A Splitting-Based Iterative Algorithm for Accelerated Statistical X-Ray CT Reconstruction

Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can improve image-quality in X-ray computed tomography (CT). However, the huge dynamic range of the statistical weights leads to a highly shift-variant inverse problem making it difficult to precondition and acce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging Vol. 31; no. 3; pp. 677 - 688
Main Authors: Ramani, S., Fessler, J. A.
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0062, 1558-254X, 1558-254X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Statistical image reconstruction using penalized weighted least-squares (PWLS) criteria can improve image-quality in X-ray computed tomography (CT). However, the huge dynamic range of the statistical weights leads to a highly shift-variant inverse problem making it difficult to precondition and accelerate existing iterative algorithms that attack the statistical model directly. We propose to alleviate the problem by using a variable-splitting scheme that separates the shift-variant and ("nearly") invariant components of the statistical data model and also decouples the regularization term. This leads to an equivalent constrained problem that we tackle using the classical method-of-multipliers framework with alternating minimization. The specific form of our splitting yields an alternating direction method of multipliers (ADMM) algorithm with an inner-step involving a "nearly" shift-invariant linear system that is suitable for FFT-based preconditioning using cone-type filters. The proposed method can efficiently handle a variety of convex regularization criteria including smooth edge-preserving regularizers and non- smooth sparsity-promoting ones based on the ℓ 1 -norm and total variation. Numerical experiments with synthetic and real in vivo human data illustrate that cone-filter preconditioners accelerate the proposed ADMM resulting in fast convergence of ADMM compared to conventional (nonlinear conjugate gradient, ordered subsets) and state-of-the-art (MFISTA, split-Bregman) algorithms that are applicable for CT.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2011.2175233