Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer
To understand the role of MALAT-1 in prostate cancer we evaluated its expression in prostate cancer tissues and cell lines. We also studied the therapeutic effects of MALAT-1 silencing on castration resistant prostate cancer cells in vitro and in vivo. Quantitative reverse transcriptase-polymerase c...
Uloženo v:
| Vydáno v: | The Journal of urology Ročník 190; číslo 6; s. 2278 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.12.2013
|
| Témata: | |
| ISSN: | 1527-3792, 1527-3792 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | To understand the role of MALAT-1 in prostate cancer we evaluated its expression in prostate cancer tissues and cell lines. We also studied the therapeutic effects of MALAT-1 silencing on castration resistant prostate cancer cells in vitro and in vivo.
Quantitative reverse transcriptase-polymerase chain reaction was used to detect MALAT-1 expression in prostate cancer tissues and cell lines. siRNA against MALAT-1 was designed and the silencing effect was examined by quantitative reverse transcriptase-polymerase chain reaction. The biological effects of MALAT-1 siRNA on cells were investigated by examining cell proliferation using a cell counting kit and cell colony assays as well as cell migration by in vitro scratch assay, cell invasion by Transwell® invasion assay and cell cycle by flow cytometry. We further investigated the effect of therapeutic siRNA targeting MALAT-1 on castration resistant prostate cancer in vivo.
MALAT-1 was up-regulated in human prostate cancer tissues and cell lines. Higher MALAT-1 expression correlated with high Gleason score, prostate specific antigen, tumor stage and castration resistant prostate cancer. MALAT-1 down-regulation by siRNA inhibited prostate cancer cell growth, invasion and migration, and induced castration resistant prostate cancer cell cycle arrest in the G0/G1 phases. Importantly, intratumor delivery of therapeutic siRNA targeting MALAT-1 elicited delayed tumor growth and reduced metastasis of prostate cancer xenografts in castrated male nude mice, followed by the concomitant prolongation of survival of tumor bearing mice.
MALAT-1 may be needed to maintain prostate tumorigenicity and it is involved in prostate cancer progression. Thus, MALAT-1 may serve as a potential therapeutic target for castration resistant prostate cancer. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1527-3792 1527-3792 |
| DOI: | 10.1016/j.juro.2013.07.001 |