The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues

The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell reports (Cambridge) Ročník 6; číslo 6; s. 1153 - 1164
Hlavní autoři: Johnsson, Anna-Karin E., Dai, Yanfeng, Nobis, Max, Baker, Martin J., McGhee, Ewan J., Walker, Simon, Schwarz, Juliane P., Kadir, Shereen, Morton, Jennifer P., Myant, Kevin B., Huels, David J., Segonds-Pichon, Anne, Sansom, Owen J., Anderson, Kurt I., Timpson, Paul, Welch, Heidi C.E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Cell Press 01.03.2014
Elsevier
Témata:
ISSN:2211-1247, 2211-1247
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.
AbstractList The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.
The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.
The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments. • A Rac-FRET mouse for monitoring of Rac activity in live tissues and primary cells • Longitudinal shifts and oscillations of Rac activity during neutrophil chemotaxis • Rac activity in mouse tissues upon stimulation, inhibition, or genetic manipulation • Intravital imaging of Rac activity in multiple tissues during disease development The small G protein Rac is a signaling switch that controls cell morphology and migration. Here, Timpson, Welch, and colleagues present a mouse strain, Rac-FRET, which enables the imaging and quantification of Rac activity in living tissue and primary cells. Their use of the Rac-FRET mouse reveals novel patterns of Rac activity in neutrophil chemotaxis and unexpected insights into Rac signaling in normal or disease states of the intestine, liver, mammary tissue, pancreas, and skin.
Author Nobis, Max
Morton, Jennifer P.
Baker, Martin J.
Schwarz, Juliane P.
Dai, Yanfeng
Sansom, Owen J.
Kadir, Shereen
Anderson, Kurt I.
McGhee, Ewan J.
Walker, Simon
Welch, Heidi C.E.
Myant, Kevin B.
Huels, David J.
Segonds-Pichon, Anne
Johnsson, Anna-Karin E.
Timpson, Paul
AuthorAffiliation 2 Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
3 Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia
1 Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
AuthorAffiliation_xml – name: 2 Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
– name: 1 Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
– name: 3 Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia
Author_xml – sequence: 1
  givenname: Anna-Karin E.
  surname: Johnsson
  fullname: Johnsson, Anna-Karin E.
– sequence: 2
  givenname: Yanfeng
  surname: Dai
  fullname: Dai, Yanfeng
– sequence: 3
  givenname: Max
  surname: Nobis
  fullname: Nobis, Max
– sequence: 4
  givenname: Martin J.
  surname: Baker
  fullname: Baker, Martin J.
– sequence: 5
  givenname: Ewan J.
  surname: McGhee
  fullname: McGhee, Ewan J.
– sequence: 6
  givenname: Simon
  surname: Walker
  fullname: Walker, Simon
– sequence: 7
  givenname: Juliane P.
  surname: Schwarz
  fullname: Schwarz, Juliane P.
– sequence: 8
  givenname: Shereen
  surname: Kadir
  fullname: Kadir, Shereen
– sequence: 9
  givenname: Jennifer P.
  surname: Morton
  fullname: Morton, Jennifer P.
– sequence: 10
  givenname: Kevin B.
  surname: Myant
  fullname: Myant, Kevin B.
– sequence: 11
  givenname: David J.
  surname: Huels
  fullname: Huels, David J.
– sequence: 12
  givenname: Anne
  surname: Segonds-Pichon
  fullname: Segonds-Pichon, Anne
– sequence: 13
  givenname: Owen J.
  surname: Sansom
  fullname: Sansom, Owen J.
– sequence: 14
  givenname: Kurt I.
  surname: Anderson
  fullname: Anderson, Kurt I.
– sequence: 15
  givenname: Paul
  surname: Timpson
  fullname: Timpson, Paul
– sequence: 16
  givenname: Heidi C.E.
  surname: Welch
  fullname: Welch, Heidi C.E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24630994$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAQx0VJadI036AUHXvxVi_bUg-FsCRtICUh3Z6FrMeuFq_lStqFfPvKdRKSHCoG9Jr_b6SZeQ-OhjBYAD5itMAIN1-2C237aMcFQZgtECnG3oATQjCuMGHt0bP1MThLaYvKaBDGgr0Dx4Q1FAnBToBZbSy8U7q6vLtYwZ9hn8rWHqzqE1z59SbDX6PKPmS7G0NUPVyGIcfQw-AmGTzX2R98vod-gLfR71S8h0vbF7UaTCGktLfpA3jrCtCePcyn4PflxWr5o7q--X61PL-udM1QrnRDW0Rc3RmktFEdo4Y7pBousHBOICcoRqzuOLIKG2upck3raCeQZjVHnJ6Cq5lrgtrKcX6ODMrLfwchrqWK2eveSt6ZTgmmqBOGUd0K3FHWcaat0G2JX1jfZta473bWaFu-rfoX0Jc3g9_IdThIKjjnjBTA5wdADH9KErLc-VSq1qvBljRLXGPMCSIcF9dPz2M9BXksU3H4OjvoGFKK1knt81SWKbTvJUZyagu5lXNbyKktJCLFJjF7JX7k_1f2F_ZFvus
CitedBy_id crossref_primary_10_1038_nchembio_2096
crossref_primary_10_1002_cnr2_1192
crossref_primary_10_1016_j_bpj_2016_01_037
crossref_primary_10_1093_carcin_bgu108
crossref_primary_10_1016_j_cub_2025_07_063
crossref_primary_10_1038_srep10270
crossref_primary_10_3390_cancers12030665
crossref_primary_10_1016_j_ceb_2021_04_007
crossref_primary_10_1111_eci_12939
crossref_primary_10_1007_s00018_016_2136_y
crossref_primary_10_4161_21541248_2014_973749
crossref_primary_10_1002_1873_3468_13326
crossref_primary_10_1016_j_ccell_2015_02_014
crossref_primary_10_1016_j_ydbio_2017_04_015
crossref_primary_10_12688_f1000research_15064_2
crossref_primary_10_12688_f1000research_15064_1
crossref_primary_10_3389_fcell_2021_642235
crossref_primary_10_1242_jcs_206995
crossref_primary_10_3389_fnins_2016_00356
crossref_primary_10_1007_s41745_016_0010_4
crossref_primary_10_1016_j_ymeth_2017_04_014
crossref_primary_10_1073_pnas_2006445117
crossref_primary_10_1038_s41568_024_00754_y
crossref_primary_10_1016_j_devcel_2018_03_024
crossref_primary_10_1038_mi_2016_65
crossref_primary_10_1038_s41568_019_0221_x
crossref_primary_10_1016_j_cmet_2020_01_001
crossref_primary_10_1038_nrc3742
crossref_primary_10_3389_fimmu_2023_1180886
crossref_primary_10_1146_annurev_cancerbio_030518_055425
crossref_primary_10_3389_fcell_2021_624312
crossref_primary_10_14814_phy2_13033
crossref_primary_10_3389_fncel_2014_00321
crossref_primary_10_1017_erm_2015_17
crossref_primary_10_1038_s41467_018_07286_8
crossref_primary_10_1038_srep11133
crossref_primary_10_1080_21541248_2018_1438024
crossref_primary_10_1111_jth_13318
crossref_primary_10_12688_f1000research_8090_1
crossref_primary_10_1016_j_tips_2017_09_005
crossref_primary_10_3389_fimmu_2023_1223653
crossref_primary_10_7554_eLife_35800
crossref_primary_10_1247_csf_16016
crossref_primary_10_1042_EBC20190019
crossref_primary_10_1038_nprot_2016_121
crossref_primary_10_1093_cvr_cvy032
crossref_primary_10_3389_fimmu_2022_888415
crossref_primary_10_1074_jbc_RA120_013919
crossref_primary_10_12688_f1000research_7370_1
crossref_primary_10_1111_bph_14195
crossref_primary_10_1038_s41598_019_43975_0
crossref_primary_10_1146_annurev_bioeng_071114_040531
crossref_primary_10_1038_s41467_020_20255_4
crossref_primary_10_1111_jth_13723
crossref_primary_10_1038_nrc3724
crossref_primary_10_1182_bloodadvances_2020002782
crossref_primary_10_1158_0008_5472_CAN_15_3534
crossref_primary_10_1242_jcs_258574
crossref_primary_10_1038_s43586_022_00168_w
crossref_primary_10_4049_jimmunol_2101103
Cites_doi 10.1038/embor.2011.249
10.1002/gene.10197
10.1158/0008-5472.CAN-10-2267
10.1016/j.cell.2009.11.026
10.1371/journal.pone.0052258
10.1038/nrm1587
10.1038/nature07935
10.1038/onc.2012.148
10.1016/S1074-7613(00)80019-9
10.1128/MCB.22.18.6582-6591.2002
10.1016/j.devcel.2011.07.008
10.1038/nprot.2009.175
10.1242/dev.017350
10.1016/j.cub.2005.09.050
10.1073/pnas.93.20.10887
10.1073/pnas.0807537105
10.1091/mbc.e04-10-0904
10.1074/jbc.M109.051490
10.1006/abio.2001.5306
10.1016/S0092-8674(02)00663-3
10.1038/ncb1517
10.1073/pnas.0307512101
10.1371/journal.pbio.0050221
10.1038/ncb2061
10.1038/nature06196
10.1038/ncomms1560
10.1242/jcs.089995
10.1016/j.stem.2013.04.006
10.1074/jbc.M306382200
10.1083/jcb.200212049
10.1016/j.devcel.2011.07.013
10.1091/mbc.e11-01-0072
10.1242/jcs.01660
10.1111/j.1755-148X.2010.00669.x
10.4049/jimmunol.1002738
10.1038/nrm2476
10.1038/ncb2003
10.1126/science.1088485
10.1038/ncb2608
10.1242/dev.073924
10.4161/sgtp.2.4.17275
10.1073/pnas.1211882110
10.1073/pnas.0803677105
10.1523/JNEUROSCI.4828-12.2013
10.1126/science.290.5490.333
10.1073/pnas.0908428107
10.1038/nature08242
ContentType Journal Article
Copyright Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
2014 The Authors 2014
Copyright_xml – notice: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2014 The Authors 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2014.02.024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1164
ExternalDocumentID oai_doaj_org_article_8bdba94a3f9d43c791b34b84ce9c7d0a
PMC3988842
24630994
10_1016_j_celrep_2014_02_024
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 15565
– fundername: Cancer Research UK
  grantid: 12481
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I02154X/1
– fundername: Cancer Research UK
  grantid: 11650
– fundername: Worldwide Cancer Research
  grantid: 10-0643
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/B/000C0411
GroupedDBID 0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
O-L
O9-
OK1
RIG
ROL
SSZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c540t-c63702f5bd0acdab43d8f0a68919ff90f931045b80ea1dee3af67f3b90c458083
IEDL.DBID DOA
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333465000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-1247
IngestDate Fri Oct 03 12:48:33 EDT 2025
Tue Sep 30 16:42:02 EDT 2025
Thu Jul 10 23:18:02 EDT 2025
Mon Jul 21 05:53:15 EDT 2025
Wed Nov 05 20:51:11 EST 2025
Tue Nov 18 21:32:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c63702f5bd0acdab43d8f0a68919ff90f931045b80ea1dee3af67f3b90c458083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Research Centre for Animal Genetic Resources of the Mongolia Plateau, Inner Mongolia University, 235 West University Road, 010021 Hohhot, China
These authors contributed equally to this work
OpenAccessLink https://doaj.org/article/8bdba94a3f9d43c791b34b84ce9c7d0a
PMID 24630994
PQID 1511820281
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8bdba94a3f9d43c791b34b84ce9c7d0a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3988842
proquest_miscellaneous_1511820281
pubmed_primary_24630994
crossref_citationtrail_10_1016_j_celrep_2014_02_024
crossref_primary_10_1016_j_celrep_2014_02_024
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2014
Publisher Cell Press
Elsevier
Publisher_xml – name: Cell Press
– name: Elsevier
References Deng (10.1016/j.celrep.2014.02.024_bib6) 2011; 21
Wang (10.1016/j.celrep.2014.02.024_bib40) 2010; 12
Mack (10.1016/j.celrep.2014.02.024_bib25) 2012; 14
Timpson (10.1016/j.celrep.2014.02.024_bib39) 2011; 71
McGhee (10.1016/j.celrep.2014.02.024_bib27) 2011; 2
Kardash (10.1016/j.celrep.2014.02.024_bib18) 2010; 12
Hinde (10.1016/j.celrep.2014.02.024_bib14) 2013; 110
Ferguson (10.1016/j.celrep.2014.02.024_bib8) 2007; 9
Hirata (10.1016/j.celrep.2014.02.024_bib15) 2012; 125
Komatsu (10.1016/j.celrep.2014.02.024_bib19) 2011; 22
Machacek (10.1016/j.celrep.2014.02.024_bib24) 2009; 461
Aoki (10.1016/j.celrep.2014.02.024_bib2) 2004; 279
Rajagopal (10.1016/j.celrep.2014.02.024_bib35) 2010; 285
Welch (10.1016/j.celrep.2014.02.024_bib43) 2005; 15
Gao (10.1016/j.celrep.2014.02.024_bib9) 2004; 101
Feil (10.1016/j.celrep.2014.02.024_bib7) 1996; 93
Itoh (10.1016/j.celrep.2014.02.024_bib17) 2002; 22
Sato (10.1016/j.celrep.2014.02.024_bib38) 2009; 459
Weiner (10.1016/j.celrep.2014.02.024_bib41) 2007; 5
Matthews (10.1016/j.celrep.2014.02.024_bib26) 2008; 135
Myant (10.1016/j.celrep.2014.02.024_bib32) 2013; 12
Delmas (10.1016/j.celrep.2014.02.024_bib5) 2003; 36
Welch (10.1016/j.celrep.2014.02.024_bib42) 2002; 108
Morton (10.1016/j.celrep.2014.02.024_bib29) 2010; 107
Rossman (10.1016/j.celrep.2014.02.024_bib37) 2005; 6
Nakaya (10.1016/j.celrep.2014.02.024_bib33) 2008; 105
Graham (10.1016/j.celrep.2014.02.024_bib11) 2001; 296
Muller (10.1016/j.celrep.2014.02.024_bib30) 2009; 139
Wennerberg (10.1016/j.celrep.2014.02.024_bib44) 2005; 118
Barker (10.1016/j.celrep.2014.02.024_bib4) 2007; 449
Roberts (10.1016/j.celrep.2014.02.024_bib36) 1999; 10
Xu (10.1016/j.celrep.2014.02.024_bib45) 2012; 139
Muller (10.1016/j.celrep.2014.02.024_bib31) 2013; 32
Lindsay (10.1016/j.celrep.2014.02.024_bib23) 2011; 2
Aoki (10.1016/j.celrep.2014.02.024_bib1) 2009; 4
Hodgson (10.1016/j.celrep.2014.02.024_bib16) 2010
Lawson (10.1016/j.celrep.2014.02.024_bib21) 2011; 186
Aoki (10.1016/j.celrep.2014.02.024_bib3) 2005; 16
Kraynov (10.1016/j.celrep.2014.02.024_bib20) 2000; 290
Goto (10.1016/j.celrep.2014.02.024_bib10) 2013; 33
Heasman (10.1016/j.celrep.2014.02.024_bib13) 2008; 9
Yagi (10.1016/j.celrep.2014.02.024_bib47) 2012; 13
Yoshizaki (10.1016/j.celrep.2014.02.024_bib48) 2003; 162
Li (10.1016/j.celrep.2014.02.024_bib22) 2011; 21
Gu (10.1016/j.celrep.2014.02.024_bib12) 2003; 302
Yagi (10.1016/j.celrep.2014.02.024_bib46) 2012; 7
Mort (10.1016/j.celrep.2014.02.024_bib28) 2010; 23
Ouyang (10.1016/j.celrep.2014.02.024_bib34) 2008; 105
References_xml – volume: 13
  start-page: 237
  year: 2012
  ident: 10.1016/j.celrep.2014.02.024_bib47
  article-title: Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.249
– volume: 36
  start-page: 73
  year: 2003
  ident: 10.1016/j.celrep.2014.02.024_bib5
  article-title: Cre-mediated recombination in the skin melanocyte lineage
  publication-title: Genesis
  doi: 10.1002/gene.10197
– volume: 71
  start-page: 747
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib39
  article-title: Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2267
– volume: 139
  start-page: 1327
  year: 2009
  ident: 10.1016/j.celrep.2014.02.024_bib30
  article-title: Mutant p53 drives invasion by promoting integrin recycling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.026
– volume: 7
  start-page: e52258
  year: 2012
  ident: 10.1016/j.celrep.2014.02.024_bib46
  article-title: Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052258
– volume: 6
  start-page: 167
  year: 2005
  ident: 10.1016/j.celrep.2014.02.024_bib37
  article-title: GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1587
– volume: 459
  start-page: 262
  year: 2009
  ident: 10.1016/j.celrep.2014.02.024_bib38
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 32
  start-page: 1252
  year: 2013
  ident: 10.1016/j.celrep.2014.02.024_bib31
  article-title: Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion
  publication-title: Oncogene
  doi: 10.1038/onc.2012.148
– volume: 10
  start-page: 183
  year: 1999
  ident: 10.1016/j.celrep.2014.02.024_bib36
  article-title: Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80019-9
– start-page: 11
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib16
  article-title: Biosensors for characterizing the dynamics of rho family GTPases in living cells
– volume: 22
  start-page: 6582
  year: 2002
  ident: 10.1016/j.celrep.2014.02.024_bib17
  article-title: Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.18.6582-6591.2002
– volume: 21
  start-page: 722
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib22
  article-title: Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.07.008
– volume: 4
  start-page: 1623
  year: 2009
  ident: 10.1016/j.celrep.2014.02.024_bib1
  article-title: Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.175
– volume: 135
  start-page: 1771
  year: 2008
  ident: 10.1016/j.celrep.2014.02.024_bib26
  article-title: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA
  publication-title: Development
  doi: 10.1242/dev.017350
– volume: 15
  start-page: 1867
  year: 2005
  ident: 10.1016/j.celrep.2014.02.024_bib43
  article-title: P-Rex1 regulates neutrophil function
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.09.050
– volume: 93
  start-page: 10887
  year: 1996
  ident: 10.1016/j.celrep.2014.02.024_bib7
  article-title: Ligand-activated site-specific recombination in mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.20.10887
– volume: 105
  start-page: 14353
  year: 2008
  ident: 10.1016/j.celrep.2014.02.024_bib34
  article-title: Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807537105
– volume: 16
  start-page: 2207
  year: 2005
  ident: 10.1016/j.celrep.2014.02.024_bib3
  article-title: Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-10-0904
– volume: 285
  start-page: 18060
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib35
  article-title: Scaffold proteins IRSp53 and spinophilin regulate localized Rac activation by T-lymphocyte invasion and metastasis protein 1 (TIAM1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.051490
– volume: 296
  start-page: 208
  year: 2001
  ident: 10.1016/j.celrep.2014.02.024_bib11
  article-title: A method to measure the interaction of Rac/Cdc42 with their binding partners using fluorescence resonance energy transfer between mutants of green fluorescent protein
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5306
– volume: 108
  start-page: 809
  year: 2002
  ident: 10.1016/j.celrep.2014.02.024_bib42
  article-title: P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00663-3
– volume: 9
  start-page: 86
  year: 2007
  ident: 10.1016/j.celrep.2014.02.024_bib8
  article-title: PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1517
– volume: 101
  start-page: 7618
  year: 2004
  ident: 10.1016/j.celrep.2014.02.024_bib9
  article-title: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0307512101
– volume: 5
  start-page: e221
  year: 2007
  ident: 10.1016/j.celrep.2014.02.024_bib41
  article-title: An actin-based wave generator organizes cell motility
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050221
– volume: 12
  start-page: 591
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib40
  article-title: Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2061
– volume: 449
  start-page: 1003
  year: 2007
  ident: 10.1016/j.celrep.2014.02.024_bib4
  article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5
  publication-title: Nature
  doi: 10.1038/nature06196
– volume: 2
  start-page: 555
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib23
  article-title: P-Rex1 is required for efficient melanoblast migration and melanoma metastasis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1560
– volume: 125
  start-page: 858
  year: 2012
  ident: 10.1016/j.celrep.2014.02.024_bib15
  article-title: In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.089995
– volume: 12
  start-page: 761
  year: 2013
  ident: 10.1016/j.celrep.2014.02.024_bib32
  article-title: ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.04.006
– volume: 279
  start-page: 713
  year: 2004
  ident: 10.1016/j.celrep.2014.02.024_bib2
  article-title: Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M306382200
– volume: 162
  start-page: 223
  year: 2003
  ident: 10.1016/j.celrep.2014.02.024_bib48
  article-title: Activity of Rho-family GTPases during cell division as visualized with FRET-based probes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200212049
– volume: 21
  start-page: 735
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib6
  article-title: Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.07.013
– volume: 22
  start-page: 4647
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib19
  article-title: Development of an optimized backbone of FRET biosensors for kinases and GTPases
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e11-01-0072
– volume: 118
  start-page: 843
  year: 2005
  ident: 10.1016/j.celrep.2014.02.024_bib44
  article-title: The Ras superfamily at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01660
– volume: 23
  start-page: 299
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib28
  article-title: Ex vivo live imaging of melanoblast migration in embryonic mouse skin
  publication-title: Pigment Cell Melanoma Res.
  doi: 10.1111/j.1755-148X.2010.00669.x
– volume: 186
  start-page: 1467
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib21
  article-title: P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002738
– volume: 9
  start-page: 690
  year: 2008
  ident: 10.1016/j.celrep.2014.02.024_bib13
  article-title: Mammalian Rho GTPases: new insights into their functions from in vivo studies
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2476
– volume: 12
  start-page: 47
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib18
  article-title: A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2003
– volume: 302
  start-page: 445
  year: 2003
  ident: 10.1016/j.celrep.2014.02.024_bib12
  article-title: Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases
  publication-title: Science
  doi: 10.1126/science.1088485
– volume: 14
  start-page: 1169
  year: 2012
  ident: 10.1016/j.celrep.2014.02.024_bib25
  article-title: β2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2608
– volume: 139
  start-page: 57
  year: 2012
  ident: 10.1016/j.celrep.2014.02.024_bib45
  article-title: Gβγ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity
  publication-title: Development
  doi: 10.1242/dev.073924
– volume: 2
  start-page: 239
  year: 2011
  ident: 10.1016/j.celrep.2014.02.024_bib27
  article-title: FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion
  publication-title: Small GTPases
  doi: 10.4161/sgtp.2.4.17275
– volume: 110
  start-page: 135
  year: 2013
  ident: 10.1016/j.celrep.2014.02.024_bib14
  article-title: Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211882110
– volume: 105
  start-page: 9198
  year: 2008
  ident: 10.1016/j.celrep.2014.02.024_bib33
  article-title: Spatiotemporal activation of Rac1 for engulfment of apoptotic cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0803677105
– volume: 33
  start-page: 4901
  year: 2013
  ident: 10.1016/j.celrep.2014.02.024_bib10
  article-title: GDNF and endothelin 3 regulate migration of enteric neural crest-derived cells via protein kinase A and Rac1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4828-12.2013
– volume: 290
  start-page: 333
  year: 2000
  ident: 10.1016/j.celrep.2014.02.024_bib20
  article-title: Localized Rac activation dynamics visualized in living cells
  publication-title: Science
  doi: 10.1126/science.290.5490.333
– volume: 107
  start-page: 246
  year: 2010
  ident: 10.1016/j.celrep.2014.02.024_bib29
  article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0908428107
– volume: 461
  start-page: 99
  year: 2009
  ident: 10.1016/j.celrep.2014.02.024_bib24
  article-title: Coordination of Rho GTPase activities during cell protrusion
  publication-title: Nature
  doi: 10.1038/nature08242
SSID ssj0000601194
Score 2.3496265
Snippet The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1153
SubjectTerms Animals
Enzyme Activation
Fluorescence Resonance Energy Transfer - methods
Mice
Neutrophils - cytology
Neutrophils - enzymology
rac GTP-Binding Proteins - chemistry
rac GTP-Binding Proteins - metabolism
Resource
Signal Transduction
Spatio-Temporal Analysis
Title The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues
URI https://www.ncbi.nlm.nih.gov/pubmed/24630994
https://www.proquest.com/docview/1511820281
https://pubmed.ncbi.nlm.nih.gov/PMC3988842
https://doaj.org/article/8bdba94a3f9d43c791b34b84ce9c7d0a
Volume 6
WOSCitedRecordID wos000333465000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtaKGXkD6zeaFCr6LWYy3pmCxZcmkI6Rb2JvSkWxYnbDaB_PuMJO-yWwK5BHyxPbLHM2PrGzT-BqEfMkXBpaeEUh2JiCoQp5pI2tAySKB98MKVZhPy8lJNp_pqo9VXrgmr9MDVcD-VC85qYXnSQXAvNXVcOCV81F6GpkAjQD0byVT9Bmcus7ykzFiu2WJCrv6bK8VdPs4XMdNVUlEoO5nYmpcKff9zmPP_0smNuWi8h3Z7EIlPq_If0ZvYfULva1vJx88ogO_xtfVkfH0-wb8gt4fd-ACQ8A5PcjKOf5c66p6Wao5HtV4d36Q8DJ_62lICzzp8Vdko8CjOYbTtAlyhNOz7gv6MzyejC9J3UyAeUNmS-JbLhqWhA6P5YJ3gQaXGtkpTnZJukgakJ4bZU5aGGLlNrUzc6caLoQKk9hXtdDdd3EcYJJoUvRqy1uWO1c5JB7IAxah2ioUB4itbGt9TjeeOF3Ozqin7Z6oHTPaAaRhsYoDIetRtfbgX5M-ym9aymSi7HIDwMX34mJfCZ4C-r5xs4MXKqyW2i-AYQ0vuBfCLDtC36vT1rZhoOUBrUEFuhcOWLttnutnfQt7NtVJKsIPXUP4Qfcj2qCVxR2hnubiPx-idf1jO7hYn6K2cqpPyXjwBgokSVg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Rac-FRET+Mouse+Reveals+Tight+Spatiotemporal+Control+of+Rac+Activity+in+Primary+Cells+and+Tissues&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Johnsson%2C+Anna-Karin%C2%A0E.&rft.au=Dai%2C+Yanfeng&rft.au=Nobis%2C+Max&rft.au=Baker%2C+Martin%C2%A0J.&rft.date=2014-03-01&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=6&rft.issue=6&rft.spage=1153&rft.epage=1164&rft_id=info:doi/10.1016%2Fj.celrep.2014.02.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2014_02_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon