14th Ed.). The Merck Index (2007). InapurapuSKudleKRBodigaSBodigaVLCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiaeIran J. Basic Med. Sci.2017208389281335295243979 Liu, D., He, C., Wang, A. Z. & Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed.https://doi.org/10.2147/IJN.S38354 (2013). MarulloRCisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functionsPLoS ONE2013811510.1371/journal.pone.0081162 D’Addario, G. et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J. Clin. Oncol.https://doi.org/10.1200/JCO.2005.03.045 (2005). Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa1513749 (2016). Zsila, F. & Fitos, I. Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds. Org. Biomol. Chem. https://doi.org/10.1039/c0ob00124d (2010). KeFThe anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibitionBiochem. Biophys. Res. Commun.20185043743791:CAS:528:DC%2BC1cXhtFCmtrzF10.1016/j.bbrc.2018.06.04929902460 Makovec, T. Cisplatin and beyond: in cancer chemotherapy. Radiol. Oncol.https://doi.org/10.2478/raon-2019-0018 (2019). He, P. J. et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett. https://doi.org/10.3892/ol.2018.9563 (2018). Smith, P. M., Fox, J. L. & Winge, D. R. Biogenesis of the cytochrome bc 1 complex and role of assembly factors. Biochimica et Biophysica Acta - Bioenergetics.https://doi.org/10.1016/j.bbabio.2011.11.009 (2012). SluiterWJMulderNHTimmer-BosschaHJan MeersmaGde VriesEGERelationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compoundsCancer Res.199252688568891458477 Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Naturehttps://doi.org/10.1038/nature10167 (2011). Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. https://doi.org/10.1016/j.chembiol.2006.09.018 (2006). Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature. https://doi.org/10.1038/222385a0 (1969). Bakshi, R. P. et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. https://doi.org/10.1038/s41467-017-02603-z (2018). Cauchetier, E. et al. Therapeutic evaluation of free and liposome-encapsulated atovaquone in the treatment of murine leishmaniasis. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00053-9 (2000). Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.08.015 (2006). Basourakos, S. P. et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr. Med. Chem.https://doi.org/10.2174/0929867323666161214114948 (2016). DasSDielschneiderRChanas-LaRueAJohnstonJBGibsonSBAntimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cellsLeuk. Res.20187079861:CAS:528:DC%2BC1cXhtFWhsLfK10.1016/j.leukres.2018.06.00529902707 AshtonTMThe anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxiaNat. Commun.2016711310.1038/ncomms12308 Pfisterer, J. et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial. Lancet Oncol.https://doi.org/10.1016/S1470-2045(20)30142-X (2020). Druck, T. et al. Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis. https://doi.org/10.1038/s41419-019-1414-7 (2019). Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev.https://doi.org/10.1016/j.ctrv.2016.01.003 (2016). NixonGLAntimalarial pharmacology and therapeutics of atovaquoneJ. Antimicrob. Chemother.2013689779851:CAS:528:DC%2BC3sXlvFWhu74%3D10.1093/jac/dks504232923474344550 BirthDKaoW-CHunteCStructural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug actionNat. Commun.201451:CAS:528:DC%2BC2MXksVCjtr0%3D10.1038/ncomms502924893593 Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. https://doi.org/10.1006/abbi.1997.0341 (1997). 343_CR16 M Fiorillo (343_CR24) 2016; 7 WJ Sluiter (343_CR18) 1992; 52 S Inapurapu (343_CR15) 2017; 20 F Ke (343_CR21) 2018; 504 S Das (343_CR19) 2018; 70 343_CR20 343_CR22 343_CR25 D Birth (343_CR26) 2014; 5 343_CR27 343_CR29 343_CR28 PM Bruno (343_CR14) 2017; 23 M Xiang (343_CR36) 2016; 128 343_CR32 343_CR31 343_CR34 R Marullo (343_CR17) 2013; 8 343_CR33 H Atsushi (343_CR13) 1994; 26 343_CR35 343_CR1 343_CR37 343_CR2 343_CR39 ZH Siddik (343_CR12) 2003; 22 343_CR8 343_CR9 343_CR4 343_CR5 343_CR6 343_CR7 E Boven (343_CR38) 1985; 45 343_CR41 343_CR40 343_CR43 343_CR42 343_CR45 343_CR44 343_CR47 343_CR46 L Galluzzi (343_CR3) 2012; 31 343_CR49 343_CR48 TM Ashton (343_CR30) 2016; 7 GL Nixon (343_CR23) 2013; 68 343_CR50 343_CR51 343_CR10 343_CR11 |
| References_xml | – reference: SluiterWJMulderNHTimmer-BosschaHJan MeersmaGde VriesEGERelationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compoundsCancer Res.199252688568891458477 – reference: Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. https://doi.org/10.1021/ja802355u (2008). – reference: Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-3070 (2018). – reference: Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. https://doi.org/10.1006/abbi.1997.0341 (1997). – reference: KeFThe anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibitionBiochem. Biophys. Res. Commun.20185043743791:CAS:528:DC%2BC1cXhtFCmtrzF10.1016/j.bbrc.2018.06.04929902460 – reference: Chou, T. C. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-09-1947 (2010). – reference: Basourakos, S. P. et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. Curr. Med. Chem.https://doi.org/10.2174/0929867323666161214114948 (2016). – reference: Hall, M. D. et al. Say no to DMSO: Dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-0247 (2014). – reference: Pfisterer, J. et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial. Lancet Oncol.https://doi.org/10.1016/S1470-2045(20)30142-X (2020). – reference: Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. N. Engl. J. Med.https://doi.org/10.1056/NEJMoa1513749 (2016). – reference: He, P. J. et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. Oncol. Lett. https://doi.org/10.3892/ol.2018.9563 (2018). – reference: Liu, Q., Yin, X., Languino, L. R. & Altieri, D. C. Evaluation of drug combination effect using a bliss independence dose–response surface model. Stat. Biopharm. Res. https://doi.org/10.1080/19466315.2018.1437071 (2018). – reference: AshtonTMThe anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxiaNat. Commun.2016711310.1038/ncomms12308 – reference: Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1416611112 (2015). – reference: MarulloRCisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functionsPLoS ONE2013811510.1371/journal.pone.0081162 – reference: Druck, T. et al. Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis. https://doi.org/10.1038/s41419-019-1414-7 (2019). – reference: Lee, D. W. et al. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. J. Biol. Chem.https://doi.org/10.1074/jbc.M110.214460 (2011). – reference: Howell, N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J. Mol. Evol. https://doi.org/10.1007/BF02100114 (1989). – reference: Catanzaro, D. et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells. Oncotarget.https://doi.org/10.18632/oncotarget.24708 (2018). – reference: BrunoPMA subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stressNat. Med.2017234614711:CAS:528:DC%2BC2sXkvFahtrw%3D10.1038/nm.4291282633115520548 – reference: Cauchetier, E. et al. Therapeutic evaluation of free and liposome-encapsulated atovaquone in the treatment of murine leishmaniasis. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00053-9 (2000). – reference: O’Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. https://doi.org/10.1046/j.1432-1327.2000.01606.x (2000). – reference: Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer.https://doi.org/10.1038/nrc2167 (2007). – reference: Makovec, T. Cisplatin and beyond: in cancer chemotherapy. Radiol. Oncol.https://doi.org/10.2478/raon-2019-0018 (2019). – reference: NixonGLAntimalarial pharmacology and therapeutics of atovaquoneJ. Antimicrob. Chemother.2013689779851:CAS:528:DC%2BC3sXlvFWhu74%3D10.1093/jac/dks504232923474344550 – reference: Bakshi, R. P. et al. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat. Commun. https://doi.org/10.1038/s41467-017-02603-z (2018). – reference: Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov.https://doi.org/10.1038/nrd1691 (2005). – reference: Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. https://doi.org/10.1016/j.chembiol.2006.09.018 (2006). – reference: InapurapuSKudleKRBodigaSBodigaVLCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiaeIran J. Basic Med. Sci.2017208389281335295243979 – reference: BirthDKaoW-CHunteCStructural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug actionNat. Commun.201451:CAS:528:DC%2BC2MXksVCjtr0%3D10.1038/ncomms502924893593 – reference: GalluzziLMolecular mechanisms of cisplatin resistanceOncogene201231186918831:CAS:528:DC%2BC3MXhtFWrsr7E10.1038/onc.2011.384 – reference: D’Addario, G. et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J. Clin. Oncol.https://doi.org/10.1200/JCO.2005.03.045 (2005). – reference: Zsila, F. & Fitos, I. Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds. Org. Biomol. Chem. https://doi.org/10.1039/c0ob00124d (2010). – reference: Martins, N. M., Santos, N. A. G., Curti, C., Bianchi, M. L. P. & Dos Santos, A. C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol. https://doi.org/10.1002/jat.1284 (2008). – reference: Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. Nature. https://doi.org/10.1038/222385a0 (1969). – reference: FiorilloMRepurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cellsOncotarget20167340843409910.18632/oncotarget.9122271368955085139 – reference: Smith, P. M., Fox, J. L. & Winge, D. R. Biogenesis of the cytochrome bc 1 complex and role of assembly factors. Biochimica et Biophysica Acta - Bioenergetics.https://doi.org/10.1016/j.bbabio.2011.11.009 (2012). – reference: BovenENautaMMSchluperHMMPinedoHMvan der VijghWJFComparative activity and distribution studies of five platinum analogues in nude mice bearing human ovarian carcinoma xenograftsCancer Res.19854586901:CAS:528:DyaL2MXhtVGrsLk%3D4038381 – reference: Ivanova, A. & Xiao, C. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs. Pharm. Stat. https://doi.org/10.1002/pst.1585 (2013). – reference: AtsushiHShujiSKosukeATakafumiKA comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatinInt. J. Biochem.1994261009101610.1016/0020-711X(94)90072-8 – reference: SiddikZHCisplatin: mode of cytotoxic action and molecular basis of resistanceOncogene200322726572791:CAS:528:DC%2BD3sXotlajtbY%3D10.1038/sj.onc.120693314576837 – reference: Sun, Y., Xu, H., Chen, X., Li, X. & Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem. Biophys. Res. Commun. https://doi.org/10.1016/j.bbrc.2018.11.182 (2019). – reference: Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev.https://doi.org/10.1016/j.ctrv.2016.01.003 (2016). – reference: Dilruba, S. & Kalayda, G. V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol.https://doi.org/10.1007/s00280-016-2976-z (2016). – reference: XiangMGene expression-based discovery of atovaquone as a STAT3 inhibitor and anti-cancer agentBlood2016128blood-2015-07-660506 – reference: Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Naturehttps://doi.org/10.1038/nature10167 (2011). – reference: Gary, R. Greenstein The Merck Index, An Enclyopedia of Chemicals, Drugs, and Biologicals (14th Ed.). The Merck Index (2007). – reference: Schumacker, P. T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell. https://doi.org/10.1016/j.ccr.2006.08.015 (2006). – reference: Liu, D., He, C., Wang, A. Z. & Lin, W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int. J. Nanomed.https://doi.org/10.2147/IJN.S38354 (2013). – reference: Zhao, W. et al. A new bliss independence model to analyze drug combination data. J. Biomol. Screen. https://doi.org/10.1177/1087057114521867 (2014). – reference: DasSDielschneiderRChanas-LaRueAJohnstonJBGibsonSBAntimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cellsLeuk. Res.20187079861:CAS:528:DC%2BC1cXhtFWhsLfK10.1016/j.leukres.2018.06.00529902707 – ident: 343_CR33 doi: 10.1002/pst.1585 – ident: 343_CR4 doi: 10.1200/JCO.2005.03.045 – ident: 343_CR25 doi: 10.1073/pnas.1416611112 – ident: 343_CR46 doi: 10.1038/nature10167 – volume: 504 start-page: 374 year: 2018 ident: 343_CR21 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.06.049 – ident: 343_CR42 doi: 10.2147/IJN.S38354 – ident: 343_CR22 doi: 10.1016/j.bbrc.2018.11.182 – ident: 343_CR11 doi: 10.1038/nrd1691 – ident: 343_CR5 doi: 10.2174/0929867323666161214114948 – volume: 5 year: 2014 ident: 343_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms5029 – volume: 20 start-page: 83 year: 2017 ident: 343_CR15 publication-title: Iran J. Basic Med. Sci. – ident: 343_CR40 doi: 10.1039/c0ob00124d – ident: 343_CR43 doi: 10.18632/oncotarget.24708 – ident: 343_CR39 – ident: 343_CR32 doi: 10.1046/j.1432-1327.2000.01606.x – ident: 343_CR10 doi: 10.1038/222385a0 – ident: 343_CR41 doi: 10.1016/S0020-7519(00)00053-9 – ident: 343_CR31 doi: 10.1158/1078-0432.CCR-17-3070 – ident: 343_CR6 doi: 10.1056/NEJMoa1513749 – ident: 343_CR37 doi: 10.1016/j.chembiol.2006.09.018 – ident: 343_CR51 doi: 10.1158/0008-5472.CAN-09-1947 – ident: 343_CR16 doi: 10.3892/ol.2018.9563 – ident: 343_CR20 doi: 10.1038/s41419-019-1414-7 – ident: 343_CR47 doi: 10.1002/jat.1284 – volume: 68 start-page: 977 year: 2013 ident: 343_CR23 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dks504 – ident: 343_CR27 doi: 10.1074/jbc.M110.214460 – volume: 23 start-page: 461 year: 2017 ident: 343_CR14 publication-title: Nat. Med. doi: 10.1038/nm.4291 – ident: 343_CR7 doi: 10.1016/S1470-2045(20)30142-X – volume: 31 start-page: 1869 year: 2012 ident: 343_CR3 publication-title: Oncogene doi: 10.1038/onc.2011.384 – volume: 45 start-page: 86 year: 1985 ident: 343_CR38 publication-title: Cancer Res. – ident: 343_CR9 doi: 10.1007/s00280-016-2976-z – ident: 343_CR28 doi: 10.1016/j.bbabio.2011.11.009 – ident: 343_CR29 doi: 10.1007/BF02100114 – ident: 343_CR34 doi: 10.1021/ja802355u – volume: 7 start-page: 1 year: 2016 ident: 343_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms12308 – ident: 343_CR48 doi: 10.1158/0008-5472.CAN-14-0247 – volume: 26 start-page: 1009 year: 1994 ident: 343_CR13 publication-title: Int. J. Biochem. doi: 10.1016/0020-711X(94)90072-8 – volume: 8 start-page: 1 year: 2013 ident: 343_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0081162 – ident: 343_CR1 doi: 10.1038/nrc2167 – volume: 128 start-page: blood-2015-07-6 year: 2016 ident: 343_CR36 publication-title: Blood – ident: 343_CR45 doi: 10.1016/j.ccr.2006.08.015 – volume: 70 start-page: 79 year: 2018 ident: 343_CR19 publication-title: Leuk. Res. doi: 10.1016/j.leukres.2018.06.005 – ident: 343_CR2 doi: 10.2478/raon-2019-0018 – ident: 343_CR50 doi: 10.1080/19466315.2018.1437071 – ident: 343_CR49 doi: 10.1177/1087057114521867 – ident: 343_CR8 doi: 10.1016/j.ctrv.2016.01.003 – volume: 22 start-page: 7265 year: 2003 ident: 343_CR12 publication-title: Oncogene doi: 10.1038/sj.onc.1206933 – ident: 343_CR44 doi: 10.1038/s41467-017-02603-z – volume: 7 start-page: 34084 year: 2016 ident: 343_CR24 publication-title: Oncotarget doi: 10.18632/oncotarget.9122 – ident: 343_CR35 doi: 10.1006/abbi.1997.0341 – volume: 52 start-page: 6885 year: 1992 ident: 343_CR18 publication-title: Cancer Res. |
| SSID | ssj0001574783 |
| Score | 2.242966 |
| Snippet | Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110 |
| SubjectTerms | 631/67/1059/99 692/308/2778 Acetylcysteine Apoptosis Atovaquone Biochemistry Biomedical and Life Sciences Cancer Carboplatin Cell Biology Cell Cycle Analysis Cell death Chemotherapy Cisplatin Cytotoxic agents Cytotoxicity Electron transport chain Glutathione Hypoxia Life Sciences Mitochondria Oxidative stress Platinum Reactive oxygen species Spheroids Stem Cells Superoxide dismutase Tumor cell lines |
| Title | The anti-malarial drug atovaquone potentiates platinum-mediated cancer cell death by increasing oxidative stress |
| URI | https://link.springer.com/article/10.1038/s41420-020-00343-6 https://www.ncbi.nlm.nih.gov/pubmed/33133645 https://www.proquest.com/docview/2471521413 https://www.proquest.com/docview/2456854450 https://pubmed.ncbi.nlm.nih.gov/PMC7591508 |
| Volume | 6 |
| WOSCitedRecordID | wos000588474200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2058-7716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001574783 issn: 2058-7716 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2058-7716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001574783 issn: 2058-7716 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH9iG0hc-IYVRmUkbmAtsZPYOSFAnThVFQKpt8ixHYjEkq5tpu3C3857TtqqTOzCJYfEUez45_fl598DeEuHH0WVO65kpnmSOs-NUZZ7p53NRFW60oZiE2o61fN5PhsCbqshrXIjE4Ogdq2lGPmpQCmKqgZl7ofFBaeqUbS7OpTQOIAjYkmQIXVvtouxpMQOL4ezMpHUp6skTtBfIp-JmFkkz_b10Q0j82au5F8bpkEPnT383xE8ggeDBco-9pB5DHd88wTu9TUpr5_CAoHD8HfX_Nyg14vwZG7Z_WDonF-ai65tPFu0a8oxIiuVLSiXrunOeTiCguYrs4SjJaMdAebIwGTlNasbsk4pLsHaq9oFtnHWn1N5Bt_PJt8-f-FDWQZu0bxbc6usFxr1euQ82mex8Ub4SiW5cTaX2iY2rqyIhEXh4fCWqbTOTKRM4qVMylw-h8MGe3sMDAES-bKycYl2kHCZcXHlvY9KJRHhaTSCeDM5hR04y6l0xq8i7J1LXfQTWkQisJwmsshG8G77zqJn7Li19clmsoph9a6K3UyN4M32Ma47-nWm8W1HbdJME5MRdvJFD5Ht56REzz9L0hGoPfBsGxCn9_6Tpv4ZuL1VmhND_wjeb2C269a_R_Hy9lG8gvuCII8qV6gTOFwvO_8a7trLdb1ajuFAzVW46jEcfZpMZ1_HITQxDquJrr8nfwD0zyc3 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqAqIXvlsCBYwEJ7Ca2EnsHBBCQNWqZcWhSHsLju1AJJqku0lh_xS_kZl87Gqp6K0Hromj2Mmb8bM984aQF5j8yPPEMilixcLIOqa1NMxZZU3M88xmpis2IScTNZ0mnzfI7zEXBsMqR5_YOWpbGdwj3-PgRWGqAZ_7tj5jWDUKT1fHEho9LI7c4ics2eZvDj_A_33J-f7Hk_cHbKgqwAywk4YZaRxXMC351gG9CLTT3OUyTLQ1iVAmNEFuuM8NYN_CJZ0rFWtf6tAJEWYovgQu_xr4cYkhZHIqV3s6EarRiyE3xxdqbx4GIazPcI2GSjCCxevz3wVSezE2868D2m7e27_9v32xO-TWwLDpu94k7pINV94jN_qam4v7pAbDoACngp1qWNWD-VE7a79R3VTn-qytSkfrqsEYKmThtMZYwbI9ZV2KDdBzatBOZhRPPKhFAk2zBS1KZN-470KrX4Xt1NRpn4fzgHy5kuFuk80SevuQUDAA32W5CTLgedzG2ga5c87PpAALjnyPBCMYUjNosmNpkB9pFxsgVNoDKPV5p-IaijT2yKvlM3WvSHJp690RHOngnebpChkeeb68DX4FP50uXdVimyhWqNQEndzpIbl8nRCBwONrj8g1sC4boGb5-p2y-N5pl8sowQoEHnk9wnrVrX-P4tHlo3hGbh6cfDpOjw8nR4_JFkdzA3rB5S7ZbGate0Kum_OmmM-edvZKyderhvsfdA5_2A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWq8iEufBcCBYwEJ7A2sZM4OSCEKCuqotUeQOotOLYDkWiS7iaF_Wv8OmacZFdLRW89cE0cxU7ejJ_tmTeEvMDkR16khkkRJyyMjGVKSc2sSYyOeZGbXLtiE3I2S46P0_kO-T3mwmBY5egTnaM2tcY98gkHLwpTDfjcSTGERcwPpm-bU4YVpPCkdSyn0UPkyK5-wvJt-ebwAP71S86nHz6__8iGCgNMA1NpmZba8gSmKN9YoBqBsorbQoapMjoViQ51UGjucw12YOCSKpIkVr5UoRUizFGICdz_FYmi5S5scL7Z34lQmV4MeTq-SCbLMAhhrYbrNVSFESzengvPEdzzcZp_Hda6OXB663_-erfJzYF503e9qdwhO7a6S671tThX90gDBkMBZiU7UbDaB7OkZtF9o6qtz9RpV1eWNnWLsVXIzmmDMYRVd8Jc6g3QdqrRfhYUT0KoQWJN8xUtK2TluB9D61-lcSrrtM_PuU--XMpw98huBb19SCgYhm_zQgc58D9uYmWCwlrr51KAZUe-R4IRGJketNqxZMiPzMUMiCTrwZT53Km7hiKLPfJq_UzTK5Vc2Hp_BEo2eK1ltkGJR56vb4O_wU-nKlt32CaKE1Rwgk4-6OG5fp0QgcBjbY_ILeCuG6CW-fadqvzuNM1llGJlAo-8HiG-6da_R_Ho4lE8I9cB5dmnw9nRY3KDo-UB6-Byn-y2i84-IVf1WVsuF0-d6VLy9bLR_gfch4im |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+anti-malarial+drug+atovaquone+potentiates+platinum-mediated+cancer+cell+death+by+increasing+oxidative+stress&rft.jtitle=Cell+death+discovery&rft.au=Coates%2C+James+T+T&rft.au=Rodriguez-Berriguete%2C+Gonzalo&rft.au=Puliyadi%2C+Rathi&rft.au=Ashton%2C+Thomas&rft.date=2020-10-27&rft.issn=2058-7716&rft.eissn=2058-7716&rft.volume=6&rft.spage=110&rft_id=info:doi/10.1038%2Fs41420-020-00343-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon |