The potential of artificial intelligence to improve patient safety: a scoping review

Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine Jg. 4; H. 1; S. 54 - 8
Hauptverfasser: Bates, David W., Levine, David, Syrowatka, Ania, Kuznetsova, Masha, Craig, Kelly Jean Thomas, Rui, Angela, Jackson, Gretchen Purcell, Rhee, Kyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.03.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2398-6352, 2398-6352
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.
AbstractList Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.
Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.
Abstract Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications, pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction, prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to adverse drug events, decompensation, and diagnostic errors.
ArticleNumber 54
Author Levine, David
Rui, Angela
Kuznetsova, Masha
Syrowatka, Ania
Craig, Kelly Jean Thomas
Bates, David W.
Rhee, Kyu
Jackson, Gretchen Purcell
Author_xml – sequence: 1
  givenname: David W.
  orcidid: 0000-0001-6268-1540
  surname: Bates
  fullname: Bates, David W.
  email: dbates@bwh.harvard.edu
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard T. H. Chan School of Public Health
– sequence: 2
  givenname: David
  surname: Levine
  fullname: Levine, David
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 3
  givenname: Ania
  orcidid: 0000-0002-7161-9770
  surname: Syrowatka
  fullname: Syrowatka, Ania
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 4
  givenname: Masha
  surname: Kuznetsova
  fullname: Kuznetsova, Masha
  organization: Harvard Business School, Harvard University
– sequence: 5
  givenname: Kelly Jean Thomas
  orcidid: 0000-0002-9954-2795
  surname: Craig
  fullname: Craig, Kelly Jean Thomas
  organization: IBM Watson Health
– sequence: 6
  givenname: Angela
  surname: Rui
  fullname: Rui, Angela
  organization: Division of General Internal Medicine, Brigham and Women’s Hospital
– sequence: 7
  givenname: Gretchen Purcell
  orcidid: 0000-0002-3242-8058
  surname: Jackson
  fullname: Jackson, Gretchen Purcell
  organization: IBM Watson Health, Department of Pediatric Surgery, Vanderbilt University Medical Center
– sequence: 8
  givenname: Kyu
  surname: Rhee
  fullname: Rhee, Kyu
  organization: IBM Watson Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33742085$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLaU_wAJFYsMm4FccmwUSqnhUqsRmWFu2c516lImDnZmqf4_TlNJ2UXnh1znnvs5rdDTGERB6S_BHgpn8lDlpuagxJTXGnLJavEAnlClZC9bQowfnY3SW8xZjTDGXiotX6JixllMsmxO02VxBNcUZxjmYoYq-MmkOPrjlFsYZhiH0MDqo5liF3ZTioeDNHAqhysbDfPO5MlV2cQpjXyU4BLh-g156M2Q4u9tP0e_v3zbnP-vLXz8uzr9e1q7heK4tWIxt03jBpe2Uc10jLO68V0YqSi0hjgBxvuUS04Y4CpaDBUY777wSlJ2ii1W3i2arpxR2Jt3oaIK-fYip10s1bgDtvWtFEXQdcN5xYRVxytBOSdw6IaBofVm1pr3dQedKfckMj0Qf_4zhSvfxoFtVFm-LwIc7gRT_7CHPeheyK_0zI8R91rTBjPO2DK1A3z-BbuM-jaVVBcUIk5gTUlDvHmZ0n8q_4RUAXQEuxZwT-HsIwXoxiV5NootJ9K1J9BJbPiG5MJd5xqWqMDxPZSs1lzhjD-l_2s-w_gLJ2tHM
CitedBy_id crossref_primary_10_1007_s00261_023_03821_4
crossref_primary_10_1097_NNE_0000000000001571
crossref_primary_10_1097_MD_0000000000035769
crossref_primary_10_1186_s13195_025_01815_6
crossref_primary_10_3389_fneur_2024_1332048
crossref_primary_10_1016_j_mcna_2025_02_006
crossref_primary_10_14302_issn_2641_5526_jmid_25_5466
crossref_primary_10_1016_j_apergo_2024_104243
crossref_primary_10_7759_cureus_46454
crossref_primary_10_4103_picr_picr_66_24
crossref_primary_10_1080_07366981_2025_2554441
crossref_primary_10_2139_ssrn_5426255
crossref_primary_10_1016_j_oor_2024_100343
crossref_primary_10_1109_EMR_2024_3355973
crossref_primary_10_1093_jamia_ocaf139
crossref_primary_10_3390_children10101634
crossref_primary_10_1186_s12911_025_02871_6
crossref_primary_10_33393_aop_2024_3282
crossref_primary_10_1007_s10479_023_05650_6
crossref_primary_10_4240_wjgs_v17_i4_103696
crossref_primary_10_1007_s40290_025_00572_z
crossref_primary_10_1136_bmjopen_2025_100516
crossref_primary_10_3390_healthcare13162021
crossref_primary_10_3390_diagnostics15030274
crossref_primary_10_5435_JAAOS_D_24_01072
crossref_primary_10_3389_fmedt_2024_1331058
crossref_primary_10_1016_j_aap_2023_107420
crossref_primary_10_1016_j_healthpol_2023_104889
crossref_primary_10_1007_s10916_022_01893_1
crossref_primary_10_1111_jonm_13853
crossref_primary_10_2196_70782
crossref_primary_10_17755_esosder_1563082
crossref_primary_10_1017_ice_2023_122
crossref_primary_10_1016_j_imed_2025_07_002
crossref_primary_10_1007_s00423_023_03134_6
crossref_primary_10_1016_j_teln_2025_05_016
crossref_primary_10_3390_ijerph20176680
crossref_primary_10_1055_a_2415_8408
crossref_primary_10_1177_09287329241296350
crossref_primary_10_1016_j_outlook_2024_102300
crossref_primary_10_1051_bioconf_202414802003
crossref_primary_10_1001_jamahealthforum_2023_5514
crossref_primary_10_1136_bmjhci_2023_100935
crossref_primary_10_7759_cureus_78069
crossref_primary_10_37689_acta_ape_2023ar014622
crossref_primary_10_1007_s00146_025_02380_0
crossref_primary_10_3389_frai_2023_985469
crossref_primary_10_1016_j_hlpt_2025_100976
crossref_primary_10_1111_jgs_17715
crossref_primary_10_1007_s40264_024_01505_6
crossref_primary_10_1038_s41598_025_02076_x
crossref_primary_10_1002_hsr2_70793
crossref_primary_10_1007_s41999_025_01202_2
crossref_primary_10_3390_healthcare12111086
crossref_primary_10_1177_13872877251343241
crossref_primary_10_1016_j_farma_2024_04_001
crossref_primary_10_1371_journal_pone_0325718
crossref_primary_10_1016_j_bvth_2024_100031
crossref_primary_10_1016_j_ijmedinf_2023_105246
crossref_primary_10_3390_healthcare12070788
crossref_primary_10_1016_j_ijmedinf_2023_105084
crossref_primary_10_3389_fphar_2025_1534552
crossref_primary_10_2196_62732
crossref_primary_10_1038_s41433_025_03605_8
crossref_primary_10_1089_tmj_2024_0521
crossref_primary_10_1177_01632787251316854
crossref_primary_10_1186_s12909_025_07669_8
crossref_primary_10_1108_EJIM_01_2024_0078
crossref_primary_10_1177_15353702231215895
crossref_primary_10_2196_50903
crossref_primary_10_3390_jcm12154920
crossref_primary_10_1016_j_artmed_2023_102715
crossref_primary_10_1016_j_autneu_2021_102929
crossref_primary_10_1016_j_farma_2024_02_007
crossref_primary_10_1080_10447318_2023_2235882
crossref_primary_10_1159_000519420
crossref_primary_10_3390_ddc4010009
crossref_primary_10_1080_01442872_2024_2400922
crossref_primary_10_1186_s13075_025_03508_9
crossref_primary_10_2196_46407
crossref_primary_10_3389_fgwh_2025_1536169
crossref_primary_10_1016_j_knosys_2025_114382
crossref_primary_10_1016_j_soncn_2023_151433
crossref_primary_10_1016_j_pcad_2024_01_008
crossref_primary_10_3389_fmed_2024_1522554
crossref_primary_10_38124_ijisrt_25may1548
crossref_primary_10_3389_fdgth_2022_966174
crossref_primary_10_4018_JHMS_329200
crossref_primary_10_1093_intqhc_mzad049
crossref_primary_10_1016_j_technovation_2025_103333
crossref_primary_10_35712_aig_v6_i1_108198
crossref_primary_10_1111_all_15945
crossref_primary_10_1001_jamanetworkopen_2023_3391
crossref_primary_10_1097_ACM_0000000000005740
crossref_primary_10_1016_j_prro_2023_03_011
crossref_primary_10_1016_j_jacadv_2024_100982
crossref_primary_10_1056_NEJMra2204673
crossref_primary_10_1136_bmjqs_2023_016807
crossref_primary_10_52711_0974_4150_2025_00006
crossref_primary_10_1038_s41746_025_01565_7
crossref_primary_10_1016_j_autrev_2023_103358
crossref_primary_10_22159_ijap_2025v17i3_52719
crossref_primary_10_37689_acta_ape_2023ar01462
crossref_primary_10_1056_NEJMc2301651
crossref_primary_10_1016_j_jopan_2024_01_016
crossref_primary_10_3389_fped_2025_1612618
crossref_primary_10_1016_j_nxbio_2025_100001
crossref_primary_10_1007_s40264_022_01172_5
crossref_primary_10_1056_NEJMsa2206117
crossref_primary_10_3390_jcm14051605
crossref_primary_10_1007_s11606_024_09087_w
crossref_primary_10_1016_j_nepr_2024_103888
crossref_primary_10_3390_app13052823
crossref_primary_10_1007_s00405_023_08104_8
crossref_primary_10_3390_antibiotics13010077
crossref_primary_10_12968_hmed_2024_0112
crossref_primary_10_1016_j_clindermatol_2024_06_014
crossref_primary_10_1016_j_medine_2024_04_002
crossref_primary_10_1016_j_medin_2024_03_007
crossref_primary_10_7759_cureus_91957
crossref_primary_10_1007_s12262_024_04083_0
crossref_primary_10_3390_s22010034
crossref_primary_10_1016_j_jnr_2025_08_015
crossref_primary_10_1038_s41746_025_01460_1
crossref_primary_10_1007_s40290_022_00441_z
crossref_primary_10_1016_S1473_3099_25_00412_8
crossref_primary_10_3390_math10040554
crossref_primary_10_1093_jamia_ocad191
crossref_primary_10_1145_3571815
crossref_primary_10_2147_IJGM_S516247
crossref_primary_10_1186_s12913_025_12964_7
crossref_primary_10_1093_bjsopen_zrac031
crossref_primary_10_1016_j_japh_2023_11_023
crossref_primary_10_2196_48659
Cites_doi 10.1371/journal.pmed.1002701
10.4037/ajcc2018525
10.1001/jama.1995.03530010043033
10.1532/hsf.1566
10.1186/s12859-018-2544-0
10.1377/hlthaff.2018.0738
10.1377/hlthaff.28.5.1475
10.1016/j.jhin.2018.04.004
10.1001/jamainternmed.2013.9763
10.1038/s41591-018-0300-7
10.1186/s13073-019-0689-8
10.1097/SLA.0000000000002693
10.1016/j.ijmedinf.2018.05.006
10.1056/NEJMoa1801550
10.1039/C8LC00108A
10.1086/657912
10.1160/TH12-03-0162
10.1111/iwj.13071
10.1002/rth2.12292
10.1016/j.surg.2016.08.017
10.1016/j.ijmedinf.2018.03.008
10.1038/srep27041
10.2217/pgs.15.161
10.1111/acem.12876
10.1177/000313481808400943
10.2196/13659
10.1056/NEJMsa0907115
10.1111/jgs.15304
10.1016/j.ajic.2018.02.021
10.1007/s11306-014-0692-4
10.1186/cc10274
10.1109/TNSRE.2017.2687100
10.3390/s19081866
10.1159/000485461
10.1016/j.cmpb.2018.12.027
10.1038/s41598-017-09766-1
10.1093/jamia/ocaa088
10.1016/j.amjmed.2013.12.004
10.3233/THC-151088
10.1016/j.jtv.2017.06.002
10.1016/j.hlpt.2018.04.006
10.1177/0272989X16662654
10.7326/M19-0872
10.1093/bioinformatics/bty294
10.1093/jamiaopen/ooz046
10.1056/NEJMoa061115
10.1371/journal.pone.0153240
10.1109/TBME.2017.2684244
10.1001/jamasurg.2016.0480
10.1056/NEJMsa0810119
10.1016/j.mbs.2016.11.004
10.1056/NEJMsa1004404
10.1097/SLA.0000000000003460
10.1111/bjh.15780
10.1001/jamanetworkopen.2019.8719
10.1097/SLA.0000000000002956
10.15585/mmwr.mm6537a2
10.1088/1752-7163/aa7799
10.1136/bmjqs-2013-002627
10.1001/jama.280.15.1311
10.1002/ajh.23450
10.1136/bmjqs-2012-001748
10.7326/M18-0850
10.1111/iwj.12386
10.1097/PCC.0000000000001700
10.1007/s10916-015-0286-3
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-021-00423-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 8
ExternalDocumentID oai_doaj_org_article_ffc7611ccde44d46b91c9a2d9807c66e
PMC7979747
33742085
10_1038_s41746_021_00423_6
Genre Journal Article
Scoping Review
GrantInformation_xml – fundername: IBM Watson
– fundername: ;
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PPXIY
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-beb00b55f648bd9ccd56b0dff9a8922b11c1e1cf7480251c2eb4ebe32dfcf9623
IEDL.DBID DOA
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000631152500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2398-6352
IngestDate Tue Oct 14 15:16:48 EDT 2025
Tue Nov 04 01:50:25 EST 2025
Fri Sep 05 12:57:22 EDT 2025
Tue Oct 07 07:12:51 EDT 2025
Mon Jul 21 05:27:24 EDT 2025
Tue Nov 18 21:24:13 EST 2025
Sat Nov 29 02:05:38 EST 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-beb00b55f648bd9ccd56b0dff9a8922b11c1e1cf7480251c2eb4ebe32dfcf9623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-3
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3242-8058
0000-0002-9954-2795
0000-0001-6268-1540
0000-0002-7161-9770
OpenAccessLink https://doaj.org/article/ffc7611ccde44d46b91c9a2d9807c66e
PMID 33742085
PQID 2531380411
PQPubID 5061815
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_ffc7611ccde44d46b91c9a2d9807c66e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7979747
proquest_miscellaneous_2503447746
proquest_journals_2531380411
pubmed_primary_33742085
crossref_primary_10_1038_s41746_021_00423_6
crossref_citationtrail_10_1038_s41746_021_00423_6
springer_journals_10_1038_s41746_021_00423_6
PublicationCentury 2000
PublicationDate 2021-03-19
PublicationDateYYYYMMDD 2021-03-19
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References HowcroftJKofmanJLemaireEDProspective fall-risk prediction models for older adults based on wearable sensorsIEEE Trans. Neural Syst. Rehabil. Eng.201725181218202835868910.1109/TNSRE.2017.2687100
WuH-YPredicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LRSci. Rep.201661:CAS:528:DC%2BC28XptFCit78%3D27247165488798810.1038/srep27041
LiaoY-HMachine learning methods applied to predict ventilator-associated pneumonia with pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unitSensors201919186610.3390/s190818666514817
TirzīteMBukovskisMStrazdaGJurkaNTaivansIDetection of lung cancer in exhaled breath with an electronic nose using support vector machine analysisJ. Breath Res.20171103600910.1088/1752-7163/aa7799
UmscheidCAEstimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costsInfect. Control Hosp. Epidemiol.2011321011142146046310.1086/657912
TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D3061733910.1038/s41591-018-0300-7
BatesDWIncidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE prevention study groupJAMA199527429341:STN:280:DyaK2MzhtFemtw%3D%3D779125510.1001/jama.1995.03530010043033
LandriganCPTemporal trends in rates of patient harm resulting from medical careN. Engl. J. Med.2010363212421341:CAS:528:DC%2BC3cXhsV2gs7vI2110579410.1056/NEJMsa1004404
Mehra, R., Bianconi, G. M., Yeung, S. & Fei-Fei, L. Depth-based activity recognition in ICUs using convolutional and recurrent neural networks. Mach. Learn. Healthc. Conf. 1–9 (2017).
BertsimasDDunnJVelmahosGCKaafaraniHMASurgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculatorAnn. Surg.20182685745833012447910.1097/SLA.0000000000002956
Neri, E. & Pinker-Domenig, K. (eds) Special issue “Artificial Intelligence in Diagnostics”. https://www.mdpi.com/journal/diagnostics/special_issues/AI_Diagnostics (2020).
WatsonJOvercoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?JAMIA Open2020316717232734155738263110.1093/jamiaopen/ooz046
PavaniAArtificial neural network-based pharmacogenomic algorithm for warfarin dose optimizationPharmacogenomics2016171211311:CAS:528:DC%2BC2MXitVKrs7bE2666646710.2217/pgs.15.161
PoonEGEffect of bar-code technology on the safety of medication administrationN. Engl. J. Med.2010362169817071:CAS:528:DC%2BC3cXls1yit7o%3D2044518110.1056/NEJMsa0907115
WetzelRCAczonMLedbetterDRArtificial intelligence: an inkling of cautionPediatr. Crit. Care Med.201819100410053028157210.1097/PCC.0000000000001700
Weiss, A., Freeman, W., Heslin, K. & Barrett, M. Adverse drug events in U.S. hospitals, 2010 versus 2014. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.pdf (2018).
Sanchez-PintoLNVenableLRFahrenbachJChurpekMMComparison of variable selection methods for clinical predictive modelingInt. J. Med. Inform.2018116101729887230600362410.1016/j.ijmedinf.2018.05.006
BergenGStevensMRBurnsERFalls and fall injuries among adults aged ≥65 years — United States, 2014MMWR Morb. Mortal. Wkly. Rep.2016659939982765691410.15585/mmwr.mm6537a2
WiseESPrediction of prolonged ventilation after coronary artery bypass grafting: data from an artificial neural networkHeart Surg. Forum201720E007E0142826314410.1532/hsf.1566
CoreyKMDevelopment and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): a retrospective, single-site studyPLoS Med.20181530481172625850710.1371/journal.pmed.1002701
MagillSSChanges in prevalence of health care–associated infections in U.S. hospitalsN. Engl. J. Med.2018379173217443038038410.1056/NEJMoa18015507978499
U.S. Bureau of Labor Statistics. Producer price index by industry: selected health care industries (PCUASHCASHC). https://fred.stlouisfed.org/series/PCUASHCASHC (2020).
ZitnikMAgrawalMLeskovecJModeling polypharmacy side effects with graph convolutional networksBioinformatics201834i457i4661:CAS:528:DC%2BC1MXhtVOmtrzJ29949996602270510.1093/bioinformatics/bty294
BatesDWAuerbachASchulamPWrightASariaSReporting and implementing interventions involving machine learning and artificial intelligenceAnn. Intern. Med.2020172S137S1443247918010.7326/M19-0872
PronovostPAn intervention to decrease catheter-related bloodstream infections in the ICUN. Engl. J. Med.2006355272527321:CAS:528:DC%2BD2sXhslSmtA%3D%3D1719253710.1056/NEJMoa061115
WardLPaulMAndreassenSAutomatic learning of mortality in a CPN model of the systemic inflammatory response syndromeMath. Biosci.201728412202783300010.1016/j.mbs.2016.11.004
TanejaICombining biomarkers with EMR data to identify patients in different phases of sepsisSci. Rep.2017728883645558982110.1038/s41598-017-09766-11:CAS:528:DC%2BC1cXhtlCksL7I
TriccoACPRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanationAnn. Intern. Med.20181694674733017803310.7326/M18-0850
OgalloWKanterASTowards a clinical decision support system for drug allergy management: are existing drug reference terminologies sufficient for identifying substitutes and cross-reactants?Stud. Health Technol. Inform.2015216108826262387
JhaAKThe global burden of unsafe medical care: analytic modelling of observational studiesBMJ Qual. Saf.2013228098152404861610.1136/bmjqs-2012-001748
HsiaoR-SBody posture recognition and turning recording system for the care of bed bound patientsTechnol. Health Care201524S307S3122644481410.3233/THC-151088
VuLPredicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizonAMIA Annu. Symp. Proc.2019201987488232308884
Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Mach. Learn. Healthc. Conf. (2017).
HackmannGToward a two-tier clinical warning system for hospitalized patientsAMIA Annu. Symp. Proc.20112011511519221951053243239
DiasRTorkamaniAArtificial intelligence in clinical and genomic diagnosticsGenome Med.20191131744524686504510.1186/s13073-019-0689-81:CAS:528:DC%2BC1MXitFyrurvL
LinneburMPreventable complications and deaths after emergency nontrauma surgeryAm. Surg.201884142214283026816910.1177/000313481808400943
AltexSoft. Best public datasets for machine learning and data science: sources and advice on the choice. AltexSofthttps://www.altexsoft.com/blog/datascience/best-public-machine-learning-datasets/ (2019).
FerroniPRisk assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patientsMed. Decis. Making2017372342422749155810.1177/0272989X16662654
AlazraiRMowafiYHamadEA fall prediction methodology for elderly based on a depth cameraAnnu. Int. Conf. IEEE Eng. Med. Biol. Soc.201520154990499326737412
Open Data Science (ODSC). 15 Open datasets for healthcare. Mediumhttps://medium.com/@ODSC/15-open-datasets-for-healthcare-830b19980d9 (2019).
WillanJKatzHKeelingDThe use of artificial neural network analysis can improve the risk‐stratification of patients presenting with suspected deep vein thrombosisBr. J. Haematol.20191852892963072702410.1111/bjh.15780
JuangL-HWuM-NFall down detection under smart home systemJ. Med. Syst.2015392627601410.1007/s10916-015-0286-3
Namazi, B., Sankaranarayanan, G., Devarajan, V. & Fleshman, J. A deep learning system for automatically identifying critical view of safety in laparoscopic cholecystectomy videos for assessment. In SAGES 2017 Annual Meeting (Sages, Houston, TX, 2017).
GeilleitRFeasibility of a real-time hand hygiene notification machine learning system in outpatient clinicsJ. Hosp. Infect.20181001831891:STN:280:DC%2BC1MjitFahsQ%3D%3D2964955810.1016/j.jhin.2018.04.004
MahanCEVenous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack ratesThromb. Haemost.20121082913021:CAS:528:DC%2BC38Xht1GitbvE2273965610.1160/TH12-03-0162
Dehghani SoufiMSamad-SoltaniTShams VahdatiSRezaei-HachesuPDecision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logicInt. J. Med. Inform.201811435442967360110.1016/j.ijmedinf.2018.03.008
HuangRSPPost-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural networkAnn. Clin. Lab. Sci.2015451811861:CAS:528:DC%2BC28XpsVSnsLc%3D25887872
IslamMMPrediction of sepsis patients using machine learning approach: a meta-analysisComput. Methods Prog. Biomed.20191701910.1016/j.cmpb.2018.12.027
HashimotoDARosmanGRusDMeirelesORArtificial intelligence in surgeryAnn. Surg.201826870762938967910.1097/SLA.0000000000002693
HowcroftJLemaireEDKofmanJWearable-sensor-based classification models of faller status in older adultsPLoS ONE20161127054878482439810.1371/journal.pone.01532401:CAS:528:DC%2BC28Xhs1OqsL7N
Hernandez-BoussardTBozkurtSIoannidisJPAShahNHMINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health careJ. Am. Med. Inform. Assoc.2020272011201532594179772733310.1093/jamia/ocaa088
ZeidanAMImpact of a venous thromboembolism prophylaxis “smart order set”: improved compliance, fewer eventsAm. J. Hematol.2013885455491:CAS:528:DC%2BC3sXpvFensbo%3D2355374310.1002/ajh.23450
SinghHMeyerANDThomasEJThe frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populationsBMJ Qual. Saf.20142372773124742777414546010.1136/bmjqs-2013-002627
GardinerJCReedPLBonnerJDHaggertyDKHaleDGLIncidence of hospital-acquired pressure ulcers - a population-based cohort studyInt. Wound J.2016138098202546958510.1111/iwj.12386
SureshHClinical intervention prediction and understanding using deep networksMach. L
T Hernandez-Boussard (423_CR79) 2020; 27
AC Tricco (423_CR9) 2018; 169
423_CR71
W Ogallo (423_CR25) 2015; 216
M Tirzīte (423_CR74) 2017; 11
T Saviauk (423_CR15) 2018; 59
H Singh (423_CR72) 2014; 23
H Brown (423_CR66) 2014; 127
J Willan (423_CR32) 2019; 185
423_CR76
L Vu (423_CR70) 2019; 2019
DW Bates (423_CR23) 1995; 274
M Dehghani Soufi (423_CR75) 2018; 114
J Shaw (423_CR81) 2019; 21
JC Gardiner (423_CR44) 2016; 13
CP Landrigan (423_CR46) 2010; 363
423_CR42
LN Sanchez-Pinto (423_CR59) 2018; 116
423_CR83
H Suresh (423_CR21) 2017; 68
423_CR84
AM Zeidan (423_CR29) 2013; 88
KM Corey (423_CR34) 2018; 15
AK Jha (423_CR8) 2009; 28
RA Taylor (423_CR61) 2016; 23
Y-H Liao (423_CR14) 2019; 19
ES Wise (423_CR38) 2017; 20
I Taneja (423_CR68) 2017; 7
R Dias (423_CR77) 2019; 11
CA Umscheid (423_CR13) 2011; 32
E Zimlichman (423_CR12) 2013; 173
P Pronovost (423_CR3) 2006; 355
DW Bates (423_CR5) 1998; 280
S Kuppusami (423_CR16) 2015; 11
423_CR1
J Watson (423_CR80) 2020; 3
423_CR57
423_CR10
D Bertsimas (423_CR39) 2018; 268
DA Hashimoto (423_CR43) 2018; 268
R-S Hsiao (423_CR48) 2015; 24
AB Haynes (423_CR4) 2009; 360
AK Jha (423_CR7) 2013; 22
L-H Juang (423_CR56) 2015; 39
DW Bates (423_CR82) 2018; 7
J Alderden (423_CR47) 2018; 27
U Hassan (423_CR69) 2018; 18
CS Florence (423_CR51) 2018; 66
G Hackmann (423_CR65) 2011; 2011
CE Mahan (423_CR28) 2012; 108
I Banerjee (423_CR33) 2019; 2
G Bergen (423_CR50) 2016; 65
M Zitnik (423_CR24) 2018; 34
S Yokota (423_CR52) 2017; 35
JW Scott (423_CR35) 2016; 151
EJ Topol (423_CR73) 2019; 25
T Nafee (423_CR30) 2020; 4
LE Kuo (423_CR58) 2017; 161
SS Magill (423_CR11) 2018; 379
DW Bates (423_CR2) 2018; 37
R Geilleit (423_CR19) 2018; 100
H-Y Wu (423_CR40) 2016; 6
423_CR20
A Sutherland (423_CR67) 2011; 15
B Vandendriessche (423_CR64) 2017; 64
DW Bates (423_CR78) 2020; 172
WV Padula (423_CR45) 2019; 16
A Pavani (423_CR27) 2016; 17
S Dey (423_CR26) 2018; 19
M Linnebur (423_CR36) 2018; 84
P Ferroni (423_CR31) 2017; 37
423_CR22
L Ward (423_CR60) 2017; 284
R Alazrai (423_CR55) 2015; 2015
J Howcroft (423_CR54) 2016; 11
MM Islam (423_CR62) 2019; 170
EG Poon (423_CR6) 2010; 362
423_CR18
DA Hashimoto (423_CR41) 2019; 270
C Beeler (423_CR17) 2018; 46
V Luboz (423_CR49) 2018; 27
J Howcroft (423_CR53) 2017; 25
RSP Huang (423_CR37) 2015; 45
RC Wetzel (423_CR63) 2018; 19
References_xml – reference: UmscheidCAEstimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costsInfect. Control Hosp. Epidemiol.2011321011142146046310.1086/657912
– reference: WiseESPrediction of prolonged ventilation after coronary artery bypass grafting: data from an artificial neural networkHeart Surg. Forum201720E007E0142826314410.1532/hsf.1566
– reference: ZeidanAMImpact of a venous thromboembolism prophylaxis “smart order set”: improved compliance, fewer eventsAm. J. Hematol.2013885455491:CAS:528:DC%2BC3sXpvFensbo%3D2355374310.1002/ajh.23450
– reference: HackmannGToward a two-tier clinical warning system for hospitalized patientsAMIA Annu. Symp. Proc.20112011511519221951053243239
– reference: Hernandez-BoussardTBozkurtSIoannidisJPAShahNHMINIMAR (MINimum Information for Medical AI Reporting): developing reporting standards for artificial intelligence in health careJ. Am. Med. Inform. Assoc.2020272011201532594179772733310.1093/jamia/ocaa088
– reference: NafeeTMachine learning to predict venous thrombosis in acutely ill medical patientsRes. Pract. Thromb. Haemost.202042302371:CAS:528:DC%2BB3cXjs1Witb4%3D32110753704055110.1002/rth2.12292
– reference: PadulaWVDelarmenteBAThe national cost of hospital‐acquired pressure injuries in the United StatesInt. Wound J.2019166346403069364410.1111/iwj.130717948545
– reference: DeySLuoHFokoueAHuJZhangPPredicting adverse drug reactions through interpretable deep learning frameworkBMC Bioinformatics2018191:CAS:528:DC%2BC1MXht12itrfF30591036630088710.1186/s12859-018-2544-0
– reference: Kohn, L., Corrigan, J. & Donaldson, M. To Err Is Human (National Academies Press, 2000).
– reference: Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief #204. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. (Agency for Healthcare Research and Quality, Rockville, MD, 2016).
– reference: TanejaICombining biomarkers with EMR data to identify patients in different phases of sepsisSci. Rep.2017728883645558982110.1038/s41598-017-09766-11:CAS:528:DC%2BC1cXhtlCksL7I
– reference: JhaAKThe global burden of unsafe medical care: analytic modelling of observational studiesBMJ Qual. Saf.2013228098152404861610.1136/bmjqs-2012-001748
– reference: KuoLEFailure-to-rescue after injury is associated with preventability: the results of mortality panel review of failure-to-rescue cases in traumaSurgery20171617827902778892410.1016/j.surg.2016.08.017
– reference: PronovostPAn intervention to decrease catheter-related bloodstream infections in the ICUN. Engl. J. Med.2006355272527321:CAS:528:DC%2BD2sXhslSmtA%3D%3D1719253710.1056/NEJMoa061115
– reference: BatesDWIncidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE prevention study groupJAMA199527429341:STN:280:DyaK2MzhtFemtw%3D%3D779125510.1001/jama.1995.03530010043033
– reference: CoreyKMDevelopment and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): a retrospective, single-site studyPLoS Med.20181530481172625850710.1371/journal.pmed.1002701
– reference: FlorenceCSMedical costs of fatal and nonfatal falls in older adultsJ. Am. Geriatr. Soc.20186669369829512120608938010.1111/jgs.15304
– reference: YokotaSEndoMOheKEstablishing a classification system for high fall-risk among inpatients using support vector machinesCIN Comput. Inform. Nurs.20173540841628800580
– reference: OgalloWKanterASTowards a clinical decision support system for drug allergy management: are existing drug reference terminologies sufficient for identifying substitutes and cross-reactants?Stud. Health Technol. Inform.2015216108826262387
– reference: VandendriesscheBAbasMDickTELoparoKAJaconoFJA framework for patient state tracking by classifying multiscalar physiologic waveform featuresIEEE Trans. Biomed. Eng.2017642890290028328498573679210.1109/TBME.2017.2684244
– reference: BrownHTerrenceJVasquezPBatesDWZimlichmanEContinuous monitoring in an inpatient medical-surgical unit: a controlled clinical trialAm. J. Med.20141272262322434254310.1016/j.amjmed.2013.12.004
– reference: SinghHMeyerANDThomasEJThe frequency of diagnostic errors in outpatient care: estimations from three large observational studies involving US adult populationsBMJ Qual. Saf.20142372773124742777414546010.1136/bmjqs-2013-002627
– reference: Neri, E. & Pinker-Domenig, K. (eds) Special issue “Artificial Intelligence in Diagnostics”. https://www.mdpi.com/journal/diagnostics/special_issues/AI_Diagnostics (2020).
– reference: WetzelRCAczonMLedbetterDRArtificial intelligence: an inkling of cautionPediatr. Crit. Care Med.201819100410053028157210.1097/PCC.0000000000001700
– reference: Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. Mach. Learn. Healthc. Conf. (2017).
– reference: LiaoY-HMachine learning methods applied to predict ventilator-associated pneumonia with pseudomonas aeruginosa infection via sensor array of electronic nose in intensive care unitSensors201919186610.3390/s190818666514817
– reference: SureshHClinical intervention prediction and understanding using deep networksMach. Learn. Healthc. Conf.201768116
– reference: BatesDWEffect of computerized physician order entry and a team intervention on prevention of serious medication errorsJAMA199828013111:STN:280:DyaK1M%2FgvVCguw%3D%3D979430810.1001/jama.280.15.1311
– reference: BertsimasDDunnJVelmahosGCKaafaraniHMASurgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculatorAnn. Surg.20182685745833012447910.1097/SLA.0000000000002956
– reference: Namazi, B., Sankaranarayanan, G., Devarajan, V. & Fleshman, J. A deep learning system for automatically identifying critical view of safety in laparoscopic cholecystectomy videos for assessment. In SAGES 2017 Annual Meeting (Sages, Houston, TX, 2017).
– reference: KuppusamiSClokieMRJPanayiTEllisAMMonksPSMetabolite profiling of Clostridium difficile ribotypes using small molecular weight volatile organic compoundsMetabolomics2015112512601:CAS:528:DC%2BC2cXhtFOqu7%2FF10.1007/s11306-014-0692-4
– reference: HsiaoR-SBody posture recognition and turning recording system for the care of bed bound patientsTechnol. Health Care201524S307S3122644481410.3233/THC-151088
– reference: AlderdenJPredicting pressure injury in critical care patients: a machine-learning modelAm. J. Crit. Care20182746146830385537624779010.4037/ajcc2018525
– reference: Newman-Toker, D. The team sport of diagnosis: a culture shift can reduce missed diagnoses. The Healthcare Bloghttps://thehealthcareblog.com/blog/2016/06/15/the-team-sport-of-diagnosis-a-culture-shift-can-reduce-missed-diagnoses/ (2016).
– reference: HashimotoDARosmanGRusDMeirelesORArtificial intelligence in surgeryAnn. Surg.201826870762938967910.1097/SLA.0000000000002693
– reference: Dehghani SoufiMSamad-SoltaniTShams VahdatiSRezaei-HachesuPDecision support system for triage management: a hybrid approach using rule-based reasoning and fuzzy logicInt. J. Med. Inform.201811435442967360110.1016/j.ijmedinf.2018.03.008
– reference: IslamMMPrediction of sepsis patients using machine learning approach: a meta-analysisComput. Methods Prog. Biomed.20191701910.1016/j.cmpb.2018.12.027
– reference: TaylorRAPrediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approachAcad. Emerg. Med.20162326927826679719588410110.1111/acem.12876
– reference: MahanCEVenous thromboembolism: annualised United States models for total, hospital-acquired and preventable costs utilising long-term attack ratesThromb. Haemost.20121082913021:CAS:528:DC%2BC38Xht1GitbvE2273965610.1160/TH12-03-0162
– reference: LubozVPersonalized modeling for real-time pressure ulcer prevention in sitting postureJ. Tissue Viability20182754582863759210.1016/j.jtv.2017.06.0021:CAS:528:DC%2BC1MXmsVCnurw%3D
– reference: HaynesABA surgical safety checklist to reduce morbidity and mortality in a global populationN. Engl. J. Med.20093604914991:CAS:528:DC%2BD1MXht1Wku7w%3D1914493110.1056/NEJMsa0810119
– reference: U.S. Bureau of Labor Statistics. Producer price index by industry: selected health care industries (PCUASHCASHC). https://fred.stlouisfed.org/series/PCUASHCASHC (2020).
– reference: BatesDWSinghHTwo decades since to err is human: an assessment of progress and emerging priorities in patient safetyHealth Aff.2018371736174310.1377/hlthaff.2018.0738
– reference: AltexSoft. Best public datasets for machine learning and data science: sources and advice on the choice. AltexSofthttps://www.altexsoft.com/blog/datascience/best-public-machine-learning-datasets/ (2019).
– reference: PoonEGEffect of bar-code technology on the safety of medication administrationN. Engl. J. Med.2010362169817071:CAS:528:DC%2BC3cXls1yit7o%3D2044518110.1056/NEJMsa0907115
– reference: HassanUZhuRBashirRMultivariate computational analysis of biosensor’s data for improved CD64 quantification for sepsis diagnosisLab Chip201818123112401:CAS:528:DC%2BC1cXltVymtbY%3D2956446310.1039/C8LC00108A
– reference: LinneburMPreventable complications and deaths after emergency nontrauma surgeryAm. Surg.201884142214283026816910.1177/000313481808400943
– reference: ShawJRudziczFJamiesonTGoldfarbAArtificial intelligence and the implementation challengeJ. Med. Internet Res.20192131293245665212110.2196/13659
– reference: ScottJWUse of national burden to define operative emergency general surgeryJAMA Surg.20161512712071210.1001/jamasurg.2016.0480
– reference: HuangRSPPost-operative bleeding risk stratification in cardiac pulmonary bypass patients using artificial neural networkAnn. Clin. Lab. Sci.2015451811861:CAS:528:DC%2BC28XpsVSnsLc%3D25887872
– reference: HashimotoDAComputer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeveAnn. Surg.20192704144213127465210.1097/SLA.0000000000003460
– reference: JhaAKChanDCRidgwayABFranzCBatesDWImproving safety and eliminating redundant tests: cutting costs in U.S. hospitalsHealth Aff.2009281475148410.1377/hlthaff.28.5.1475
– reference: LandriganCPTemporal trends in rates of patient harm resulting from medical careN. Engl. J. Med.2010363212421341:CAS:528:DC%2BC3cXhsV2gs7vI2110579410.1056/NEJMsa1004404
– reference: TriccoACPRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanationAnn. Intern. Med.20181694674733017803310.7326/M18-0850
– reference: GardinerJCReedPLBonnerJDHaggertyDKHaleDGLIncidence of hospital-acquired pressure ulcers - a population-based cohort studyInt. Wound J.2016138098202546958510.1111/iwj.12386
– reference: JuangL-HWuM-NFall down detection under smart home systemJ. Med. Syst.2015392627601410.1007/s10916-015-0286-3
– reference: TopolEJHigh-performance medicine: the convergence of human and artificial intelligenceNat. Med.20192544561:CAS:528:DC%2BC1MXmvVOgsbs%3D3061733910.1038/s41591-018-0300-7
– reference: ZimlichmanEHealth care–associated infectionsJAMA Intern. Med.201317320392399994910.1001/jamainternmed.2013.9763
– reference: BeelerCAssessing patient risk of central line-associated bacteremia via machine learningAm. J. Infect. Control2018469869912966163410.1016/j.ajic.2018.02.021
– reference: BatesDWAuerbachASchulamPWrightASariaSReporting and implementing interventions involving machine learning and artificial intelligenceAnn. Intern. Med.2020172S137S1443247918010.7326/M19-0872
– reference: HowcroftJKofmanJLemaireEDProspective fall-risk prediction models for older adults based on wearable sensorsIEEE Trans. Neural Syst. Rehabil. Eng.201725181218202835868910.1109/TNSRE.2017.2687100
– reference: MagillSSChanges in prevalence of health care–associated infections in U.S. hospitalsN. Engl. J. Med.2018379173217443038038410.1056/NEJMoa18015507978499
– reference: PavaniAArtificial neural network-based pharmacogenomic algorithm for warfarin dose optimizationPharmacogenomics2016171211311:CAS:528:DC%2BC2MXitVKrs7bE2666646710.2217/pgs.15.161
– reference: Open Data Science (ODSC). 15 Open datasets for healthcare. Mediumhttps://medium.com/@ODSC/15-open-datasets-for-healthcare-830b19980d9 (2019).
– reference: WardLPaulMAndreassenSAutomatic learning of mortality in a CPN model of the systemic inflammatory response syndromeMath. Biosci.201728412202783300010.1016/j.mbs.2016.11.004
– reference: FerroniPRisk assessment for venous thromboembolism in chemotherapy-treated ambulatory cancer patientsMed. Decis. Making2017372342422749155810.1177/0272989X16662654
– reference: WillanJKatzHKeelingDThe use of artificial neural network analysis can improve the risk‐stratification of patients presenting with suspected deep vein thrombosisBr. J. Haematol.20191852892963072702410.1111/bjh.15780
– reference: ZitnikMAgrawalMLeskovecJModeling polypharmacy side effects with graph convolutional networksBioinformatics201834i457i4661:CAS:528:DC%2BC1MXhtVOmtrzJ29949996602270510.1093/bioinformatics/bty294
– reference: BergenGStevensMRBurnsERFalls and fall injuries among adults aged ≥65 years — United States, 2014MMWR Morb. Mortal. Wkly. Rep.2016659939982765691410.15585/mmwr.mm6537a2
– reference: VuLPredicting nocturnal hypoglycemia from continuous glucose monitoring data with extended prediction horizonAMIA Annu. Symp. Proc.2019201987488232308884
– reference: BatesDWHeitmuellerAKakadMSariaSWhy policymakers should care about “big data” in healthcareHealth Policy Technol.2018721121610.1016/j.hlpt.2018.04.006
– reference: Mehra, R., Bianconi, G. M., Yeung, S. & Fei-Fei, L. Depth-based activity recognition in ICUs using convolutional and recurrent neural networks. Mach. Learn. Healthc. Conf. 1–9 (2017).
– reference: WuH-YPredicting postoperative vomiting among orthopedic patients receiving patient-controlled epidural analgesia using SVM and LRSci. Rep.201661:CAS:528:DC%2BC28XptFCit78%3D27247165488798810.1038/srep27041
– reference: TirzīteMBukovskisMStrazdaGJurkaNTaivansIDetection of lung cancer in exhaled breath with an electronic nose using support vector machine analysisJ. Breath Res.20171103600910.1088/1752-7163/aa7799
– reference: Weiss, A., Freeman, W., Heslin, K. & Barrett, M. Adverse drug events in U.S. hospitals, 2010 versus 2014. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb234-Adverse-Drug-Events.pdf (2018).
– reference: SutherlandADevelopment and validation of a novel molecular biomarker diagnostic test for the early detection of sepsisCrit. Care20111521682927321902310.1186/cc10274
– reference: HowcroftJLemaireEDKofmanJWearable-sensor-based classification models of faller status in older adultsPLoS ONE20161127054878482439810.1371/journal.pone.01532401:CAS:528:DC%2BC28Xhs1OqsL7N
– reference: AlazraiRMowafiYHamadEA fall prediction methodology for elderly based on a depth cameraAnnu. Int. Conf. IEEE Eng. Med. Biol. Soc.201520154990499326737412
– reference: SaviaukTElectronic nose in the detection of wound infection bacteria from bacterial cultures: a proof-of-principle studyEur. Surg. Res.2018591111:CAS:528:DC%2BC1cXhslyrsbjJ2932076910.1159/000485461
– reference: DiasRTorkamaniAArtificial intelligence in clinical and genomic diagnosticsGenome Med.20191131744524686504510.1186/s13073-019-0689-81:CAS:528:DC%2BC1MXitFyrurvL
– reference: GeilleitRFeasibility of a real-time hand hygiene notification machine learning system in outpatient clinicsJ. Hosp. Infect.20181001831891:STN:280:DC%2BC1MjitFahsQ%3D%3D2964955810.1016/j.jhin.2018.04.004
– reference: Sanchez-PintoLNVenableLRFahrenbachJChurpekMMComparison of variable selection methods for clinical predictive modelingInt. J. Med. Inform.2018116101729887230600362410.1016/j.ijmedinf.2018.05.006
– reference: WatsonJOvercoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?JAMIA Open2020316717232734155738263110.1093/jamiaopen/ooz046
– reference: BanerjeeIDevelopment and performance of the pulmonary embolism result forecast model (PERFORM) for computed tomography clinical decision supportJAMA Netw. Open2019231390040668678010.1001/jamanetworkopen.2019.8719
– volume: 15
  year: 2018
  ident: 423_CR34
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002701
– volume: 27
  start-page: 461
  year: 2018
  ident: 423_CR47
  publication-title: Am. J. Crit. Care
  doi: 10.4037/ajcc2018525
– ident: 423_CR76
– volume: 274
  start-page: 29
  year: 1995
  ident: 423_CR23
  publication-title: JAMA
  doi: 10.1001/jama.1995.03530010043033
– volume: 20
  start-page: E007
  year: 2017
  ident: 423_CR38
  publication-title: Heart Surg. Forum
  doi: 10.1532/hsf.1566
– ident: 423_CR18
– ident: 423_CR57
– volume: 19
  year: 2018
  ident: 423_CR26
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-018-2544-0
– volume: 37
  start-page: 1736
  year: 2018
  ident: 423_CR2
  publication-title: Health Aff.
  doi: 10.1377/hlthaff.2018.0738
– volume: 28
  start-page: 1475
  year: 2009
  ident: 423_CR8
  publication-title: Health Aff.
  doi: 10.1377/hlthaff.28.5.1475
– volume: 100
  start-page: 183
  year: 2018
  ident: 423_CR19
  publication-title: J. Hosp. Infect.
  doi: 10.1016/j.jhin.2018.04.004
– volume: 173
  start-page: 2039
  year: 2013
  ident: 423_CR12
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2013.9763
– volume: 2015
  start-page: 4990
  year: 2015
  ident: 423_CR55
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– ident: 423_CR10
– volume: 25
  start-page: 44
  year: 2019
  ident: 423_CR73
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 11
  year: 2019
  ident: 423_CR77
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0689-8
– volume: 268
  start-page: 70
  year: 2018
  ident: 423_CR43
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000002693
– ident: 423_CR20
– volume: 116
  start-page: 10
  year: 2018
  ident: 423_CR59
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.05.006
– volume: 379
  start-page: 1732
  year: 2018
  ident: 423_CR11
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801550
– volume: 18
  start-page: 1231
  year: 2018
  ident: 423_CR69
  publication-title: Lab Chip
  doi: 10.1039/C8LC00108A
– volume: 32
  start-page: 101
  year: 2011
  ident: 423_CR13
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1086/657912
– volume: 108
  start-page: 291
  year: 2012
  ident: 423_CR28
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH12-03-0162
– volume: 16
  start-page: 634
  year: 2019
  ident: 423_CR45
  publication-title: Int. Wound J.
  doi: 10.1111/iwj.13071
– volume: 45
  start-page: 181
  year: 2015
  ident: 423_CR37
  publication-title: Ann. Clin. Lab. Sci.
– volume: 4
  start-page: 230
  year: 2020
  ident: 423_CR30
  publication-title: Res. Pract. Thromb. Haemost.
  doi: 10.1002/rth2.12292
– volume: 161
  start-page: 782
  year: 2017
  ident: 423_CR58
  publication-title: Surgery
  doi: 10.1016/j.surg.2016.08.017
– volume: 114
  start-page: 35
  year: 2018
  ident: 423_CR75
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.03.008
– volume: 6
  year: 2016
  ident: 423_CR40
  publication-title: Sci. Rep.
  doi: 10.1038/srep27041
– volume: 17
  start-page: 121
  year: 2016
  ident: 423_CR27
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs.15.161
– volume: 23
  start-page: 269
  year: 2016
  ident: 423_CR61
  publication-title: Acad. Emerg. Med.
  doi: 10.1111/acem.12876
– volume: 84
  start-page: 1422
  year: 2018
  ident: 423_CR36
  publication-title: Am. Surg.
  doi: 10.1177/000313481808400943
– volume: 21
  year: 2019
  ident: 423_CR81
  publication-title: J. Med. Internet Res.
  doi: 10.2196/13659
– ident: 423_CR71
– volume: 362
  start-page: 1698
  year: 2010
  ident: 423_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa0907115
– volume: 66
  start-page: 693
  year: 2018
  ident: 423_CR51
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/jgs.15304
– volume: 68
  start-page: 1
  year: 2017
  ident: 423_CR21
  publication-title: Mach. Learn. Healthc. Conf.
– volume: 46
  start-page: 986
  year: 2018
  ident: 423_CR17
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2018.02.021
– volume: 11
  start-page: 251
  year: 2015
  ident: 423_CR16
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0692-4
– volume: 15
  year: 2011
  ident: 423_CR67
  publication-title: Crit. Care
  doi: 10.1186/cc10274
– volume: 25
  start-page: 1812
  year: 2017
  ident: 423_CR53
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2687100
– volume: 19
  start-page: 1866
  year: 2019
  ident: 423_CR14
  publication-title: Sensors
  doi: 10.3390/s19081866
– volume: 59
  start-page: 1
  year: 2018
  ident: 423_CR15
  publication-title: Eur. Surg. Res.
  doi: 10.1159/000485461
– volume: 170
  start-page: 1
  year: 2019
  ident: 423_CR62
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.12.027
– volume: 7
  year: 2017
  ident: 423_CR68
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09766-1
– volume: 27
  start-page: 2011
  year: 2020
  ident: 423_CR79
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocaa088
– volume: 127
  start-page: 226
  year: 2014
  ident: 423_CR66
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2013.12.004
– volume: 24
  start-page: S307
  year: 2015
  ident: 423_CR48
  publication-title: Technol. Health Care
  doi: 10.3233/THC-151088
– volume: 27
  start-page: 54
  year: 2018
  ident: 423_CR49
  publication-title: J. Tissue Viability
  doi: 10.1016/j.jtv.2017.06.002
– volume: 7
  start-page: 211
  year: 2018
  ident: 423_CR82
  publication-title: Health Policy Technol.
  doi: 10.1016/j.hlpt.2018.04.006
– volume: 37
  start-page: 234
  year: 2017
  ident: 423_CR31
  publication-title: Med. Decis. Making
  doi: 10.1177/0272989X16662654
– volume: 172
  start-page: S137
  year: 2020
  ident: 423_CR78
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M19-0872
– volume: 34
  start-page: i457
  year: 2018
  ident: 423_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume: 3
  start-page: 167
  year: 2020
  ident: 423_CR80
  publication-title: JAMIA Open
  doi: 10.1093/jamiaopen/ooz046
– volume: 355
  start-page: 2725
  year: 2006
  ident: 423_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa061115
– volume: 2011
  start-page: 511
  year: 2011
  ident: 423_CR65
  publication-title: AMIA Annu. Symp. Proc.
– volume: 11
  year: 2016
  ident: 423_CR54
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0153240
– volume: 64
  start-page: 2890
  year: 2017
  ident: 423_CR64
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2684244
– volume: 151
  year: 2016
  ident: 423_CR35
  publication-title: JAMA Surg.
  doi: 10.1001/jamasurg.2016.0480
– volume: 360
  start-page: 491
  year: 2009
  ident: 423_CR4
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa0810119
– volume: 284
  start-page: 12
  year: 2017
  ident: 423_CR60
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2016.11.004
– volume: 363
  start-page: 2124
  year: 2010
  ident: 423_CR46
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1004404
– volume: 270
  start-page: 414
  year: 2019
  ident: 423_CR41
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000003460
– ident: 423_CR22
– volume: 35
  start-page: 408
  year: 2017
  ident: 423_CR52
  publication-title: CIN Comput. Inform. Nurs.
– volume: 185
  start-page: 289
  year: 2019
  ident: 423_CR32
  publication-title: Br. J. Haematol.
  doi: 10.1111/bjh.15780
– volume: 2
  year: 2019
  ident: 423_CR33
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.8719
– ident: 423_CR83
– volume: 268
  start-page: 574
  year: 2018
  ident: 423_CR39
  publication-title: Ann. Surg.
  doi: 10.1097/SLA.0000000000002956
– volume: 65
  start-page: 993
  year: 2016
  ident: 423_CR50
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm6537a2
– volume: 11
  start-page: 036009
  year: 2017
  ident: 423_CR74
  publication-title: J. Breath Res.
  doi: 10.1088/1752-7163/aa7799
– volume: 2019
  start-page: 874
  year: 2019
  ident: 423_CR70
  publication-title: AMIA Annu. Symp. Proc.
– volume: 23
  start-page: 727
  year: 2014
  ident: 423_CR72
  publication-title: BMJ Qual. Saf.
  doi: 10.1136/bmjqs-2013-002627
– volume: 280
  start-page: 1311
  year: 1998
  ident: 423_CR5
  publication-title: JAMA
  doi: 10.1001/jama.280.15.1311
– volume: 88
  start-page: 545
  year: 2013
  ident: 423_CR29
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.23450
– ident: 423_CR1
– volume: 22
  start-page: 809
  year: 2013
  ident: 423_CR7
  publication-title: BMJ Qual. Saf.
  doi: 10.1136/bmjqs-2012-001748
– volume: 216
  start-page: 1088
  year: 2015
  ident: 423_CR25
  publication-title: Stud. Health Technol. Inform.
– volume: 169
  start-page: 467
  year: 2018
  ident: 423_CR9
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M18-0850
– volume: 13
  start-page: 809
  year: 2016
  ident: 423_CR44
  publication-title: Int. Wound J.
  doi: 10.1111/iwj.12386
– volume: 19
  start-page: 1004
  year: 2018
  ident: 423_CR63
  publication-title: Pediatr. Crit. Care Med.
  doi: 10.1097/PCC.0000000000001700
– volume: 39
  year: 2015
  ident: 423_CR56
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0286-3
– ident: 423_CR84
– ident: 423_CR42
SSID ssj0002048946
Score 2.5573485
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include:...
Abstract Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in healthcare include:...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms 692/700
706/648
Artificial intelligence
Biomedicine
Biotechnology
Computer vision
Digital technology
Health informatics
Medical errors
Medicine
Medicine & Public Health
Patient safety
Review
Review Article
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3rSBgozEDawmcRLbXBAgKi5UHIq0Nyt-0ZVQst2klfrv8TjelOXRC9d4ItmZb5wZz_gbgFdWWumE8DTX1lIkvKNtCIVoLrUXTHMfXKXYbIIfH4vFQn5NB25DKqvc7Ilxo7a9wTPywzKAhSFZTvFudUaxaxRmV1MLjZtwC9tmI875gs9nLEhKK6sm3ZXJmTgcquCBY9VtiKGxIoQ2W_-jSNv_N1_zz5LJ3_Km8Xd0dO9_F3If7iZHlLyfkPMAbrjuIdz5klLtj-AkAIis-hGriYJc7wmCbOKbIMtfiDzJ2JNlPJoI8hNLKxla78bLt6QleOslLIBMV2Qew7ejTycfP9PUgoGa4MqNVGNrIV3XvqmEttIYWzc6t97LVsiy1EVhClcYzyuBwYopna4CLFhpvfEyuFZPYKfrO7cPpGZt8FWcrkMEVQWnRHAvmStro5EGTIoMio0ilEn85Ngm44eKeXIm1KQ8FZSnovJUk8Hr-Z3VxM5xrfQH1O8sicza8UG__q6SoSrvDW_Csox1VWWrRsvCyLa0UuTcNI3L4GCjVpXMfVBXOs3g5TwcDBWzL23n-nOUieyKYU4Z7E1gmmfCGMcyhzoDvgWzraluj3TL00gGziXHkDCDNxtAXk3r35_i6fWreAa7ZbQRRgt5ADvj-tw9h9vmYlwO6xfRyH4CaLMuZQ
  priority: 102
  providerName: ProQuest
Title The potential of artificial intelligence to improve patient safety: a scoping review
URI https://link.springer.com/article/10.1038/s41746-021-00423-6
https://www.ncbi.nlm.nih.gov/pubmed/33742085
https://www.proquest.com/docview/2531380411
https://www.proquest.com/docview/2503447746
https://pubmed.ncbi.nlm.nih.gov/PMC7979747
https://doaj.org/article/ffc7611ccde44d46b91c9a2d9807c66e
Volume 4
WOSCitedRecordID wos000631152500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7X7
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: 7RV
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: BENPR
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2398-6352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002048946
  issn: 2398-6352
  databaseCode: PIMPY
  dateStart: 20181201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQYgL4k2grIzEDaImsRPb3ChqBYeuVlVBy8mKX2IRylbdFIl_z4yTXXZ5XrhESjJRJp_HyUxm_A3Ac6-9DkrFvLDe50R4l7cYCuWFtlFxKyO6SqnZhJxO1XyuZ1utvqgmbKAHHoA7iNFhpF0654MQXjRWl063ldeqkK5pAr19C6m3gqnPKb0mlBbNuEqm4OpgJdD3pnpbjJ6pFiRvdr5EibD_d17mr8WSP2VM04fo-DbcGj1I9nrQ_A5cCd1duHEy5sjvwRmOPDtf9lQGhHLLyOghB6IItthi4GT9ki3SPwWUH-hV2aqNof_2irWMlqvg_dmwtuU-vD8-OnvzNh97J-QOfbA-t9QTyNZ1bISyXiN8dWMLH6Nula4qi4iWoXRRCkVRhquCFTievPLRRY0-0QPY65ZdeASs5i06GcHWGPoI9CaUjJqHqnaW-Lu0yqBc42jcSCxO_S2-mJTg5soM2BvE3iTsTZPBi8015wOtxl-lD2l4NpJEiZ0OoKGY0VDMvwwlg_314Jpxnq5Mha8gThRMZQbPNqdxhlHapO3C8pJkEi0i6pTBw8EWNppwLqk-oc5A7ljJjqq7Z7rFp8TiLbWkWC6Dl2t7-qHWn6F4_D-geAI3qzQReF7qfdjrLy7DU7juvvaL1cUErsrTD7Sdy7RVE7h2eDSdnU7SHMO92buT2cfvxWgnnQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ZbxMxEB5VKQJeuI-FAkaCJ1g1e9tICHFVjdpEeQhSeXLXF41UZUOyBfVP8RuZ8e6mhKNvfeB1PSv5-GY8Y4-_AXhmhBGWcxf2lTEhEd6FJYZCYV8oxxNVOHSVfLGJYjTiBwdivAE_urcwlFbZ2URvqE2l6Yx8O0awJESWE72Zfw2pahTdrnYlNBpY7NnT7xiyLV8PPuD6Po_jnY-T97thW1Ug1Oid1KGiajkqy1yecmWE1ibLVd84J0ou4lhFkY5spF2RcvK_dWxViiNNYuO0EzkRHaDJ30wJ7D3YHA-G48-rUx2iwRVp3r7O6Sd8e5miz095vhi1Uw5KmK_tgL5QwN-82z-TNH-7qfUb4M71_23qbsC11tVmbxvduAkbdnYLLg_bZILbMEEVYfOqpnwplKscIzVqGDXY9BeqUlZXbOoPX1C-4aFly9LZ-vQVKxm968EJY80joDvw6ULGdBd6s2pm7wPLkhK9MasyjBFTdLt44URi40wrIjoTPICoW3ipWwZ2KgRyLH0mQMJlAxaJYJEeLDIP4MXqn3nDP3Ku9DvC00qSuMP9h2rxRbamSDqnixyHpY1NU5PmSkRalLERvF_oPLcBbHUwkq1BW8ozDAXwdNWMpojul8qZrU5IxvNHYp8CuNeAd9WTJCkokSMLoFiD9VpX11tm0yNPd16IgoLeAF52CnDWrX9PxYPzR_EEruxOhvtyfzDaewhXY6-fSRiJLejVixP7CC7pb_V0uXjcqjiDw4tWjZ8Bd4_J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+potential+of+artificial+intelligence+to+improve+patient+safety%3A+a+scoping+review&rft.jtitle=NPJ+digital+medicine&rft.au=David+W.+Bates&rft.au=David+Levine&rft.au=Ania+Syrowatka&rft.au=Masha+Kuznetsova&rft.date=2021-03-19&rft.pub=Nature+Portfolio&rft.eissn=2398-6352&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41746-021-00423-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ffc7611ccde44d46b91c9a2d9807c66e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon