K-Theory for Semigroup C-Algebras and Partial Crossed Products
Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0- E -unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This generalizes and gives a new proof of previous K-theory results of Cuntz, Echt...
Uloženo v:
| Vydáno v: | Communications in mathematical physics Ročník 390; číslo 1; s. 1 - 32 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 0010-3616, 1432-0916, 1432-0916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Using the Baum–Connes conjecture with coefficients, we develop a K-theory formula for reduced C*-algebras of strongly 0-
E
-unitary inverse semigroups, or equivalently, for a class of reduced partial crossed products. This generalizes and gives a new proof of previous K-theory results of Cuntz, Echterhoff and the author. Our K-theory formula applies to a rich class of C*-algebras which are generated by partial isometries. For instance, as new applications which could not be treated using previous results, we discuss semigroup C*-algebras of Artin monoids, Baumslag-Solitar monoids and one-relator monoids, as well as C*-algebras generated by right regular representations of semigroups of number-theoretic origin, and C*-algebras attached to tilings. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by H.-T.Yau |
| ISSN: | 0010-3616 1432-0916 1432-0916 |
| DOI: | 10.1007/s00220-021-04194-9 |