The potential of artificial intelligence to improve patient safety: a scoping review
Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and dia...
Uloženo v:
| Vydáno v: | NPJ digital medicine Ročník 4; číslo 1; s. 54 - 8 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
19.03.2021
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2398-6352, 2398-6352 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors. |
|---|---|
| AbstractList | Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors. Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors. Abstract Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors. |
| ArticleNumber | 54 |
| Author | Levine, David Rui, Angela Kuznetsova, Masha Syrowatka, Ania Craig, Kelly Jean Thomas Bates, David W. Rhee, Kyu Jackson, Gretchen Purcell |
| Author_xml | – sequence: 1 givenname: David W. orcidid: 0000-0001-6268-1540 surname: Bates fullname: Bates, David W. email: dbates@bwh.harvard.edu organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard T. H. Chan School of Public Health – sequence: 2 givenname: David surname: Levine fullname: Levine, David organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 3 givenname: Ania orcidid: 0000-0002-7161-9770 surname: Syrowatka fullname: Syrowatka, Ania organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 4 givenname: Masha surname: Kuznetsova fullname: Kuznetsova, Masha organization: Harvard Business School, Harvard University – sequence: 5 givenname: Kelly Jean Thomas orcidid: 0000-0002-9954-2795 surname: Craig fullname: Craig, Kelly Jean Thomas organization: IBM Watson Health – sequence: 6 givenname: Angela surname: Rui fullname: Rui, Angela organization: Division of General Internal Medicine, Brigham and Women’s Hospital – sequence: 7 givenname: Gretchen Purcell orcidid: 0000-0002-3242-8058 surname: Jackson fullname: Jackson, Gretchen Purcell organization: IBM Watson Health, Department of Pediatric Surgery, Vanderbilt University Medical Center – sequence: 8 givenname: Kyu surname: Rhee fullname: Rhee, Kyu organization: IBM Watson Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33742085$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUtVARLaU_wAJFYsMm4FccmwUSqnhUqsRmWFu2c516lImDnZmqf4_TlNJ2UXnh1znnvs5rdDTGERB6S_BHgpn8lDlpuagxJTXGnLJavEAnlClZC9bQowfnY3SW8xZjTDGXiotX6JixllMsmxO02VxBNcUZxjmYoYq-MmkOPrjlFsYZhiH0MDqo5liF3ZTioeDNHAqhysbDfPO5MlV2cQpjXyU4BLh-g156M2Q4u9tP0e_v3zbnP-vLXz8uzr9e1q7heK4tWIxt03jBpe2Uc10jLO68V0YqSi0hjgBxvuUS04Y4CpaDBUY777wSlJ2ii1W3i2arpxR2Jt3oaIK-fYip10s1bgDtvWtFEXQdcN5xYRVxytBOSdw6IaBofVm1pr3dQedKfckMj0Qf_4zhSvfxoFtVFm-LwIc7gRT_7CHPeheyK_0zI8R91rTBjPO2DK1A3z-BbuM-jaVVBcUIk5gTUlDvHmZ0n8q_4RUAXQEuxZwT-HsIwXoxiV5NootJ9K1J9BJbPiG5MJd5xqWqMDxPZSs1lzhjD-l_2s-w_gLJ2tHM |
| CitedBy_id | crossref_primary_10_1007_s00261_023_03821_4 crossref_primary_10_1097_NNE_0000000000001571 crossref_primary_10_1097_MD_0000000000035769 crossref_primary_10_1186_s13195_025_01815_6 crossref_primary_10_3389_fneur_2024_1332048 crossref_primary_10_1016_j_mcna_2025_02_006 crossref_primary_10_14302_issn_2641_5526_jmid_25_5466 crossref_primary_10_1016_j_apergo_2024_104243 crossref_primary_10_7759_cureus_46454 crossref_primary_10_4103_picr_picr_66_24 crossref_primary_10_1080_07366981_2025_2554441 crossref_primary_10_2139_ssrn_5426255 crossref_primary_10_1016_j_oor_2024_100343 crossref_primary_10_1109_EMR_2024_3355973 crossref_primary_10_1093_jamia_ocaf139 crossref_primary_10_3390_children10101634 crossref_primary_10_1186_s12911_025_02871_6 crossref_primary_10_33393_aop_2024_3282 crossref_primary_10_1007_s10479_023_05650_6 crossref_primary_10_4240_wjgs_v17_i4_103696 crossref_primary_10_1007_s40290_025_00572_z crossref_primary_10_1136_bmjopen_2025_100516 crossref_primary_10_3390_healthcare13162021 crossref_primary_10_3390_diagnostics15030274 crossref_primary_10_5435_JAAOS_D_24_01072 crossref_primary_10_3389_fmedt_2024_1331058 crossref_primary_10_1016_j_aap_2023_107420 crossref_primary_10_1016_j_healthpol_2023_104889 crossref_primary_10_1007_s10916_022_01893_1 crossref_primary_10_1111_jonm_13853 crossref_primary_10_2196_70782 crossref_primary_10_17755_esosder_1563082 crossref_primary_10_1017_ice_2023_122 crossref_primary_10_1016_j_imed_2025_07_002 crossref_primary_10_1007_s00423_023_03134_6 crossref_primary_10_1016_j_teln_2025_05_016 crossref_primary_10_3390_ijerph20176680 crossref_primary_10_1055_a_2415_8408 crossref_primary_10_1177_09287329241296350 crossref_primary_10_1016_j_outlook_2024_102300 crossref_primary_10_1051_bioconf_202414802003 crossref_primary_10_1001_jamahealthforum_2023_5514 crossref_primary_10_1136_bmjhci_2023_100935 crossref_primary_10_7759_cureus_78069 crossref_primary_10_37689_acta_ape_2023ar014622 crossref_primary_10_1007_s00146_025_02380_0 crossref_primary_10_3389_frai_2023_985469 crossref_primary_10_1016_j_hlpt_2025_100976 crossref_primary_10_1111_jgs_17715 crossref_primary_10_1007_s40264_024_01505_6 crossref_primary_10_1038_s41598_025_02076_x crossref_primary_10_1002_hsr2_70793 crossref_primary_10_1007_s41999_025_01202_2 crossref_primary_10_3390_healthcare12111086 crossref_primary_10_1177_13872877251343241 crossref_primary_10_1016_j_farma_2024_04_001 crossref_primary_10_1371_journal_pone_0325718 crossref_primary_10_1016_j_bvth_2024_100031 crossref_primary_10_1016_j_ijmedinf_2023_105246 crossref_primary_10_3390_healthcare12070788 crossref_primary_10_1016_j_ijmedinf_2023_105084 crossref_primary_10_3389_fphar_2025_1534552 crossref_primary_10_2196_62732 crossref_primary_10_1038_s41433_025_03605_8 crossref_primary_10_1089_tmj_2024_0521 crossref_primary_10_1177_01632787251316854 crossref_primary_10_1186_s12909_025_07669_8 crossref_primary_10_1108_EJIM_01_2024_0078 crossref_primary_10_1177_15353702231215895 crossref_primary_10_2196_50903 crossref_primary_10_3390_jcm12154920 crossref_primary_10_1016_j_artmed_2023_102715 crossref_primary_10_1016_j_autneu_2021_102929 crossref_primary_10_1016_j_farma_2024_02_007 crossref_primary_10_1080_10447318_2023_2235882 crossref_primary_10_1159_000519420 crossref_primary_10_3390_ddc4010009 crossref_primary_10_1080_01442872_2024_2400922 crossref_primary_10_1186_s13075_025_03508_9 crossref_primary_10_2196_46407 crossref_primary_10_3389_fgwh_2025_1536169 crossref_primary_10_1016_j_knosys_2025_114382 crossref_primary_10_1016_j_soncn_2023_151433 crossref_primary_10_1016_j_pcad_2024_01_008 crossref_primary_10_3389_fmed_2024_1522554 crossref_primary_10_38124_ijisrt_25may1548 crossref_primary_10_3389_fdgth_2022_966174 crossref_primary_10_4018_JHMS_329200 crossref_primary_10_1093_intqhc_mzad049 crossref_primary_10_1016_j_technovation_2025_103333 crossref_primary_10_35712_aig_v6_i1_108198 crossref_primary_10_1111_all_15945 crossref_primary_10_1001_jamanetworkopen_2023_3391 crossref_primary_10_1097_ACM_0000000000005740 crossref_primary_10_1016_j_prro_2023_03_011 crossref_primary_10_1016_j_jacadv_2024_100982 crossref_primary_10_1056_NEJMra2204673 crossref_primary_10_1136_bmjqs_2023_016807 crossref_primary_10_52711_0974_4150_2025_00006 crossref_primary_10_1038_s41746_025_01565_7 crossref_primary_10_1016_j_autrev_2023_103358 crossref_primary_10_22159_ijap_2025v17i3_52719 crossref_primary_10_37689_acta_ape_2023ar01462 crossref_primary_10_1056_NEJMc2301651 crossref_primary_10_1016_j_jopan_2024_01_016 crossref_primary_10_3389_fped_2025_1612618 crossref_primary_10_1016_j_nxbio_2025_100001 crossref_primary_10_1007_s40264_022_01172_5 crossref_primary_10_1056_NEJMsa2206117 crossref_primary_10_3390_jcm14051605 crossref_primary_10_1007_s11606_024_09087_w crossref_primary_10_1016_j_nepr_2024_103888 crossref_primary_10_3390_app13052823 crossref_primary_10_1007_s00405_023_08104_8 crossref_primary_10_3390_antibiotics13010077 crossref_primary_10_12968_hmed_2024_0112 crossref_primary_10_1016_j_clindermatol_2024_06_014 crossref_primary_10_1016_j_medine_2024_04_002 crossref_primary_10_1016_j_medin_2024_03_007 crossref_primary_10_7759_cureus_91957 crossref_primary_10_1007_s12262_024_04083_0 crossref_primary_10_3390_s22010034 crossref_primary_10_1016_j_jnr_2025_08_015 crossref_primary_10_1038_s41746_025_01460_1 crossref_primary_10_1007_s40290_022_00441_z crossref_primary_10_1016_S1473_3099_25_00412_8 crossref_primary_10_3390_math10040554 crossref_primary_10_1093_jamia_ocad191 crossref_primary_10_1145_3571815 crossref_primary_10_2147_IJGM_S516247 crossref_primary_10_1186_s12913_025_12964_7 crossref_primary_10_1093_bjsopen_zrac031 crossref_primary_10_1016_j_japh_2023_11_023 crossref_primary_10_2196_48659 |
| Cites_doi | 10.1371/journal.pmed.1002701 10.4037/ajcc2018525 10.1001/jama.1995.03530010043033 10.1532/hsf.1566 10.1186/s12859-018-2544-0 10.1377/hlthaff.2018.0738 10.1377/hlthaff.28.5.1475 10.1016/j.jhin.2018.04.004 10.1001/jamainternmed.2013.9763 10.1038/s41591-018-0300-7 10.1186/s13073-019-0689-8 10.1097/SLA.0000000000002693 10.1016/j.ijmedinf.2018.05.006 10.1056/NEJMoa1801550 10.1039/C8LC00108A 10.1086/657912 10.1160/TH12-03-0162 10.1111/iwj.13071 10.1002/rth2.12292 10.1016/j.surg.2016.08.017 10.1016/j.ijmedinf.2018.03.008 10.1038/srep27041 10.2217/pgs.15.161 10.1111/acem.12876 10.1177/000313481808400943 10.2196/13659 10.1056/NEJMsa0907115 10.1111/jgs.15304 10.1016/j.ajic.2018.02.021 10.1007/s11306-014-0692-4 10.1186/cc10274 10.1109/TNSRE.2017.2687100 10.3390/s19081866 10.1159/000485461 10.1016/j.cmpb.2018.12.027 10.1038/s41598-017-09766-1 10.1093/jamia/ocaa088 10.1016/j.amjmed.2013.12.004 10.3233/THC-151088 10.1016/j.jtv.2017.06.002 10.1016/j.hlpt.2018.04.006 10.1177/0272989X16662654 10.7326/M19-0872 10.1093/bioinformatics/bty294 10.1093/jamiaopen/ooz046 10.1056/NEJMoa061115 10.1371/journal.pone.0153240 10.1109/TBME.2017.2684244 10.1001/jamasurg.2016.0480 10.1056/NEJMsa0810119 10.1016/j.mbs.2016.11.004 10.1056/NEJMsa1004404 10.1097/SLA.0000000000003460 10.1111/bjh.15780 10.1001/jamanetworkopen.2019.8719 10.1097/SLA.0000000000002956 10.15585/mmwr.mm6537a2 10.1088/1752-7163/aa7799 10.1136/bmjqs-2013-002627 10.1001/jama.280.15.1311 10.1002/ajh.23450 10.1136/bmjqs-2012-001748 10.7326/M18-0850 10.1111/iwj.12386 10.1097/PCC.0000000000001700 10.1007/s10916-015-0286-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1038/s41746-021-00423-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2398-6352 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_ffc7611ccde44d46b91c9a2d9807c66e PMC7979747 33742085 10_1038_s41746_021_00423_6 |
| Genre | Journal Article Scoping Review |
| GrantInformation_xml | – fundername: IBM Watson – fundername: ; |
| GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PPXIY NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-beb00b55f648bd9ccd56b0dff9a8922b11c1e1cf7480251c2eb4ebe32dfcf9623 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631152500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2398-6352 |
| IngestDate | Tue Oct 14 15:16:48 EDT 2025 Tue Nov 04 01:50:25 EST 2025 Fri Sep 05 12:57:22 EDT 2025 Tue Oct 07 07:12:51 EDT 2025 Mon Jul 21 05:27:24 EDT 2025 Tue Nov 18 21:24:13 EST 2025 Sat Nov 29 02:05:38 EST 2025 Fri Feb 21 02:39:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-beb00b55f648bd9ccd56b0dff9a8922b11c1e1cf7480251c2eb4ebe32dfcf9623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Literature Review-2 ObjectType-Feature-3 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3242-8058 0000-0002-9954-2795 0000-0001-6268-1540 0000-0002-7161-9770 |
| OpenAccessLink | https://www.proquest.com/docview/2531380411?pq-origsite=%requestingapplication% |
| PMID | 33742085 |
| PQID | 2531380411 |
| PQPubID | 5061815 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ffc7611ccde44d46b91c9a2d9807c66e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7979747 proquest_miscellaneous_2503447746 proquest_journals_2531380411 pubmed_primary_33742085 crossref_primary_10_1038_s41746_021_00423_6 crossref_citationtrail_10_1038_s41746_021_00423_6 springer_journals_10_1038_s41746_021_00423_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-19 |
| PublicationDateYYYYMMDD | 2021-03-19 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | NPJ digital medicine |
| PublicationTitleAbbrev | npj Digit. Med |
| PublicationTitleAlternate | NPJ Digit Med |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | HowcroftJKofmanJLemaireEDProspective fall-risk prediction models for older adults based on wearable sensorsIEEE Trans. Neural Syst. Rehabil. Eng.201725181218202835868910.1109/TNSRE.2017.2687100 WuH-YPredicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LRSci. Rep.201661:CAS:528:DC%2BC28XptFCit78%3D27247165488798810.1038/srep27041 LiaoY-HMachine learning methods applied to predict ventilator-associated pneumonia with pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unitSensors201919186610.3390/s190818666514817 TirzīteMBukovskisMStrazdaGJurkaNTaivansIDetection of lung cancer in exhaled breath with an electronic nose using support vector machine analysisJ. Breath Res.20171103600910.1088/1752-7163/aa7799 UmscheidCAEstimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costsInfect. Control Hosp. Epidemiol.2011321011142146046310.1086/657912 TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D3061733910.1038/s41591-018-0300-7 BatesDWIncidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE prevention study groupJAMA199527429341:STN:280:DyaK2MzhtFemtw%3D%3D779125510.1001/jama.1995.03530010043033 LandriganCPTemporal trends in rates of patient harm resulting from medical careN. Engl. J. Med.2010363212421341:CAS:528:DC%2BC3cXhsV2gs7vI2110579410.1056/NEJMsa1004404 Mehra, R., Bianconi, G. M., Yeung, S. & Fei-Fei, L. Depth-based activity recognition in ICUs using convolutional and recurrent neural networks. Mach. Learn. Healthc. Conf. 1–9 (2017). BertsimasDDunnJVelmahosGCKaafaraniHMASurgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculatorAnn. Surg.20182685745833012447910.1097/SLA.0000000000002956 Neri, E. & Pinker-Domenig, K. (eds) Special issue “Artificial Intelligence in Diagnostics”. https://www.mdpi.com/journal/diagnostics/special_issues/AI_Diagnostics (2020). WatsonJOvercoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?JAMIA Open2020316717232734155738263110.1093/jamiaopen/ooz046 PavaniAArtificial neural network-based pharmacogenomic algorithm for warfarin dose optimizationPharmacogenomics2016171211311:CAS:528:DC%2BC2MXitVKrs7bE2666646710.2217/pgs.15.161 PoonEGEffect of bar-code technology on the safety of medication administrationN. Engl. J. Med.2010362169817071:CAS:528:DC%2BC3cXls1yit7o%3D2044518110.1056/NEJMsa0907115 WetzelRCAczonMLedbetterDRArtificial intelligence: an inkling of cautionPediatr. Crit. Care Med.201819100410053028157210.1097/PCC.0000000000001700 Weiss, A., Freeman, W., Heslin, K. & Barrett, M. Adverse drug events in U.S. hospitals, 2010 versus 2014. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.pdf (2018). Sanchez-PintoLNVenableLRFahrenbachJChurpekMMComparison of variable selection methods for clinical predictive modelingInt. J. Med. Inform.2018116101729887230600362410.1016/j.ijmedinf.2018.05.006 BergenGStevensMRBurnsERFalls and fall injuries among adults aged ≥65 years — United States, 2014MMWR Morb. Mortal. Wkly. Rep.2016659939982765691410.15585/mmwr.mm6537a2 WiseESPrediction of prolonged ventilation after coronary artery bypass grafting: data from an artificial neural networkHeart Surg. Forum201720E007E0142826314410.1532/hsf.1566 CoreyKMDevelopment and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): a retrospective, single-site studyPLoS Med.20181530481172625850710.1371/journal.pmed.1002701 MagillSSChanges in prevalence of health care–associated infections in U.S. hospitalsN. Engl. J. Med.2018379173217443038038410.1056/NEJMoa18015507978499 U.S. Bureau of Labor Statistics. Producer price index by industry: selected health care industries (PCUASHCASHC). https://fred.stlouisfed.org/series/PCUASHCASHC (2020). ZitnikMAgrawalMLeskovecJModeling polypharmacy side effects with graph convolutional networksBioinformatics201834i457i4661:CAS:528:DC%2BC1MXhtVOmtrzJ29949996602270510.1093/bioinformatics/bty294 BatesDWAuerbachASchulamPWrightASariaSReporting and implementing interventions involving machine learning and artificial intelligenceAnn. Intern. Med.2020172S137S1443247918010.7326/M19-0872 PronovostPAn intervention to decrease catheter-related bloodstream infections in the ICUN. Engl. J. Med.2006355272527321:CAS:528:DC%2BD2sXhslSmtA%3D%3D1719253710.1056/NEJMoa061115 WardLPaulMAndreassenSAutomatic learning of mortality in a CPN model of the systemic inflammatory response syndromeMath. Biosci.201728412202783300010.1016/j.mbs.2016.11.004 TanejaICombining biomarkers with EMR data to identify patients in different phases of sepsisSci. Rep.2017728883645558982110.1038/s41598-017-09766-11:CAS:528:DC%2BC1cXhtlCksL7I TriccoACPRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanationAnn. Intern. Med.20181694674733017803310.7326/M18-0850 OgalloWKanterASTowards a clinical decision support system for drug allergy management: are existing drug reference terminologies sufficient for identifying substitutes and cross-reactants?Stud. Health Technol. Inform.2015216108826262387 JhaAKThe global burden of unsafe medical care: analytic modelling of observational studiesBMJ Qual. Saf.2013228098152404861610.1136/bmjqs-2012-001748 HsiaoR-SBody posture recognition and turning recording system for the care of bed bound patientsTechnol. Health Care201524S307S3122644481410.3233/THC-151088 VuLPredicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizonAMIA Annu. Symp. Proc.2019201987488232308884 Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Mach. Learn. Healthc. Conf. (2017). HackmannGToward a two-tier clinical warning system for hospitalized patientsAMIA Annu. Symp. Proc.20112011511519221951053243239 DiasRTorkamaniAArtificial intelligence in clinical and genomic diagnosticsGenome Med.20191131744524686504510.1186/s13073-019-0689-81:CAS:528:DC%2BC1MXitFyrurvL LinneburMPreventable complications and deaths after emergency nontrauma surgeryAm. Surg.201884142214283026816910.1177/000313481808400943 AltexSoft. Best public datasets for machine learning and data science: sources and advice on the choice. AltexSofthttps://www.altexsoft.com/blog/datascience/best-public-machine-learning-datasets/ (2019). FerroniPRisk assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patientsMed. Decis. Making2017372342422749155810.1177/0272989X16662654 AlazraiRMowafiYHamadEA fall prediction methodology for elderly based on a depth cameraAnnu. Int. Conf. IEEE Eng. Med. Biol. Soc.201520154990499326737412 Open Data Science (ODSC). 15 Open datasets for healthcare. Mediumhttps://medium.com/@ODSC/15-open-datasets-for-healthcare-830b19980d9 (2019). WillanJKatzHKeelingDThe use of artificial neural network analysis can improve the risk‐stratification of patients presenting with suspected deep vein thrombosisBr. J. Haematol.20191852892963072702410.1111/bjh.15780 JuangL-HWuM-NFall down detection under smart home systemJ. Med. Syst.2015392627601410.1007/s10916-015-0286-3 Namazi, B., Sankaranarayanan, G., Devarajan, V. & Fleshman, J. A deep learning system for automatically identifying critical view of safety in laparoscopic cholecystectomy videos for assessment. In SAGES 2017 Annual Meeting (Sages, Houston, TX, 2017). GeilleitRFeasibility of a real-time hand hygiene notification machine learning system in outpatient clinicsJ. Hosp. Infect.20181001831891:STN:280:DC%2BC1MjitFahsQ%3D%3D2964955810.1016/j.jhin.2018.04.004 MahanCEVenous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack ratesThromb. Haemost.20121082913021:CAS:528:DC%2BC38Xht1GitbvE2273965610.1160/TH12-03-0162 Dehghani SoufiMSamad-SoltaniTShams VahdatiSRezaei-HachesuPDecision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logicInt. J. Med. Inform.201811435442967360110.1016/j.ijmedinf.2018.03.008 HuangRSPPost-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural networkAnn. Clin. Lab. Sci.2015451811861:CAS:528:DC%2BC28XpsVSnsLc%3D25887872 IslamMMPrediction of sepsis patients using machine learning approach: a meta-analysisComput. Methods Prog. Biomed.20191701910.1016/j.cmpb.2018.12.027 HashimotoDARosmanGRusDMeirelesORArtificial intelligence in surgeryAnn. Surg.201826870762938967910.1097/SLA.0000000000002693 HowcroftJLemaireEDKofmanJWearable-sensor-based classification models of faller status in older adultsPLoS ONE20161127054878482439810.1371/journal.pone.01532401:CAS:528:DC%2BC28Xhs1OqsL7N Hernandez-BoussardTBozkurtSIoannidisJPAShahNHMINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health careJ. Am. Med. Inform. Assoc.2020272011201532594179772733310.1093/jamia/ocaa088 ZeidanAMImpact of a venous thromboembolism prophylaxis “smart order set”: improved compliance, fewer eventsAm. J. Hematol.2013885455491:CAS:528:DC%2BC3sXpvFensbo%3D2355374310.1002/ajh.23450 SinghHMeyerANDThomasEJThe frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populationsBMJ Qual. Saf.20142372773124742777414546010.1136/bmjqs-2013-002627 GardinerJCReedPLBonnerJDHaggertyDKHaleDGLIncidence of hospital-acquired pressure ulcers - a population-based cohort studyInt. Wound J.2016138098202546958510.1111/iwj.12386 SureshHClinical intervention prediction and understanding using deep networksMach. L T Hernandez-Boussard (423_CR79) 2020; 27 AC Tricco (423_CR9) 2018; 169 423_CR71 W Ogallo (423_CR25) 2015; 216 M Tirzīte (423_CR74) 2017; 11 T Saviauk (423_CR15) 2018; 59 H Singh (423_CR72) 2014; 23 H Brown (423_CR66) 2014; 127 J Willan (423_CR32) 2019; 185 423_CR76 L Vu (423_CR70) 2019; 2019 DW Bates (423_CR23) 1995; 274 M Dehghani Soufi (423_CR75) 2018; 114 J Shaw (423_CR81) 2019; 21 JC Gardiner (423_CR44) 2016; 13 CP Landrigan (423_CR46) 2010; 363 423_CR42 LN Sanchez-Pinto (423_CR59) 2018; 116 423_CR83 H Suresh (423_CR21) 2017; 68 423_CR84 AM Zeidan (423_CR29) 2013; 88 KM Corey (423_CR34) 2018; 15 AK Jha (423_CR8) 2009; 28 RA Taylor (423_CR61) 2016; 23 Y-H Liao (423_CR14) 2019; 19 ES Wise (423_CR38) 2017; 20 I Taneja (423_CR68) 2017; 7 R Dias (423_CR77) 2019; 11 CA Umscheid (423_CR13) 2011; 32 E Zimlichman (423_CR12) 2013; 173 P Pronovost (423_CR3) 2006; 355 DW Bates (423_CR5) 1998; 280 S Kuppusami (423_CR16) 2015; 11 423_CR1 J Watson (423_CR80) 2020; 3 423_CR57 423_CR10 D Bertsimas (423_CR39) 2018; 268 DA Hashimoto (423_CR43) 2018; 268 R-S Hsiao (423_CR48) 2015; 24 AB Haynes (423_CR4) 2009; 360 AK Jha (423_CR7) 2013; 22 L-H Juang (423_CR56) 2015; 39 DW Bates (423_CR82) 2018; 7 J Alderden (423_CR47) 2018; 27 U Hassan (423_CR69) 2018; 18 CS Florence (423_CR51) 2018; 66 G Hackmann (423_CR65) 2011; 2011 CE Mahan (423_CR28) 2012; 108 I Banerjee (423_CR33) 2019; 2 G Bergen (423_CR50) 2016; 65 M Zitnik (423_CR24) 2018; 34 S Yokota (423_CR52) 2017; 35 JW Scott (423_CR35) 2016; 151 EJ Topol (423_CR73) 2019; 25 T Nafee (423_CR30) 2020; 4 LE Kuo (423_CR58) 2017; 161 SS Magill (423_CR11) 2018; 379 DW Bates (423_CR2) 2018; 37 R Geilleit (423_CR19) 2018; 100 H-Y Wu (423_CR40) 2016; 6 423_CR20 A Sutherland (423_CR67) 2011; 15 B Vandendriessche (423_CR64) 2017; 64 DW Bates (423_CR78) 2020; 172 WV Padula (423_CR45) 2019; 16 A Pavani (423_CR27) 2016; 17 S Dey (423_CR26) 2018; 19 M Linnebur (423_CR36) 2018; 84 P Ferroni (423_CR31) 2017; 37 423_CR22 L Ward (423_CR60) 2017; 284 R Alazrai (423_CR55) 2015; 2015 J Howcroft (423_CR54) 2016; 11 MM Islam (423_CR62) 2019; 170 EG Poon (423_CR6) 2010; 362 423_CR18 DA Hashimoto (423_CR41) 2019; 270 C Beeler (423_CR17) 2018; 46 V Luboz (423_CR49) 2018; 27 J Howcroft (423_CR53) 2017; 25 RSP Huang (423_CR37) 2015; 45 RC Wetzel (423_CR63) 2018; 19 |
| References_xml | – reference: UmscheidCAEstimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costsInfect. Control Hosp. Epidemiol.2011321011142146046310.1086/657912 – reference: WiseESPrediction of prolonged ventilation after coronary artery bypass grafting: data from an artificial neural networkHeart Surg. Forum201720E007E0142826314410.1532/hsf.1566 – reference: ZeidanAMImpact of a venous thromboembolism prophylaxis “smart order set”: improved compliance, fewer eventsAm. J. Hematol.2013885455491:CAS:528:DC%2BC3sXpvFensbo%3D2355374310.1002/ajh.23450 – reference: HackmannGToward a two-tier clinical warning system for hospitalized patientsAMIA Annu. Symp. Proc.20112011511519221951053243239 – reference: Hernandez-BoussardTBozkurtSIoannidisJPAShahNHMINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health careJ. Am. Med. Inform. Assoc.2020272011201532594179772733310.1093/jamia/ocaa088 – reference: NafeeTMachine learning to predict venous thrombosis in acutely ill medical patientsRes. Pract. Thromb. Haemost.202042302371:CAS:528:DC%2BB3cXjs1Witb4%3D32110753704055110.1002/rth2.12292 – reference: PadulaWVDelarmenteBAThe national cost of hospital‐acquired pressure injuries in the United StatesInt. Wound J.2019166346403069364410.1111/iwj.130717948545 – reference: DeySLuoHFokoueAHuJZhangPPredicting adverse drug reactions through interpretable deep learning frameworkBMC Bioinformatics2018191:CAS:528:DC%2BC1MXht12itrfF30591036630088710.1186/s12859-018-2544-0 – reference: Kohn, L., Corrigan, J. & Donaldson, M. To Err Is Human (National Academies Press, 2000). – reference: Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. (Agency for Healthcare Research and Quality, Rockville, MD, 2016). – reference: TanejaICombining biomarkers with EMR data to identify patients in different phases of sepsisSci. Rep.2017728883645558982110.1038/s41598-017-09766-11:CAS:528:DC%2BC1cXhtlCksL7I – reference: JhaAKThe global burden of unsafe medical care: analytic modelling of observational studiesBMJ Qual. Saf.2013228098152404861610.1136/bmjqs-2012-001748 – reference: KuoLEFailure-to-rescue after injury is associated with preventability: the results of mortality panel review of failure-to-rescue cases in traumaSurgery20171617827902778892410.1016/j.surg.2016.08.017 – reference: PronovostPAn intervention to decrease catheter-related bloodstream infections in the ICUN. Engl. J. Med.2006355272527321:CAS:528:DC%2BD2sXhslSmtA%3D%3D1719253710.1056/NEJMoa061115 – reference: BatesDWIncidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE prevention study groupJAMA199527429341:STN:280:DyaK2MzhtFemtw%3D%3D779125510.1001/jama.1995.03530010043033 – reference: CoreyKMDevelopment and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): a retrospective, single-site studyPLoS Med.20181530481172625850710.1371/journal.pmed.1002701 – reference: FlorenceCSMedical costs of fatal and nonfatal falls in older adultsJ. Am. Geriatr. Soc.20186669369829512120608938010.1111/jgs.15304 – reference: YokotaSEndoMOheKEstablishing a classification system for high fall-risk among inpatients using support vector machinesCIN Comput. Inform. Nurs.20173540841628800580 – reference: OgalloWKanterASTowards a clinical decision support system for drug allergy management: are existing drug reference terminologies sufficient for identifying substitutes and cross-reactants?Stud. Health Technol. Inform.2015216108826262387 – reference: VandendriesscheBAbasMDickTELoparoKAJaconoFJA framework for patient state tracking by classifying multiscalar physiologic waveform featuresIEEE Trans. Biomed. Eng.2017642890290028328498573679210.1109/TBME.2017.2684244 – reference: BrownHTerrenceJVasquezPBatesDWZimlichmanEContinuous monitoring in an inpatient medical-surgical unit: a controlled clinical trialAm. J. Med.20141272262322434254310.1016/j.amjmed.2013.12.004 – reference: SinghHMeyerANDThomasEJThe frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populationsBMJ Qual. Saf.20142372773124742777414546010.1136/bmjqs-2013-002627 – reference: Neri, E. & Pinker-Domenig, K. (eds) Special issue “Artificial Intelligence in Diagnostics”. https://www.mdpi.com/journal/diagnostics/special_issues/AI_Diagnostics (2020). – reference: WetzelRCAczonMLedbetterDRArtificial intelligence: an inkling of cautionPediatr. Crit. Care Med.201819100410053028157210.1097/PCC.0000000000001700 – reference: Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Mach. Learn. Healthc. Conf. (2017). – reference: LiaoY-HMachine learning methods applied to predict ventilator-associated pneumonia with pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unitSensors201919186610.3390/s190818666514817 – reference: SureshHClinical intervention prediction and understanding using deep networksMach. Learn. Healthc. Conf.201768116 – reference: BatesDWEffect of computerized physician order entry and a team intervention on prevention of serious medication errorsJAMA199828013111:STN:280:DyaK1M%2FgvVCguw%3D%3D979430810.1001/jama.280.15.1311 – reference: BertsimasDDunnJVelmahosGCKaafaraniHMASurgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculatorAnn. Surg.20182685745833012447910.1097/SLA.0000000000002956 – reference: Namazi, B., Sankaranarayanan, G., Devarajan, V. & Fleshman, J. A deep learning system for automatically identifying critical view of safety in laparoscopic cholecystectomy videos for assessment. In SAGES 2017 Annual Meeting (Sages, Houston, TX, 2017). – reference: KuppusamiSClokieMRJPanayiTEllisAMMonksPSMetabolite profiling of Clostridium difficile ribotypes using small molecular weight volatile organic compoundsMetabolomics2015112512601:CAS:528:DC%2BC2cXhtFOqu7%2FF10.1007/s11306-014-0692-4 – reference: HsiaoR-SBody posture recognition and turning recording system for the care of bed bound patientsTechnol. Health Care201524S307S3122644481410.3233/THC-151088 – reference: AlderdenJPredicting pressure injury in critical care patients: a machine-learning modelAm. J. Crit. Care20182746146830385537624779010.4037/ajcc2018525 – reference: Newman-Toker, D. The team sport of diagnosis: a culture shift can reduce missed diagnoses. The Healthcare Bloghttps://thehealthcareblog.com/blog/2016/06/15/the-team-sport-of-diagnosis-a-culture-shift-can-reduce-missed-diagnoses/ (2016). – reference: HashimotoDARosmanGRusDMeirelesORArtificial intelligence in surgeryAnn. Surg.201826870762938967910.1097/SLA.0000000000002693 – reference: Dehghani SoufiMSamad-SoltaniTShams VahdatiSRezaei-HachesuPDecision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logicInt. J. Med. Inform.201811435442967360110.1016/j.ijmedinf.2018.03.008 – reference: IslamMMPrediction of sepsis patients using machine learning approach: a meta-analysisComput. Methods Prog. Biomed.20191701910.1016/j.cmpb.2018.12.027 – reference: TaylorRAPrediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approachAcad. Emerg. Med.20162326927826679719588410110.1111/acem.12876 – reference: MahanCEVenous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack ratesThromb. Haemost.20121082913021:CAS:528:DC%2BC38Xht1GitbvE2273965610.1160/TH12-03-0162 – reference: LubozVPersonalized modeling for real-time pressure ulcer prevention in sitting postureJ. Tissue Viability20182754582863759210.1016/j.jtv.2017.06.0021:CAS:528:DC%2BC1MXmsVCnurw%3D – reference: HaynesABA surgical safety checklist to reduce morbidity and mortality in a global populationN. Engl. J. Med.20093604914991:CAS:528:DC%2BD1MXht1Wku7w%3D1914493110.1056/NEJMsa0810119 – reference: U.S. Bureau of Labor Statistics. Producer price index by industry: selected health care industries (PCUASHCASHC). https://fred.stlouisfed.org/series/PCUASHCASHC (2020). – reference: BatesDWSinghHTwo decades since to err is human: an assessment of progress and emerging priorities in patient safetyHealth Aff.2018371736174310.1377/hlthaff.2018.0738 – reference: AltexSoft. Best public datasets for machine learning and data science: sources and advice on the choice. AltexSofthttps://www.altexsoft.com/blog/datascience/best-public-machine-learning-datasets/ (2019). – reference: PoonEGEffect of bar-code technology on the safety of medication administrationN. Engl. J. Med.2010362169817071:CAS:528:DC%2BC3cXls1yit7o%3D2044518110.1056/NEJMsa0907115 – reference: HassanUZhuRBashirRMultivariate computational analysis of biosensor’s data for improved CD64 quantification for sepsis diagnosisLab Chip201818123112401:CAS:528:DC%2BC1cXltVymtbY%3D2956446310.1039/C8LC00108A – reference: LinneburMPreventable complications and deaths after emergency nontrauma surgeryAm. Surg.201884142214283026816910.1177/000313481808400943 – reference: ShawJRudziczFJamiesonTGoldfarbAArtificial intelligence and the implementation challengeJ. Med. Internet Res.20192131293245665212110.2196/13659 – reference: ScottJWUse of national burden to define operative emergency general surgeryJAMA Surg.20161512712071210.1001/jamasurg.2016.0480 – reference: HuangRSPPost-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural networkAnn. Clin. Lab. Sci.2015451811861:CAS:528:DC%2BC28XpsVSnsLc%3D25887872 – reference: HashimotoDAComputer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeveAnn. Surg.20192704144213127465210.1097/SLA.0000000000003460 – reference: JhaAKChanDCRidgwayABFranzCBatesDWImproving safety and eliminating redundant tests: cutting costs in U.S. hospitalsHealth Aff.2009281475148410.1377/hlthaff.28.5.1475 – reference: LandriganCPTemporal trends in rates of patient harm resulting from medical careN. Engl. J. Med.2010363212421341:CAS:528:DC%2BC3cXhsV2gs7vI2110579410.1056/NEJMsa1004404 – reference: TriccoACPRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanationAnn. Intern. Med.20181694674733017803310.7326/M18-0850 – reference: GardinerJCReedPLBonnerJDHaggertyDKHaleDGLIncidence of hospital-acquired pressure ulcers - a population-based cohort studyInt. Wound J.2016138098202546958510.1111/iwj.12386 – reference: JuangL-HWuM-NFall down detection under smart home systemJ. Med. Syst.2015392627601410.1007/s10916-015-0286-3 – reference: TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D3061733910.1038/s41591-018-0300-7 – reference: ZimlichmanEHealth care–associated infectionsJAMA Intern. Med.201317320392399994910.1001/jamainternmed.2013.9763 – reference: BeelerCAssessing patient risk of central line-associated bacteremia via machine learningAm. J. Infect. Control2018469869912966163410.1016/j.ajic.2018.02.021 – reference: BatesDWAuerbachASchulamPWrightASariaSReporting and implementing interventions involving machine learning and artificial intelligenceAnn. Intern. Med.2020172S137S1443247918010.7326/M19-0872 – reference: HowcroftJKofmanJLemaireEDProspective fall-risk prediction models for older adults based on wearable sensorsIEEE Trans. Neural Syst. Rehabil. Eng.201725181218202835868910.1109/TNSRE.2017.2687100 – reference: MagillSSChanges in prevalence of health care–associated infections in U.S. hospitalsN. Engl. J. Med.2018379173217443038038410.1056/NEJMoa18015507978499 – reference: PavaniAArtificial neural network-based pharmacogenomic algorithm for warfarin dose optimizationPharmacogenomics2016171211311:CAS:528:DC%2BC2MXitVKrs7bE2666646710.2217/pgs.15.161 – reference: Open Data Science (ODSC). 15 Open datasets for healthcare. Mediumhttps://medium.com/@ODSC/15-open-datasets-for-healthcare-830b19980d9 (2019). – reference: WardLPaulMAndreassenSAutomatic learning of mortality in a CPN model of the systemic inflammatory response syndromeMath. Biosci.201728412202783300010.1016/j.mbs.2016.11.004 – reference: FerroniPRisk assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patientsMed. Decis. Making2017372342422749155810.1177/0272989X16662654 – reference: WillanJKatzHKeelingDThe use of artificial neural network analysis can improve the risk‐stratification of patients presenting with suspected deep vein thrombosisBr. J. Haematol.20191852892963072702410.1111/bjh.15780 – reference: ZitnikMAgrawalMLeskovecJModeling polypharmacy side effects with graph convolutional networksBioinformatics201834i457i4661:CAS:528:DC%2BC1MXhtVOmtrzJ29949996602270510.1093/bioinformatics/bty294 – reference: BergenGStevensMRBurnsERFalls and fall injuries among adults aged ≥65 years — United States, 2014MMWR Morb. Mortal. Wkly. Rep.2016659939982765691410.15585/mmwr.mm6537a2 – reference: VuLPredicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizonAMIA Annu. Symp. Proc.2019201987488232308884 – reference: BatesDWHeitmuellerAKakadMSariaSWhy policymakers should care about “big data” in healthcareHealth Policy Technol.2018721121610.1016/j.hlpt.2018.04.006 – reference: Mehra, R., Bianconi, G. M., Yeung, S. & Fei-Fei, L. Depth-based activity recognition in ICUs using convolutional and recurrent neural networks. Mach. Learn. Healthc. Conf. 1–9 (2017). – reference: WuH-YPredicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LRSci. Rep.201661:CAS:528:DC%2BC28XptFCit78%3D27247165488798810.1038/srep27041 – reference: TirzīteMBukovskisMStrazdaGJurkaNTaivansIDetection of lung cancer in exhaled breath with an electronic nose using support vector machine analysisJ. Breath Res.20171103600910.1088/1752-7163/aa7799 – reference: Weiss, A., Freeman, W., Heslin, K. & Barrett, M. Adverse drug events in U.S. hospitals, 2010 versus 2014. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.pdf (2018). – reference: SutherlandADevelopment and validation of a novel molecular biomarker diagnostic test for the early detection of sepsisCrit. Care20111521682927321902310.1186/cc10274 – reference: HowcroftJLemaireEDKofmanJWearable-sensor-based classification models of faller status in older adultsPLoS ONE20161127054878482439810.1371/journal.pone.01532401:CAS:528:DC%2BC28Xhs1OqsL7N – reference: AlazraiRMowafiYHamadEA fall prediction methodology for elderly based on a depth cameraAnnu. Int. Conf. IEEE Eng. Med. Biol. Soc.201520154990499326737412 – reference: SaviaukTElectronic nose in the detection of wound infection bacteria from bacterial cultures: a proof-of-principle studyEur. Surg. Res.2018591111:CAS:528:DC%2BC1cXhslyrsbjJ2932076910.1159/000485461 – reference: DiasRTorkamaniAArtificial intelligence in clinical and genomic diagnosticsGenome Med.20191131744524686504510.1186/s13073-019-0689-81:CAS:528:DC%2BC1MXitFyrurvL – reference: GeilleitRFeasibility of a real-time hand hygiene notification machine learning system in outpatient clinicsJ. Hosp. Infect.20181001831891:STN:280:DC%2BC1MjitFahsQ%3D%3D2964955810.1016/j.jhin.2018.04.004 – reference: Sanchez-PintoLNVenableLRFahrenbachJChurpekMMComparison of variable selection methods for clinical predictive modelingInt. J. Med. Inform.2018116101729887230600362410.1016/j.ijmedinf.2018.05.006 – reference: WatsonJOvercoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?JAMIA Open2020316717232734155738263110.1093/jamiaopen/ooz046 – reference: BanerjeeIDevelopment and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision supportJAMA Netw. Open2019231390040668678010.1001/jamanetworkopen.2019.8719 – volume: 15 year: 2018 ident: 423_CR34 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002701 – volume: 27 start-page: 461 year: 2018 ident: 423_CR47 publication-title: Am. J. Crit. Care doi: 10.4037/ajcc2018525 – ident: 423_CR76 – volume: 274 start-page: 29 year: 1995 ident: 423_CR23 publication-title: JAMA doi: 10.1001/jama.1995.03530010043033 – volume: 20 start-page: E007 year: 2017 ident: 423_CR38 publication-title: Heart Surg. Forum doi: 10.1532/hsf.1566 – ident: 423_CR18 – ident: 423_CR57 – volume: 19 year: 2018 ident: 423_CR26 publication-title: BMC Bioinformatics doi: 10.1186/s12859-018-2544-0 – volume: 37 start-page: 1736 year: 2018 ident: 423_CR2 publication-title: Health Aff. doi: 10.1377/hlthaff.2018.0738 – volume: 28 start-page: 1475 year: 2009 ident: 423_CR8 publication-title: Health Aff. doi: 10.1377/hlthaff.28.5.1475 – volume: 100 start-page: 183 year: 2018 ident: 423_CR19 publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2018.04.004 – volume: 173 start-page: 2039 year: 2013 ident: 423_CR12 publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2013.9763 – volume: 2015 start-page: 4990 year: 2015 ident: 423_CR55 publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – ident: 423_CR10 – volume: 25 start-page: 44 year: 2019 ident: 423_CR73 publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 11 year: 2019 ident: 423_CR77 publication-title: Genome Med. doi: 10.1186/s13073-019-0689-8 – volume: 268 start-page: 70 year: 2018 ident: 423_CR43 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002693 – ident: 423_CR20 – volume: 116 start-page: 10 year: 2018 ident: 423_CR59 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.05.006 – volume: 379 start-page: 1732 year: 2018 ident: 423_CR11 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1801550 – volume: 18 start-page: 1231 year: 2018 ident: 423_CR69 publication-title: Lab Chip doi: 10.1039/C8LC00108A – volume: 32 start-page: 101 year: 2011 ident: 423_CR13 publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1086/657912 – volume: 108 start-page: 291 year: 2012 ident: 423_CR28 publication-title: Thromb. Haemost. doi: 10.1160/TH12-03-0162 – volume: 16 start-page: 634 year: 2019 ident: 423_CR45 publication-title: Int. Wound J. doi: 10.1111/iwj.13071 – volume: 45 start-page: 181 year: 2015 ident: 423_CR37 publication-title: Ann. Clin. Lab. Sci. – volume: 4 start-page: 230 year: 2020 ident: 423_CR30 publication-title: Res. Pract. Thromb. Haemost. doi: 10.1002/rth2.12292 – volume: 161 start-page: 782 year: 2017 ident: 423_CR58 publication-title: Surgery doi: 10.1016/j.surg.2016.08.017 – volume: 114 start-page: 35 year: 2018 ident: 423_CR75 publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2018.03.008 – volume: 6 year: 2016 ident: 423_CR40 publication-title: Sci. Rep. doi: 10.1038/srep27041 – volume: 17 start-page: 121 year: 2016 ident: 423_CR27 publication-title: Pharmacogenomics doi: 10.2217/pgs.15.161 – volume: 23 start-page: 269 year: 2016 ident: 423_CR61 publication-title: Acad. Emerg. Med. doi: 10.1111/acem.12876 – volume: 84 start-page: 1422 year: 2018 ident: 423_CR36 publication-title: Am. Surg. doi: 10.1177/000313481808400943 – volume: 21 year: 2019 ident: 423_CR81 publication-title: J. Med. Internet Res. doi: 10.2196/13659 – ident: 423_CR71 – volume: 362 start-page: 1698 year: 2010 ident: 423_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa0907115 – volume: 66 start-page: 693 year: 2018 ident: 423_CR51 publication-title: J. Am. Geriatr. Soc. doi: 10.1111/jgs.15304 – volume: 68 start-page: 1 year: 2017 ident: 423_CR21 publication-title: Mach. Learn. Healthc. Conf. – volume: 46 start-page: 986 year: 2018 ident: 423_CR17 publication-title: Am. J. Infect. Control doi: 10.1016/j.ajic.2018.02.021 – volume: 11 start-page: 251 year: 2015 ident: 423_CR16 publication-title: Metabolomics doi: 10.1007/s11306-014-0692-4 – volume: 15 year: 2011 ident: 423_CR67 publication-title: Crit. Care doi: 10.1186/cc10274 – volume: 25 start-page: 1812 year: 2017 ident: 423_CR53 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2687100 – volume: 19 start-page: 1866 year: 2019 ident: 423_CR14 publication-title: Sensors doi: 10.3390/s19081866 – volume: 59 start-page: 1 year: 2018 ident: 423_CR15 publication-title: Eur. Surg. Res. doi: 10.1159/000485461 – volume: 170 start-page: 1 year: 2019 ident: 423_CR62 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.12.027 – volume: 7 year: 2017 ident: 423_CR68 publication-title: Sci. Rep. doi: 10.1038/s41598-017-09766-1 – volume: 27 start-page: 2011 year: 2020 ident: 423_CR79 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocaa088 – volume: 127 start-page: 226 year: 2014 ident: 423_CR66 publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2013.12.004 – volume: 24 start-page: S307 year: 2015 ident: 423_CR48 publication-title: Technol. Health Care doi: 10.3233/THC-151088 – volume: 27 start-page: 54 year: 2018 ident: 423_CR49 publication-title: J. Tissue Viability doi: 10.1016/j.jtv.2017.06.002 – volume: 7 start-page: 211 year: 2018 ident: 423_CR82 publication-title: Health Policy Technol. doi: 10.1016/j.hlpt.2018.04.006 – volume: 37 start-page: 234 year: 2017 ident: 423_CR31 publication-title: Med. Decis. Making doi: 10.1177/0272989X16662654 – volume: 172 start-page: S137 year: 2020 ident: 423_CR78 publication-title: Ann. Intern. Med. doi: 10.7326/M19-0872 – volume: 34 start-page: i457 year: 2018 ident: 423_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume: 3 start-page: 167 year: 2020 ident: 423_CR80 publication-title: JAMIA Open doi: 10.1093/jamiaopen/ooz046 – volume: 355 start-page: 2725 year: 2006 ident: 423_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa061115 – volume: 2011 start-page: 511 year: 2011 ident: 423_CR65 publication-title: AMIA Annu. Symp. Proc. – volume: 11 year: 2016 ident: 423_CR54 publication-title: PLoS ONE doi: 10.1371/journal.pone.0153240 – volume: 64 start-page: 2890 year: 2017 ident: 423_CR64 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2684244 – volume: 151 year: 2016 ident: 423_CR35 publication-title: JAMA Surg. doi: 10.1001/jamasurg.2016.0480 – volume: 360 start-page: 491 year: 2009 ident: 423_CR4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa0810119 – volume: 284 start-page: 12 year: 2017 ident: 423_CR60 publication-title: Math. Biosci. doi: 10.1016/j.mbs.2016.11.004 – volume: 363 start-page: 2124 year: 2010 ident: 423_CR46 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1004404 – volume: 270 start-page: 414 year: 2019 ident: 423_CR41 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000003460 – ident: 423_CR22 – volume: 35 start-page: 408 year: 2017 ident: 423_CR52 publication-title: CIN Comput. Inform. Nurs. – volume: 185 start-page: 289 year: 2019 ident: 423_CR32 publication-title: Br. J. Haematol. doi: 10.1111/bjh.15780 – volume: 2 year: 2019 ident: 423_CR33 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.8719 – ident: 423_CR83 – volume: 268 start-page: 574 year: 2018 ident: 423_CR39 publication-title: Ann. Surg. doi: 10.1097/SLA.0000000000002956 – volume: 65 start-page: 993 year: 2016 ident: 423_CR50 publication-title: MMWR Morb. Mortal. Wkly. Rep. doi: 10.15585/mmwr.mm6537a2 – volume: 11 start-page: 036009 year: 2017 ident: 423_CR74 publication-title: J. Breath Res. doi: 10.1088/1752-7163/aa7799 – volume: 2019 start-page: 874 year: 2019 ident: 423_CR70 publication-title: AMIA Annu. Symp. Proc. – volume: 23 start-page: 727 year: 2014 ident: 423_CR72 publication-title: BMJ Qual. Saf. doi: 10.1136/bmjqs-2013-002627 – volume: 280 start-page: 1311 year: 1998 ident: 423_CR5 publication-title: JAMA doi: 10.1001/jama.280.15.1311 – volume: 88 start-page: 545 year: 2013 ident: 423_CR29 publication-title: Am. J. Hematol. doi: 10.1002/ajh.23450 – ident: 423_CR1 – volume: 22 start-page: 809 year: 2013 ident: 423_CR7 publication-title: BMJ Qual. Saf. doi: 10.1136/bmjqs-2012-001748 – volume: 216 start-page: 1088 year: 2015 ident: 423_CR25 publication-title: Stud. Health Technol. Inform. – volume: 169 start-page: 467 year: 2018 ident: 423_CR9 publication-title: Ann. Intern. Med. doi: 10.7326/M18-0850 – volume: 13 start-page: 809 year: 2016 ident: 423_CR44 publication-title: Int. Wound J. doi: 10.1111/iwj.12386 – volume: 19 start-page: 1004 year: 2018 ident: 423_CR63 publication-title: Pediatr. Crit. Care Med. doi: 10.1097/PCC.0000000000001700 – volume: 39 year: 2015 ident: 423_CR56 publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0286-3 – ident: 423_CR84 – ident: 423_CR42 |
| SSID | ssj0002048946 |
| Score | 2.5574126 |
| SecondaryResourceType | review_article |
| Snippet | Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include:... Abstract Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include:... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 54 |
| SubjectTerms | 692/700 706/648 Artificial intelligence Biomedicine Biotechnology Computer vision Digital technology Health informatics Medical errors Medicine Medicine & Public Health Patient safety Review Review Article |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hClVcEFAegYKMxA2iJrHjBzeoWnGh4lCk3qzYsdVFVVJ1UyT-PTN2dtmFQi9cN7O7488z65md8TcAb4xuvRSRl9G0oRQqoktJ3ZVOhkBVLRH6mIZNqJMTfXZmvmyM-qKesEwPnIE7iNFjpl173wcheiGdqb3pmt7oSnkpA_36VspsJFPfUnlNaCPkfEum4vpgKTD2pn5bzJ6pF6SUWydRIuy_Kcr8s1nyt4ppOoiOH8D9OYJkH7LmD-FOGB7B7ue5Rr4Hp7jz7HKcqA0I5cbIaJGZKIItNhg42TSyRfpPAeUzvSpbdjFMP96zjtF1Ffx-lu-2PIavx0enh5_KeXZC6TEGm0pHM4Fc20YptOsNwtdKV_Uxmk6bpnGIaB1qH5XQlGX4JjiB-8mbPvpoMCZ6AjvDOIRnwJwkeseWo7f2-GGyky2daVXkVYfBR11AvcLR-plYnOZbXNhU4ObaZuwtYm8T9lYW8Hb9nstMq_FP6Y-0PWtJosROL6Ch2NlQ7G2GUsD-anPt7KdLi8uqOVEw4Sperx-jh1HZpBvCeE0yiRYRdSrgabaFtSacK-pPaAtQW1ayper2k2Fxnli8lVGUyxXwbmVPv9T6OxTP_wcUL-BekxyBl7XZh53p6jq8hLv--7RYXr1KnvQTDKMhJQ priority: 102 providerName: Directory of Open Access Journals |
| Title | The potential of artificial intelligence to improve patient safety: a scoping review |
| URI | https://link.springer.com/article/10.1038/s41746-021-00423-6 https://www.ncbi.nlm.nih.gov/pubmed/33742085 https://www.proquest.com/docview/2531380411 https://www.proquest.com/docview/2503447746 https://pubmed.ncbi.nlm.nih.gov/PMC7979747 https://doaj.org/article/ffc7611ccde44d46b91c9a2d9807c66e |
| Volume | 4 |
| WOSCitedRecordID | wos000631152500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7X7 dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: 7RV dateStart: 20181201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: BENPR dateStart: 20181201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2398-6352 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002048946 issn: 2398-6352 databaseCode: PIMPY dateStart: 20181201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Bi1AvvCmBsjISN4iaxI4fXBBFreDQ1aoqaDlZiWPDSihZNikS_x6P492yPHrhEinJJPJkZuLxzPgbgOdKloYzR1OnSpsy4bxJcVmlNbcWs1rMNi40mxDTqZzP1SwG3PpYVrn-J4YfddMZjJEfFl5ZKILl5K-X31LsGoXZ1dhC4zrsYtts1HMxF5sYC4LSKsbjXpmMysOeeQ8cq279GhorQlK-NR8F2P6_-Zp_lkz-ljcN09HJ7f9l5A7cio4oeTNqzl24Ztt7cPM0ptrvw7lXILLsBqwm8nSdI6hkI94EWfwC5EmGjixCaMLTjyitpK-cHX68IhXBXS-eATJukXkAH06Oz9--S2MLhtR4V25Ia2wtVJel40zWjTKmKXmdNc6pSqqiqPPc5DY3TjCJixVT2Jp5taBF44xT3rV6CDtt19pHQGqOKJEl9ew3_mW84iVOjZmjWeV9mDyBfC0IbSI-ObbJ-KpDnpxKPQpPe-HpIDzNE3ixeWY5onNcSX2E8t1QIrJ2uNCtPutoqNo5I7hnyzSWsYbxWuVGVUWjZCYM5zaBg7VYdTT3Xl_KNIFnm9veUDH7UrW2u0CagK7ox5TA_qhMm5FQKrDMoUxAbKnZ1lC377SLLwEMXCiBS8IEXq4V8nJY__4Uj6_m4gnsFcFGaJqrA9gZVhf2Kdww34dFv5p4Izv7OAmmFo5yArtHx9PZ2SRENPzZ7P3p7NNPBwE0MQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB5VWwS8cB-BAkaCJ4iaw3FiJIS4qq7aXe3DIpUnN_FBV6qSZZOC-qf4jXicoyxH3_rAazKJ7PE347E9_gbgGc8SyaiJfcMT7dPUWJNiWe4XTGs81aJaGVdsIp1Os4MDPtuAH_1dGEyr7H2ic9SqkrhHvh1ZsMRIlhO-WX71sWoUnq72JTRaWOzp0-92yVa_Hn-w4_s8inY-zt_v-l1VAV_a6KTxC6yWUySJYTQrFJdSJawIlDE8z3gUFWEoQx1Kk9IM428Z6YLansaRMtJwhkQH1uVvUgT7CDZn48ns87CrgzS4nLLudk4QZ9s1tTE_5vnaVTvmoPhsbQZ0hQL-Ft3-maT520mtmwB3rv9vqrsB17pQm7xtbeMmbOjyFlyedMkEt2FuTYQsqwbzpaxcZQiaUcuoQRa_UJWSpiILt_li5VseWlLnRjenr0hO8F6PVRhpLwHdgU8X0qe7MCqrUt8HUjDkwUxiq25lf8ZyluDkH5g4yG2UFnoQ9gMvZMfAjoVAjoXLBIgz0YJFWLAIBxbBPHgxfLNs-UfOlX6HeBokkTvcPahWX0TnioQxMmW2W1JpShVlBQ8lzyPFsyCVjGkPtnoYic6h1eIMQx48HV5bV4TnS3mpqxOUcfyRtk0e3GvBO7QkjlNM5Eg8SNdgvdbU9Tfl4sjRnac8xUWvBy97Azhr1r9V8eD8XjyBK7vzyb7YH0_3HsLVyNln7Id8C0bN6kQ_gkvyW7OoV487EydweNGm8RPig49s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+artificial+intelligence+to+improve+patient+safety%3A+a+scoping+review&rft.jtitle=NPJ+digital+medicine&rft.au=Bates%2C+David+W.&rft.au=Levine%2C+David&rft.au=Syrowatka%2C+Ania&rft.au=Kuznetsova%2C+Masha&rft.date=2021-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2398-6352&rft.volume=4&rft_id=info:doi/10.1038%2Fs41746-021-00423-6&rft_id=info%3Apmid%2F33742085&rft.externalDocID=PMC7979747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |