The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues
The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It...
Uloženo v:
| Vydáno v: | Cell reports (Cambridge) Ročník 6; číslo 6; s. 1153 - 1164 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Cell Press
01.03.2014
Elsevier |
| Témata: | |
| ISSN: | 2211-1247, 2211-1247 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments. |
|---|---|
| AbstractList | The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments. The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments. The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments. • A Rac-FRET mouse for monitoring of Rac activity in live tissues and primary cells • Longitudinal shifts and oscillations of Rac activity during neutrophil chemotaxis • Rac activity in mouse tissues upon stimulation, inhibition, or genetic manipulation • Intravital imaging of Rac activity in multiple tissues during disease development The small G protein Rac is a signaling switch that controls cell morphology and migration. Here, Timpson, Welch, and colleagues present a mouse strain, Rac-FRET, which enables the imaging and quantification of Rac activity in living tissue and primary cells. Their use of the Rac-FRET mouse reveals novel patterns of Rac activity in neutrophil chemotaxis and unexpected insights into Rac signaling in normal or disease states of the intestine, liver, mammary tissue, pancreas, and skin. |
| Author | Nobis, Max Morton, Jennifer P. Baker, Martin J. Schwarz, Juliane P. Dai, Yanfeng Sansom, Owen J. Kadir, Shereen Anderson, Kurt I. McGhee, Ewan J. Walker, Simon Welch, Heidi C.E. Myant, Kevin B. Huels, David J. Segonds-Pichon, Anne Johnsson, Anna-Karin E. Timpson, Paul |
| AuthorAffiliation | 2 Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK 3 Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia 1 Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK |
| AuthorAffiliation_xml | – name: 2 Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK – name: 1 Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK – name: 3 Garvan Institute of Medical Research and Kinghorn Cancer Centre, Cancer Research Program, St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW, 2010 Sydney, Australia |
| Author_xml | – sequence: 1 givenname: Anna-Karin E. surname: Johnsson fullname: Johnsson, Anna-Karin E. – sequence: 2 givenname: Yanfeng surname: Dai fullname: Dai, Yanfeng – sequence: 3 givenname: Max surname: Nobis fullname: Nobis, Max – sequence: 4 givenname: Martin J. surname: Baker fullname: Baker, Martin J. – sequence: 5 givenname: Ewan J. surname: McGhee fullname: McGhee, Ewan J. – sequence: 6 givenname: Simon surname: Walker fullname: Walker, Simon – sequence: 7 givenname: Juliane P. surname: Schwarz fullname: Schwarz, Juliane P. – sequence: 8 givenname: Shereen surname: Kadir fullname: Kadir, Shereen – sequence: 9 givenname: Jennifer P. surname: Morton fullname: Morton, Jennifer P. – sequence: 10 givenname: Kevin B. surname: Myant fullname: Myant, Kevin B. – sequence: 11 givenname: David J. surname: Huels fullname: Huels, David J. – sequence: 12 givenname: Anne surname: Segonds-Pichon fullname: Segonds-Pichon, Anne – sequence: 13 givenname: Owen J. surname: Sansom fullname: Sansom, Owen J. – sequence: 14 givenname: Kurt I. surname: Anderson fullname: Anderson, Kurt I. – sequence: 15 givenname: Paul surname: Timpson fullname: Timpson, Paul – sequence: 16 givenname: Heidi C.E. surname: Welch fullname: Welch, Heidi C.E. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24630994$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktr3DAQx0VJadI036AUHXvxVi_bUg-FsCRtICUh3Z6FrMeuFq_lStqFfPvKdRKSHCoG9Jr_b6SZeQ-OhjBYAD5itMAIN1-2C237aMcFQZgtECnG3oATQjCuMGHt0bP1MThLaYvKaBDGgr0Dx4Q1FAnBToBZbSy8U7q6vLtYwZ9hn8rWHqzqE1z59SbDX6PKPmS7G0NUPVyGIcfQw-AmGTzX2R98vod-gLfR71S8h0vbF7UaTCGktLfpA3jrCtCePcyn4PflxWr5o7q--X61PL-udM1QrnRDW0Rc3RmktFEdo4Y7pBousHBOICcoRqzuOLIKG2upck3raCeQZjVHnJ6Cq5lrgtrKcX6ODMrLfwchrqWK2eveSt6ZTgmmqBOGUd0K3FHWcaat0G2JX1jfZta473bWaFu-rfoX0Jc3g9_IdThIKjjnjBTA5wdADH9KErLc-VSq1qvBljRLXGPMCSIcF9dPz2M9BXksU3H4OjvoGFKK1knt81SWKbTvJUZyagu5lXNbyKktJCLFJjF7JX7k_1f2F_ZFvus |
| CitedBy_id | crossref_primary_10_1038_nchembio_2096 crossref_primary_10_1002_cnr2_1192 crossref_primary_10_1016_j_bpj_2016_01_037 crossref_primary_10_1093_carcin_bgu108 crossref_primary_10_1016_j_cub_2025_07_063 crossref_primary_10_1038_srep10270 crossref_primary_10_3390_cancers12030665 crossref_primary_10_1016_j_ceb_2021_04_007 crossref_primary_10_1111_eci_12939 crossref_primary_10_1007_s00018_016_2136_y crossref_primary_10_4161_21541248_2014_973749 crossref_primary_10_1002_1873_3468_13326 crossref_primary_10_1016_j_ccell_2015_02_014 crossref_primary_10_1016_j_ydbio_2017_04_015 crossref_primary_10_12688_f1000research_15064_2 crossref_primary_10_12688_f1000research_15064_1 crossref_primary_10_3389_fcell_2021_642235 crossref_primary_10_1242_jcs_206995 crossref_primary_10_3389_fnins_2016_00356 crossref_primary_10_1007_s41745_016_0010_4 crossref_primary_10_1016_j_ymeth_2017_04_014 crossref_primary_10_1073_pnas_2006445117 crossref_primary_10_1038_s41568_024_00754_y crossref_primary_10_1016_j_devcel_2018_03_024 crossref_primary_10_1038_mi_2016_65 crossref_primary_10_1038_s41568_019_0221_x crossref_primary_10_1016_j_cmet_2020_01_001 crossref_primary_10_1038_nrc3742 crossref_primary_10_3389_fimmu_2023_1180886 crossref_primary_10_1146_annurev_cancerbio_030518_055425 crossref_primary_10_3389_fcell_2021_624312 crossref_primary_10_14814_phy2_13033 crossref_primary_10_3389_fncel_2014_00321 crossref_primary_10_1017_erm_2015_17 crossref_primary_10_1038_s41467_018_07286_8 crossref_primary_10_1038_srep11133 crossref_primary_10_1080_21541248_2018_1438024 crossref_primary_10_1111_jth_13318 crossref_primary_10_12688_f1000research_8090_1 crossref_primary_10_1016_j_tips_2017_09_005 crossref_primary_10_3389_fimmu_2023_1223653 crossref_primary_10_7554_eLife_35800 crossref_primary_10_1247_csf_16016 crossref_primary_10_1042_EBC20190019 crossref_primary_10_1038_nprot_2016_121 crossref_primary_10_1093_cvr_cvy032 crossref_primary_10_3389_fimmu_2022_888415 crossref_primary_10_1074_jbc_RA120_013919 crossref_primary_10_12688_f1000research_7370_1 crossref_primary_10_1111_bph_14195 crossref_primary_10_1038_s41598_019_43975_0 crossref_primary_10_1146_annurev_bioeng_071114_040531 crossref_primary_10_1038_s41467_020_20255_4 crossref_primary_10_1111_jth_13723 crossref_primary_10_1038_nrc3724 crossref_primary_10_1182_bloodadvances_2020002782 crossref_primary_10_1158_0008_5472_CAN_15_3534 crossref_primary_10_1242_jcs_258574 crossref_primary_10_1038_s43586_022_00168_w crossref_primary_10_4049_jimmunol_2101103 |
| Cites_doi | 10.1038/embor.2011.249 10.1002/gene.10197 10.1158/0008-5472.CAN-10-2267 10.1016/j.cell.2009.11.026 10.1371/journal.pone.0052258 10.1038/nrm1587 10.1038/nature07935 10.1038/onc.2012.148 10.1016/S1074-7613(00)80019-9 10.1128/MCB.22.18.6582-6591.2002 10.1016/j.devcel.2011.07.008 10.1038/nprot.2009.175 10.1242/dev.017350 10.1016/j.cub.2005.09.050 10.1073/pnas.93.20.10887 10.1073/pnas.0807537105 10.1091/mbc.e04-10-0904 10.1074/jbc.M109.051490 10.1006/abio.2001.5306 10.1016/S0092-8674(02)00663-3 10.1038/ncb1517 10.1073/pnas.0307512101 10.1371/journal.pbio.0050221 10.1038/ncb2061 10.1038/nature06196 10.1038/ncomms1560 10.1242/jcs.089995 10.1016/j.stem.2013.04.006 10.1074/jbc.M306382200 10.1083/jcb.200212049 10.1016/j.devcel.2011.07.013 10.1091/mbc.e11-01-0072 10.1242/jcs.01660 10.1111/j.1755-148X.2010.00669.x 10.4049/jimmunol.1002738 10.1038/nrm2476 10.1038/ncb2003 10.1126/science.1088485 10.1038/ncb2608 10.1242/dev.073924 10.4161/sgtp.2.4.17275 10.1073/pnas.1211882110 10.1073/pnas.0803677105 10.1523/JNEUROSCI.4828-12.2013 10.1126/science.290.5490.333 10.1073/pnas.0908428107 10.1038/nature08242 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014 The Authors 2014 |
| Copyright_xml | – notice: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2014 The Authors 2014 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.celrep.2014.02.024 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2211-1247 |
| EndPage | 1164 |
| ExternalDocumentID | oai_doaj_org_article_8bdba94a3f9d43c791b34b84ce9c7d0a PMC3988842 24630994 10_1016_j_celrep_2014_02_024 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 15565 – fundername: Cancer Research UK grantid: 12481 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I02154X/1 – fundername: Cancer Research UK grantid: 11650 – fundername: Worldwide Cancer Research grantid: 10-0643 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/B/000C0411 |
| GroupedDBID | 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV CITATION DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 HZ~ IPNFZ IXB KQ8 M41 M48 O-L O9- OK1 RIG ROL SSZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c540t-c63702f5bd0acdab43d8f0a68919ff90f931045b80ea1dee3af67f3b90c458083 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333465000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-1247 |
| IngestDate | Fri Oct 03 12:48:33 EDT 2025 Tue Sep 30 16:42:02 EDT 2025 Thu Jul 10 23:18:02 EDT 2025 Mon Jul 21 05:53:15 EDT 2025 Wed Nov 05 20:51:11 EST 2025 Tue Nov 18 21:32:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-c63702f5bd0acdab43d8f0a68919ff90f931045b80ea1dee3af67f3b90c458083 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Research Centre for Animal Genetic Resources of the Mongolia Plateau, Inner Mongolia University, 235 West University Road, 010021 Hohhot, China These authors contributed equally to this work |
| OpenAccessLink | https://doaj.org/article/8bdba94a3f9d43c791b34b84ce9c7d0a |
| PMID | 24630994 |
| PQID | 1511820281 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8bdba94a3f9d43c791b34b84ce9c7d0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3988842 proquest_miscellaneous_1511820281 pubmed_primary_24630994 crossref_citationtrail_10_1016_j_celrep_2014_02_024 crossref_primary_10_1016_j_celrep_2014_02_024 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-03-01 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cell reports (Cambridge) |
| PublicationTitleAlternate | Cell Rep |
| PublicationYear | 2014 |
| Publisher | Cell Press Elsevier |
| Publisher_xml | – name: Cell Press – name: Elsevier |
| References | Deng (10.1016/j.celrep.2014.02.024_bib6) 2011; 21 Wang (10.1016/j.celrep.2014.02.024_bib40) 2010; 12 Mack (10.1016/j.celrep.2014.02.024_bib25) 2012; 14 Timpson (10.1016/j.celrep.2014.02.024_bib39) 2011; 71 McGhee (10.1016/j.celrep.2014.02.024_bib27) 2011; 2 Kardash (10.1016/j.celrep.2014.02.024_bib18) 2010; 12 Hinde (10.1016/j.celrep.2014.02.024_bib14) 2013; 110 Ferguson (10.1016/j.celrep.2014.02.024_bib8) 2007; 9 Hirata (10.1016/j.celrep.2014.02.024_bib15) 2012; 125 Komatsu (10.1016/j.celrep.2014.02.024_bib19) 2011; 22 Machacek (10.1016/j.celrep.2014.02.024_bib24) 2009; 461 Aoki (10.1016/j.celrep.2014.02.024_bib2) 2004; 279 Rajagopal (10.1016/j.celrep.2014.02.024_bib35) 2010; 285 Welch (10.1016/j.celrep.2014.02.024_bib43) 2005; 15 Gao (10.1016/j.celrep.2014.02.024_bib9) 2004; 101 Feil (10.1016/j.celrep.2014.02.024_bib7) 1996; 93 Itoh (10.1016/j.celrep.2014.02.024_bib17) 2002; 22 Sato (10.1016/j.celrep.2014.02.024_bib38) 2009; 459 Weiner (10.1016/j.celrep.2014.02.024_bib41) 2007; 5 Matthews (10.1016/j.celrep.2014.02.024_bib26) 2008; 135 Myant (10.1016/j.celrep.2014.02.024_bib32) 2013; 12 Delmas (10.1016/j.celrep.2014.02.024_bib5) 2003; 36 Welch (10.1016/j.celrep.2014.02.024_bib42) 2002; 108 Morton (10.1016/j.celrep.2014.02.024_bib29) 2010; 107 Rossman (10.1016/j.celrep.2014.02.024_bib37) 2005; 6 Nakaya (10.1016/j.celrep.2014.02.024_bib33) 2008; 105 Graham (10.1016/j.celrep.2014.02.024_bib11) 2001; 296 Muller (10.1016/j.celrep.2014.02.024_bib30) 2009; 139 Wennerberg (10.1016/j.celrep.2014.02.024_bib44) 2005; 118 Barker (10.1016/j.celrep.2014.02.024_bib4) 2007; 449 Roberts (10.1016/j.celrep.2014.02.024_bib36) 1999; 10 Xu (10.1016/j.celrep.2014.02.024_bib45) 2012; 139 Muller (10.1016/j.celrep.2014.02.024_bib31) 2013; 32 Lindsay (10.1016/j.celrep.2014.02.024_bib23) 2011; 2 Aoki (10.1016/j.celrep.2014.02.024_bib1) 2009; 4 Hodgson (10.1016/j.celrep.2014.02.024_bib16) 2010 Lawson (10.1016/j.celrep.2014.02.024_bib21) 2011; 186 Aoki (10.1016/j.celrep.2014.02.024_bib3) 2005; 16 Kraynov (10.1016/j.celrep.2014.02.024_bib20) 2000; 290 Goto (10.1016/j.celrep.2014.02.024_bib10) 2013; 33 Heasman (10.1016/j.celrep.2014.02.024_bib13) 2008; 9 Yagi (10.1016/j.celrep.2014.02.024_bib47) 2012; 13 Yoshizaki (10.1016/j.celrep.2014.02.024_bib48) 2003; 162 Li (10.1016/j.celrep.2014.02.024_bib22) 2011; 21 Gu (10.1016/j.celrep.2014.02.024_bib12) 2003; 302 Yagi (10.1016/j.celrep.2014.02.024_bib46) 2012; 7 Mort (10.1016/j.celrep.2014.02.024_bib28) 2010; 23 Ouyang (10.1016/j.celrep.2014.02.024_bib34) 2008; 105 |
| References_xml | – volume: 13 start-page: 237 year: 2012 ident: 10.1016/j.celrep.2014.02.024_bib47 article-title: Suppression of Rac1 activity at the apical membrane of MDCK cells is essential for cyst structure maintenance publication-title: EMBO Rep. doi: 10.1038/embor.2011.249 – volume: 36 start-page: 73 year: 2003 ident: 10.1016/j.celrep.2014.02.024_bib5 article-title: Cre-mediated recombination in the skin melanocyte lineage publication-title: Genesis doi: 10.1002/gene.10197 – volume: 71 start-page: 747 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib39 article-title: Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2267 – volume: 139 start-page: 1327 year: 2009 ident: 10.1016/j.celrep.2014.02.024_bib30 article-title: Mutant p53 drives invasion by promoting integrin recycling publication-title: Cell doi: 10.1016/j.cell.2009.11.026 – volume: 7 start-page: e52258 year: 2012 ident: 10.1016/j.celrep.2014.02.024_bib46 article-title: Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure publication-title: PLoS ONE doi: 10.1371/journal.pone.0052258 – volume: 6 start-page: 167 year: 2005 ident: 10.1016/j.celrep.2014.02.024_bib37 article-title: GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1587 – volume: 459 start-page: 262 year: 2009 ident: 10.1016/j.celrep.2014.02.024_bib38 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature doi: 10.1038/nature07935 – volume: 32 start-page: 1252 year: 2013 ident: 10.1016/j.celrep.2014.02.024_bib31 article-title: Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion publication-title: Oncogene doi: 10.1038/onc.2012.148 – volume: 10 start-page: 183 year: 1999 ident: 10.1016/j.celrep.2014.02.024_bib36 article-title: Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense publication-title: Immunity doi: 10.1016/S1074-7613(00)80019-9 – start-page: 11 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib16 article-title: Biosensors for characterizing the dynamics of rho family GTPases in living cells – volume: 22 start-page: 6582 year: 2002 ident: 10.1016/j.celrep.2014.02.024_bib17 article-title: Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.18.6582-6591.2002 – volume: 21 start-page: 722 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib22 article-title: Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod- driven motility and cell-cycle progression publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.07.008 – volume: 4 start-page: 1623 year: 2009 ident: 10.1016/j.celrep.2014.02.024_bib1 article-title: Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.175 – volume: 135 start-page: 1771 year: 2008 ident: 10.1016/j.celrep.2014.02.024_bib26 article-title: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA publication-title: Development doi: 10.1242/dev.017350 – volume: 15 start-page: 1867 year: 2005 ident: 10.1016/j.celrep.2014.02.024_bib43 article-title: P-Rex1 regulates neutrophil function publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.09.050 – volume: 93 start-page: 10887 year: 1996 ident: 10.1016/j.celrep.2014.02.024_bib7 article-title: Ligand-activated site-specific recombination in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.20.10887 – volume: 105 start-page: 14353 year: 2008 ident: 10.1016/j.celrep.2014.02.024_bib34 article-title: Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807537105 – volume: 16 start-page: 2207 year: 2005 ident: 10.1016/j.celrep.2014.02.024_bib3 article-title: Local phosphatidylinositol 3,4,5-trisphosphate accumulation recruits Vav2 and Vav3 to activate Rac1/Cdc42 and initiate neurite outgrowth in nerve growth factor-stimulated PC12 cells publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-10-0904 – volume: 285 start-page: 18060 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib35 article-title: Scaffold proteins IRSp53 and spinophilin regulate localized Rac activation by T-lymphocyte invasion and metastasis protein 1 (TIAM1) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.051490 – volume: 296 start-page: 208 year: 2001 ident: 10.1016/j.celrep.2014.02.024_bib11 article-title: A method to measure the interaction of Rac/Cdc42 with their binding partners using fluorescence resonance energy transfer between mutants of green fluorescent protein publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5306 – volume: 108 start-page: 809 year: 2002 ident: 10.1016/j.celrep.2014.02.024_bib42 article-title: P-Rex1, a PtdIns(3,4,5)P3- and Gbetagamma-regulated guanine-nucleotide exchange factor for Rac publication-title: Cell doi: 10.1016/S0092-8674(02)00663-3 – volume: 9 start-page: 86 year: 2007 ident: 10.1016/j.celrep.2014.02.024_bib8 article-title: PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis publication-title: Nat. Cell Biol. doi: 10.1038/ncb1517 – volume: 101 start-page: 7618 year: 2004 ident: 10.1016/j.celrep.2014.02.024_bib9 article-title: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0307512101 – volume: 5 start-page: e221 year: 2007 ident: 10.1016/j.celrep.2014.02.024_bib41 article-title: An actin-based wave generator organizes cell motility publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050221 – volume: 12 start-page: 591 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib40 article-title: Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo publication-title: Nat. Cell Biol. doi: 10.1038/ncb2061 – volume: 449 start-page: 1003 year: 2007 ident: 10.1016/j.celrep.2014.02.024_bib4 article-title: Identification of stem cells in small intestine and colon by marker gene Lgr5 publication-title: Nature doi: 10.1038/nature06196 – volume: 2 start-page: 555 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib23 article-title: P-Rex1 is required for efficient melanoblast migration and melanoma metastasis publication-title: Nat. Commun. doi: 10.1038/ncomms1560 – volume: 125 start-page: 858 year: 2012 ident: 10.1016/j.celrep.2014.02.024_bib15 article-title: In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion publication-title: J. Cell Sci. doi: 10.1242/jcs.089995 – volume: 12 start-page: 761 year: 2013 ident: 10.1016/j.celrep.2014.02.024_bib32 article-title: ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.04.006 – volume: 279 start-page: 713 year: 2004 ident: 10.1016/j.celrep.2014.02.024_bib2 article-title: Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M306382200 – volume: 162 start-page: 223 year: 2003 ident: 10.1016/j.celrep.2014.02.024_bib48 article-title: Activity of Rho-family GTPases during cell division as visualized with FRET-based probes publication-title: J. Cell Biol. doi: 10.1083/jcb.200212049 – volume: 21 start-page: 735 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib6 article-title: Dual roles for Rac2 in neutrophil motility and active retention in zebrafish hematopoietic tissue publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.07.013 – volume: 22 start-page: 4647 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib19 article-title: Development of an optimized backbone of FRET biosensors for kinases and GTPases publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-01-0072 – volume: 118 start-page: 843 year: 2005 ident: 10.1016/j.celrep.2014.02.024_bib44 article-title: The Ras superfamily at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.01660 – volume: 23 start-page: 299 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib28 article-title: Ex vivo live imaging of melanoblast migration in embryonic mouse skin publication-title: Pigment Cell Melanoma Res. doi: 10.1111/j.1755-148X.2010.00669.x – volume: 186 start-page: 1467 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib21 article-title: P-Rex1 and Vav1 cooperate in the regulation of formyl-methionyl-leucyl-phenylalanine-dependent neutrophil responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1002738 – volume: 9 start-page: 690 year: 2008 ident: 10.1016/j.celrep.2014.02.024_bib13 article-title: Mammalian Rho GTPases: new insights into their functions from in vivo studies publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2476 – volume: 12 start-page: 47 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib18 article-title: A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo publication-title: Nat. Cell Biol. doi: 10.1038/ncb2003 – volume: 302 start-page: 445 year: 2003 ident: 10.1016/j.celrep.2014.02.024_bib12 article-title: Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases publication-title: Science doi: 10.1126/science.1088485 – volume: 14 start-page: 1169 year: 2012 ident: 10.1016/j.celrep.2014.02.024_bib25 article-title: β2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity publication-title: Nat. Cell Biol. doi: 10.1038/ncb2608 – volume: 139 start-page: 57 year: 2012 ident: 10.1016/j.celrep.2014.02.024_bib45 article-title: Gβγ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity publication-title: Development doi: 10.1242/dev.073924 – volume: 2 start-page: 239 year: 2011 ident: 10.1016/j.celrep.2014.02.024_bib27 article-title: FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion publication-title: Small GTPases doi: 10.4161/sgtp.2.4.17275 – volume: 110 start-page: 135 year: 2013 ident: 10.1016/j.celrep.2014.02.024_bib14 article-title: Millisecond spatiotemporal dynamics of FRET biosensors by the pair correlation function and the phasor approach to FLIM publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1211882110 – volume: 105 start-page: 9198 year: 2008 ident: 10.1016/j.celrep.2014.02.024_bib33 article-title: Spatiotemporal activation of Rac1 for engulfment of apoptotic cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0803677105 – volume: 33 start-page: 4901 year: 2013 ident: 10.1016/j.celrep.2014.02.024_bib10 article-title: GDNF and endothelin 3 regulate migration of enteric neural crest-derived cells via protein kinase A and Rac1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4828-12.2013 – volume: 290 start-page: 333 year: 2000 ident: 10.1016/j.celrep.2014.02.024_bib20 article-title: Localized Rac activation dynamics visualized in living cells publication-title: Science doi: 10.1126/science.290.5490.333 – volume: 107 start-page: 246 year: 2010 ident: 10.1016/j.celrep.2014.02.024_bib29 article-title: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908428107 – volume: 461 start-page: 99 year: 2009 ident: 10.1016/j.celrep.2014.02.024_bib24 article-title: Coordination of Rho GTPase activities during cell protrusion publication-title: Nature doi: 10.1038/nature08242 |
| SSID | ssj0000601194 |
| Score | 2.3496265 |
| Snippet | The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1153 |
| SubjectTerms | Animals Enzyme Activation Fluorescence Resonance Energy Transfer - methods Mice Neutrophils - cytology Neutrophils - enzymology rac GTP-Binding Proteins - chemistry rac GTP-Binding Proteins - metabolism Resource Signal Transduction Spatio-Temporal Analysis |
| Title | The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24630994 https://www.proquest.com/docview/1511820281 https://pubmed.ncbi.nlm.nih.gov/PMC3988842 https://doaj.org/article/8bdba94a3f9d43c791b34b84ce9c7d0a |
| Volume | 6 |
| WOSCitedRecordID | wos000333465000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtaKGXkD6zeaFCr6LWYy3pmCxZcmkI6Rb2JvSkWxYnbDaB_PuMJO-yWwK5BHyxPbLHM2PrGzT-BqEfMkXBpaeEUh2JiCoQp5pI2tAySKB98MKVZhPy8lJNp_pqo9VXrgmr9MDVcD-VC85qYXnSQXAvNXVcOCV81F6GpkAjQD0byVT9Bmcus7ykzFiu2WJCrv6bK8VdPs4XMdNVUlEoO5nYmpcKff9zmPP_0smNuWi8h3Z7EIlPq_If0ZvYfULva1vJx88ogO_xtfVkfH0-wb8gt4fd-ACQ8A5PcjKOf5c66p6Wao5HtV4d36Q8DJ_62lICzzp8Vdko8CjOYbTtAlyhNOz7gv6MzyejC9J3UyAeUNmS-JbLhqWhA6P5YJ3gQaXGtkpTnZJukgakJ4bZU5aGGLlNrUzc6caLoQKk9hXtdDdd3EcYJJoUvRqy1uWO1c5JB7IAxah2ioUB4itbGt9TjeeOF3Ozqin7Z6oHTPaAaRhsYoDIetRtfbgX5M-ym9aymSi7HIDwMX34mJfCZ4C-r5xs4MXKqyW2i-AYQ0vuBfCLDtC36vT1rZhoOUBrUEFuhcOWLttnutnfQt7NtVJKsIPXUP4Qfcj2qCVxR2hnubiPx-idf1jO7hYn6K2cqpPyXjwBgokSVg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Rac-FRET+Mouse+Reveals+Tight+Spatiotemporal+Control+of+Rac+Activity+in+Primary+Cells+and+Tissues&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Johnsson%2C+Anna-Karin%C2%A0E.&rft.au=Dai%2C+Yanfeng&rft.au=Nobis%2C+Max&rft.au=Baker%2C+Martin%C2%A0J.&rft.date=2014-03-01&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=6&rft.issue=6&rft.spage=1153&rft.epage=1164&rft_id=info:doi/10.1016%2Fj.celrep.2014.02.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2014_02_024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |