A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing
Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framew...
Uložené v:
| Vydané v: | Nature communications Ročník 12; číslo 1; s. 6512 - 13 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
11.11.2021
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by
p53
in primary cells hampering their growth. This could lead to a selection of cells with pre-existing
p53
mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing
p53
mutations by CRISPR-Cas9. We next demonstrate that similar to
p53
, wildtype
KRAS
may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing
KRAS
-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing
p53
or
KRAS
mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing
p53
and
KRAS
mutations.
CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify
KRAS
mutants that may confer a selected advantage to edited cells. |
|---|---|
| AbstractList | Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations.Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells. Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53 , wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS -mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells. Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53 , wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS -mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells. |
| ArticleNumber | 6512 |
| Author | Jain, Prashant Cheng, Kuoyuan Sinha, Sanju Deshpande, Anagha Luo, Ji Ruppin, Eytan Wilson, David M. Barbosa, Karina Ronai, Ze’ev A. Deshpande, Aniruddha J. Ryan, Bríd M. Leiserson, Mark D. M. Lee, Joo Sang |
| Author_xml | – sequence: 1 givenname: Sanju surname: Sinha fullname: Sinha, Sanju organization: Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Center for Bioinformatics and Computational Biology, University of Maryland – sequence: 2 givenname: Karina orcidid: 0000-0002-6233-3332 surname: Barbosa fullname: Barbosa, Karina organization: Tumor Initiation Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute – sequence: 3 givenname: Kuoyuan surname: Cheng fullname: Cheng, Kuoyuan organization: Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Center for Bioinformatics and Computational Biology, University of Maryland – sequence: 4 givenname: Mark D. M. surname: Leiserson fullname: Leiserson, Mark D. M. organization: Center for Bioinformatics and Computational Biology, University of Maryland – sequence: 5 givenname: Prashant surname: Jain fullname: Jain, Prashant organization: Tumor Initiation Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute – sequence: 6 givenname: Anagha surname: Deshpande fullname: Deshpande, Anagha organization: Tumor Initiation Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute – sequence: 7 givenname: David M. surname: Wilson fullname: Wilson, David M. organization: Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health – sequence: 8 givenname: Bríd M. orcidid: 0000-0003-0038-131X surname: Ryan fullname: Ryan, Bríd M. organization: Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health – sequence: 9 givenname: Ji orcidid: 0000-0001-5063-1626 surname: Luo fullname: Luo, Ji organization: Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institute of Health – sequence: 10 givenname: Ze’ev A. surname: Ronai fullname: Ronai, Ze’ev A. organization: Tumor Initiation Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute – sequence: 11 givenname: Joo Sang orcidid: 0000-0001-8564-0848 surname: Lee fullname: Lee, Joo Sang organization: Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Precision Medicine, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University – sequence: 12 givenname: Aniruddha J. orcidid: 0000-0002-5240-9356 surname: Deshpande fullname: Deshpande, Aniruddha J. email: adeshpande@sbpdiscovery.org organization: Tumor Initiation Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute – sequence: 13 givenname: Eytan surname: Ruppin fullname: Ruppin, Eytan email: eytan.ruppin@nih.gov organization: Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34764240$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_D7sUGqRjxGqgQqsLYc52bwKLEHOwH13-OZTKHtot7Y8v3O0bXveV6dhBigql5i9BYjqt5lhpmQDSK4IUIq1Ygn1RlBDDdYEnpy53xaXeS8RWVRjRVjz6pTyqRghKGzqr2s802eYLSTd_UGQhyh-eM7qEe72_mwqWNfx-BiKRVgnKcCxlBnGMAdTt2c9tjqev3t63WzslkfbWro_FRKL6qnvR0yXBz38-rHxw_fV5-bqy-f1qvLq8Zxhqam1WA501JYrYV2gDuEe4ap7BChvGWi7y2UN2DUCkwU54i0LSCupCx07-h5tV58u2i3Zpf8aNONidabw0VMG2NTeeUAhveABbSa884xkF2LtMAKFHNcE6pU8Xq_eO3mdoTOQZiSHe6Z3q8E_9Ns4m-juBLFoRi8ORqk-GuGPJnRZwfDYAPEORvCtWSKl3kU9PUDdBvnFMpX7SmBpcScFurV3Y7-tXI7ygKoBXAp5pygN84vwyoN-sFgZPbBMUtwTAmOOQTHiCIlD6S37o-K6CLKu30AIP1v-xHVX17W1Ic |
| CitedBy_id | crossref_primary_10_1016_j_ymthe_2022_07_002 crossref_primary_10_1016_j_omtn_2022_07_023 crossref_primary_10_1007_s12033_023_00708_z crossref_primary_10_3389_fimmu_2023_1199145 crossref_primary_10_1038_s41467_022_32285_1 crossref_primary_10_1016_j_tibtech_2022_09_012 crossref_primary_10_1186_s12943_021_01487_4 crossref_primary_10_1016_j_gendis_2025_101808 crossref_primary_10_3390_cancers16071269 crossref_primary_10_3390_bios13060597 crossref_primary_10_1016_j_heliyon_2024_e29061 crossref_primary_10_1093_nar_gkad165 crossref_primary_10_1158_1541_7786_MCR_22_0231 crossref_primary_10_3390_genes14040806 crossref_primary_10_3389_fcell_2023_1200734 crossref_primary_10_3390_ijerph19116739 crossref_primary_10_3390_cancers14040947 crossref_primary_10_1016_j_jpha_2025_101357 crossref_primary_10_1093_nar_gkac1254 crossref_primary_10_3390_pharmaceutics14050894 crossref_primary_10_1016_j_gendis_2025_101785 crossref_primary_10_1016_j_semcancer_2025_07_004 crossref_primary_10_3390_biomedicines12010238 crossref_primary_10_1016_j_jdrv_2025_05_003 crossref_primary_10_1016_j_molcel_2021_12_026 crossref_primary_10_1002_advs_202207512 crossref_primary_10_3389_fcell_2022_818744 crossref_primary_10_1055_s_0044_1791198 crossref_primary_10_1016_j_gene_2024_148760 crossref_primary_10_3389_fimmu_2025_1619361 crossref_primary_10_1016_j_snb_2025_138622 crossref_primary_10_1016_j_xcrm_2025_102157 |
| Cites_doi | 10.3791/58710 10.5281/zenodo.5478587 10.1038/s41586-019-1103-9 10.1038/nature11003 10.15252/msb.20145216 10.1126/science.aax3649 10.1038/s41588-020-0623-4 10.1101/gr.1239303 10.1126/science.1235122 10.1016/j.stem.2019.02.019 10.1158/2159-8290.CD-16-0178 10.1093/nar/gku1075 10.1038/s41467-019-09006-2 10.1182/blood-2013-01-477620 10.15252/msb.20188679 10.1038/ng.3984 10.1016/j.cell.2017.06.010 10.1158/2159-8290.CD-16-0154 10.1038/nbt.4192 10.1016/j.cell.2009.05.006 10.1038/nmeth.3284 10.1186/s13059-019-1637-z 10.1093/nar/gkn863 10.1038/s41598-017-16193-9 10.1016/j.cels.2015.12.004 10.1101/gr.121541.111 10.1038/nbt.2623 10.1038/s41591-018-0050-6 10.1371/journal.pone.0013984 10.1093/nar/gkv350 10.1016/j.bbagrm.2007.10.005 10.1093/nar/gku936 10.1038/s41588-018-0204-y 10.1038/s41467-018-06916-5 10.1038/ng.2764 10.1074/jbc.M511690200 10.1101/060012 10.1038/s41591-018-0049-z 10.1038/onc.2017.377 10.1186/s12864-018-4989-y 10.1016/j.cell.2014.05.010 10.1126/science.aac7041 10.1007/978-1-4939-7346-0_12 10.1038/s41591-018-0326-x 10.1038/s41588-018-0174-0 10.1038/nbt.3117 10.1371/journal.pcbi.1003047 10.1016/j.celrep.2017.06.061 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. corrected publication 2022 2021. The Author(s). The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2022 |
| Copyright_xml | – notice: The Author(s) 2021. corrected publication 2022 – notice: 2021. The Author(s). – notice: The Author(s) 2021. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2022 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-26788-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central - New (Subscription) Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_5fe16eb955dc4e7db09618e84c592388 PMC8586238 34764240 10_1038_s41467_021_26788_6 |
| Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R35 CA197465 – fundername: NCI NIH HHS grantid: P30 CA030199 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-b9ea54976a9969ce1d01f4137d0235b46ffae00310b61285502bbe058779cefc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000717958200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 04:33:11 EST 2025 Tue Nov 04 02:01:04 EST 2025 Thu Sep 04 16:16:08 EDT 2025 Tue Oct 07 07:21:38 EDT 2025 Mon Jul 21 06:05:08 EDT 2025 Tue Nov 18 22:19:42 EST 2025 Sat Nov 29 06:29:35 EST 2025 Fri Feb 21 02:39:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-b9ea54976a9969ce1d01f4137d0235b46ffae00310b61285502bbe058779cefc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5240-9356 0000-0001-8564-0848 0000-0001-5063-1626 0000-0002-6233-3332 0000-0003-0038-131X |
| OpenAccessLink | https://doaj.org/article/5fe16eb955dc4e7db09618e84c592388 |
| PMID | 34764240 |
| PQID | 2596177153 |
| PQPubID | 546298 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5fe16eb955dc4e7db09618e84c592388 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8586238 proquest_miscellaneous_2597485184 proquest_journals_2596177153 pubmed_primary_34764240 crossref_citationtrail_10_1038_s41467_021_26788_6 crossref_primary_10_1038_s41467_021_26788_6 springer_journals_10_1038_s41467_021_26788_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-11 |
| PublicationDateYYYYMMDD | 2021-11-11 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Tsai (CR3) 2015; 33 Matthews (CR37) 2009; 37 McFarland (CR35) 2018; 9 Spahn (CR45) 2017; 7 Munoz (CR9) 2016; 6 CR38 Iorio (CR12) 2018; 19 Hähnel (CR27) 2014; 123 Haapaniemi, Botla, Persson, Schmierer, Taipale (CR14) 2018; 24 Forbes (CR36) 2015; 43 Enache (CR15) 2020; 52 Schiroli (CR32) 2019; 24 Hsu, Lander, Zhang (CR1) 2014; 157 Tsherniak (CR16) 2017; 170 Merico, Isserlin, Stueker, Emili, Bader (CR39) 2010; 5 Gonçalves (CR11) 2019; 20 Luo (CR29) 2009; 137 Martin (CR30) 2017; 20 Wang (CR7) 2015; 350 Jinesh, Sambandam, Vijayaraghavan, Balaji, Mukherjee (CR28) 2018; 37 CR46 Brown (CR21) 2019; 15 Liberzon (CR48) 2015; 6 Charlesworth (CR6) 2019; 25 Sinha, Cheng (CR49) 2021 Richardson (CR19) 2018; 50 Shannon (CR40) 2003; 13 Aguirre (CR8) 2016; 6 Kosicki, Tomberg, Bradley (CR18) 2018; 36 Fu (CR4) 2013; 31 Barretina (CR34) 2012; 483 Deshpande (CR22) 2019 Meyers (CR10) 2017; 49 Smedley (CR41) 2015; 43 Bilal (CR43) 2013; 9 Ihry (CR13) 2018; 24 Brinkman, Chen, Amendola, van Steensel (CR44) 2014; 42 Knauf (CR33) 2006; 281 Giacomelli (CR24) 2018; 50 Song (CR42) 2011; 21 CR25 Brunetti, Gundry, Kitano, Nakada, Goodell (CR47) 2018; 134 Boettcher (CR23) 2019; 365 Behan (CR20) 2019; 568 Cullot (CR5) 2019; 10 Weinstein (CR31) 2013; 45 Lukusa, Fryns (CR17) 2008; 1779 Vogelstein (CR26) 2013; 339 Kim (CR2) 2015; 12 J Luo (26788_CR29) 2009; 137 TD Martin (26788_CR30) 2017; 20 T Wang (26788_CR7) 2015; 350 26788_CR25 D Smedley (26788_CR41) 2015; 43 S Boettcher (26788_CR23) 2019; 365 L Matthews (26788_CR37) 2009; 37 PD Hsu (26788_CR1) 2014; 157 CD Richardson (26788_CR19) 2018; 50 F Iorio (26788_CR12) 2018; 19 Y Fu (26788_CR4) 2013; 31 EK Brinkman (26788_CR44) 2014; 42 RJ Ihry (26788_CR13) 2018; 24 G Schiroli (26788_CR32) 2019; 24 D Merico (26788_CR39) 2010; 5 DM Munoz (26788_CR9) 2016; 6 SA Forbes (26788_CR36) 2015; 43 E Gonçalves (26788_CR11) 2019; 20 G Cullot (26788_CR5) 2019; 10 GG Jinesh (26788_CR28) 2018; 37 T Lukusa (26788_CR17) 2008; 1779 KR Brown (26788_CR21) 2019; 15 RM Meyers (26788_CR10) 2017; 49 A Deshpande (26788_CR22) 2019 A Liberzon (26788_CR48) 2015; 6 E Bilal (26788_CR43) 2013; 9 L Brunetti (26788_CR47) 2018; 134 SQ Tsai (26788_CR3) 2015; 33 OM Enache (26788_CR15) 2020; 52 JN Weinstein (26788_CR31) 2013; 45 26788_CR38 M Kosicki (26788_CR18) 2018; 36 26788_CR46 AO Giacomelli (26788_CR24) 2018; 50 B Vogelstein (26788_CR26) 2013; 339 P Shannon (26788_CR40) 2003; 13 D Kim (26788_CR2) 2015; 12 S Sinha (26788_CR49) 2021 L Song (26788_CR42) 2011; 21 J Barretina (26788_CR34) 2012; 483 PN Spahn (26788_CR45) 2017; 7 A Tsherniak (26788_CR16) 2017; 170 AJ Aguirre (26788_CR8) 2016; 6 E Haapaniemi (26788_CR14) 2018; 24 PS Hähnel (26788_CR27) 2014; 123 JM McFarland (26788_CR35) 2018; 9 CT Charlesworth (26788_CR6) 2019; 25 JA Knauf (26788_CR33) 2006; 281 FM Behan (26788_CR20) 2019; 568 35577818 - Nat Commun. 2022 May 16;13(1):2828 |
| References_xml | – volume: 24 start-page: 551 year: 2019 end-page: 565 ident: CR32 article-title: Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response publication-title: Cell Stem Cell – volume: 31 start-page: 822 year: 2013 end-page: 826 ident: CR4 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. – volume: 50 start-page: 1381 year: 2018 ident: CR24 article-title: Mutational processes shape the landscape of TP53 mutations in human cancer publication-title: Nat. Genet. – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: CR40 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – year: 2019 ident: CR22 article-title: Investigation of genetic dependencies using CRISPR-Cas9-based competition assays publication-title: J. Vis. Exp. doi: 10.3791/58710 – volume: 20 start-page: 427 year: 2017 end-page: 438 ident: CR30 article-title: A role for mitochondrial translation in promotion of viability in K-Ras mutant cells publication-title: Cell Rep. – volume: 45 start-page: 1113 year: 2013 end-page: 1120 ident: CR31 article-title: The Cancer Genome Atlas Pan-Cancer analysis project publication-title: Nat. Genet. – volume: 281 start-page: 3800 year: 2006 end-page: 3809 ident: CR33 article-title: Oncogenic RAS induces accelerated transition through G2/M and promotes defects in the G2 DNA damage and mitotic spindle checkpoints publication-title: Journal of Biological Chemistry – volume: 134 start-page: 57278 year: 2018 ident: CR47 article-title: Highly efficient gene disruption of murine and human hematopoietic progenitor cells by CRISPR/Cas9 publication-title: J. Vis. Exp. – volume: 20 start-page: 1 year: 2019 end-page: 10 ident: CR11 article-title: Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects publication-title: Genome Biol. – year: 2021 ident: CR49 publication-title: Zenodo doi: 10.5281/zenodo.5478587 – ident: CR25 – volume: 10 year: 2019 ident: CR5 article-title: CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations publication-title: Nat. Commun. – volume: 6 start-page: 900 year: 2016 end-page: 913 ident: CR9 article-title: CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions publication-title: Cancer Discov. – volume: 43 start-page: D805 year: 2015 end-page: D811 ident: CR36 article-title: COSMIC: exploring the world’s knowledge of somatic mutations in human cancer publication-title: Nucleic Acids Res. – volume: 36 start-page: 765 year: 2018 end-page: 771 ident: CR18 article-title: Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements publication-title: Nat. Biotechnol. – volume: 42 start-page: e168 year: 2014 ident: CR44 article-title: Easy quantitative assessment of genome editing by sequence trace decomposition publication-title: Nucleic Acids Res. – ident: CR46 – volume: 21 start-page: 1757 year: 2011 end-page: 1767 ident: CR42 article-title: Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity publication-title: Genome Res. – volume: 365 start-page: 599 year: 2019 end-page: 604 ident: CR23 article-title: A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies publication-title: Science – volume: 339 start-page: 1546 year: 2013 end-page: 1558 ident: CR26 article-title: Cancer genome landscapes publication-title: Science – volume: 24 start-page: 927 year: 2018 end-page: 930 ident: CR14 article-title: CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response publication-title: Nat. Med. – volume: 43 start-page: W589 year: 2015 end-page: W598 ident: CR41 article-title: The BioMart community portal: an innovative alternative to large, centralized data repositories publication-title: Nucleic Acids Res. – volume: 49 start-page: 1779 year: 2017 end-page: 1784 ident: CR10 article-title: Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells publication-title: Nat. Genet. – volume: 7 year: 2017 ident: CR45 article-title: PinAPL-Py: a comprehensive web-application for the analysis of CRISPR/Cas9 screens publication-title: Sci. Rep. – volume: 33 start-page: 187 year: 2015 end-page: 197 ident: CR3 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. – volume: 350 start-page: 1096 year: 2015 end-page: 1101 ident: CR7 article-title: Identification and characterization of essential genes in the human genome publication-title: Science – volume: 50 start-page: 1132 year: 2018 end-page: 1139 ident: CR19 article-title: CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway publication-title: Nat. Genet. – volume: 25 start-page: 249 year: 2019 end-page: 254 ident: CR6 article-title: Identification of preexisting adaptive immunity to Cas9 proteins in humans publication-title: Nat. Med – volume: 37 start-page: D619 year: 2009 end-page: D622 ident: CR37 article-title: Reactome knowledgebase of human biological pathways and processes publication-title: Nucleic Acids Res. – volume: 24 start-page: 939 year: 2018 end-page: 946 ident: CR13 article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells publication-title: Nat. Med. – volume: 52 start-page: 662 year: 2020 end-page: 668 ident: CR15 article-title: Cas9 activates the p53 pathway and selects for p53-inactivating mutations publication-title: Nat. Genet. – volume: 19 start-page: 1 year: 2018 end-page: 16 ident: CR12 article-title: Unsupervised correction of gene-independent cell responses to CRISPR-Cas9 targeting publication-title: BMC genomics – volume: 6 start-page: 417 year: 2015 end-page: 425 ident: CR48 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. – volume: 6 start-page: 914 year: 2016 end-page: 929 ident: CR8 article-title: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting publication-title: Cancer Discov. – volume: 12 start-page: 237 year: 2015 end-page: 243 ident: CR2 article-title: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells publication-title: Nat. Methods – volume: 9 year: 2018 ident: CR35 article-title: Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration publication-title: Nat. Commun. – volume: 9 start-page: e1003047 year: 2013 ident: CR43 article-title: Improving breast cancer survival analysis through competition-based multidimensional modeling publication-title: PLoS Comput. Biol. – volume: 170 start-page: 564 year: 2017 end-page: 576.e16 ident: CR16 article-title: Defining a cancer dependency map publication-title: Cell – volume: 1779 start-page: 3 year: 2008 end-page: 16 ident: CR17 article-title: Human chromosome fragility publication-title: Biochim. Biophys. Acta – volume: 483 start-page: 603 year: 2012 end-page: 607 ident: CR34 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature – ident: CR38 – volume: 123 start-page: 2355 year: 2014 end-page: 2366 ident: CR27 article-title: Targeting components of the alternative NHEJ pathway sensitizes KRAS mutant leukemic cells to chemotherapy publication-title: Blood – volume: 137 start-page: 835 year: 2009 end-page: 848 ident: CR29 article-title: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene publication-title: Cell – volume: 568 start-page: 511 year: 2019 ident: CR20 article-title: Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens publication-title: Nature – volume: 37 start-page: 839 year: 2018 end-page: 846 ident: CR28 article-title: Molecular genetics and cellular events of K-Ras-driven tumorigenesis publication-title: Oncogene – volume: 15 start-page: e8679 year: 2019 ident: CR21 article-title: CRISPR screens are feasible in TP 53 wild‐type cells publication-title: Mol. Syst. Biol. – volume: 5 start-page: e13984 year: 2010 ident: CR39 article-title: Enrichment map: a network-based method for gene-set enrichment visualization and interpretation publication-title: PLoS ONE – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: CR1 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 568 start-page: 511 year: 2019 ident: 26788_CR20 publication-title: Nature doi: 10.1038/s41586-019-1103-9 – volume: 483 start-page: 603 year: 2012 ident: 26788_CR34 publication-title: Nature doi: 10.1038/nature11003 – ident: 26788_CR46 doi: 10.15252/msb.20145216 – volume: 365 start-page: 599 year: 2019 ident: 26788_CR23 publication-title: Science doi: 10.1126/science.aax3649 – volume: 52 start-page: 662 year: 2020 ident: 26788_CR15 publication-title: Nat. Genet. doi: 10.1038/s41588-020-0623-4 – volume: 13 start-page: 2498 year: 2003 ident: 26788_CR40 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 339 start-page: 1546 year: 2013 ident: 26788_CR26 publication-title: Science doi: 10.1126/science.1235122 – volume: 24 start-page: 551 year: 2019 ident: 26788_CR32 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.02.019 – volume: 6 start-page: 900 year: 2016 ident: 26788_CR9 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0178 – volume: 43 start-page: D805 year: 2015 ident: 26788_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1075 – volume: 10 year: 2019 ident: 26788_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09006-2 – volume: 123 start-page: 2355 year: 2014 ident: 26788_CR27 publication-title: Blood doi: 10.1182/blood-2013-01-477620 – volume: 15 start-page: e8679 year: 2019 ident: 26788_CR21 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188679 – volume: 49 start-page: 1779 year: 2017 ident: 26788_CR10 publication-title: Nat. Genet. doi: 10.1038/ng.3984 – volume: 170 start-page: 564 year: 2017 ident: 26788_CR16 publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 6 start-page: 914 year: 2016 ident: 26788_CR8 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0154 – volume: 36 start-page: 765 year: 2018 ident: 26788_CR18 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4192 – volume: 137 start-page: 835 year: 2009 ident: 26788_CR29 publication-title: Cell doi: 10.1016/j.cell.2009.05.006 – volume: 12 start-page: 237 year: 2015 ident: 26788_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth.3284 – year: 2019 ident: 26788_CR22 publication-title: J. Vis. Exp. doi: 10.3791/58710 – volume: 20 start-page: 1 year: 2019 ident: 26788_CR11 publication-title: Genome Biol. doi: 10.1186/s13059-019-1637-z – volume: 37 start-page: D619 year: 2009 ident: 26788_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn863 – volume: 7 year: 2017 ident: 26788_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-017-16193-9 – volume: 6 start-page: 417 year: 2015 ident: 26788_CR48 publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 21 start-page: 1757 year: 2011 ident: 26788_CR42 publication-title: Genome Res. doi: 10.1101/gr.121541.111 – volume: 31 start-page: 822 year: 2013 ident: 26788_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 – volume: 24 start-page: 939 year: 2018 ident: 26788_CR13 publication-title: Nat. Med. doi: 10.1038/s41591-018-0050-6 – volume: 5 start-page: e13984 year: 2010 ident: 26788_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0013984 – volume: 43 start-page: W589 year: 2015 ident: 26788_CR41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv350 – volume: 1779 start-page: 3 year: 2008 ident: 26788_CR17 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2007.10.005 – volume: 42 start-page: e168 year: 2014 ident: 26788_CR44 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku936 – volume: 50 start-page: 1381 year: 2018 ident: 26788_CR24 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0204-y – volume: 9 year: 2018 ident: 26788_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06916-5 – volume: 45 start-page: 1113 year: 2013 ident: 26788_CR31 publication-title: Nat. Genet. doi: 10.1038/ng.2764 – volume: 281 start-page: 3800 year: 2006 ident: 26788_CR33 publication-title: Journal of Biological Chemistry doi: 10.1074/jbc.M511690200 – ident: 26788_CR38 doi: 10.1101/060012 – volume: 24 start-page: 927 year: 2018 ident: 26788_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-018-0049-z – volume: 37 start-page: 839 year: 2018 ident: 26788_CR28 publication-title: Oncogene doi: 10.1038/onc.2017.377 – volume: 19 start-page: 1 year: 2018 ident: 26788_CR12 publication-title: BMC genomics doi: 10.1186/s12864-018-4989-y – year: 2021 ident: 26788_CR49 publication-title: Zenodo doi: 10.5281/zenodo.5478587 – volume: 157 start-page: 1262 year: 2014 ident: 26788_CR1 publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 350 start-page: 1096 year: 2015 ident: 26788_CR7 publication-title: Science doi: 10.1126/science.aac7041 – ident: 26788_CR25 doi: 10.1007/978-1-4939-7346-0_12 – volume: 25 start-page: 249 year: 2019 ident: 26788_CR6 publication-title: Nat. Med doi: 10.1038/s41591-018-0326-x – volume: 50 start-page: 1132 year: 2018 ident: 26788_CR19 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0174-0 – volume: 33 start-page: 187 year: 2015 ident: 26788_CR3 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3117 – volume: 9 start-page: e1003047 year: 2013 ident: 26788_CR43 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003047 – volume: 134 start-page: 57278 year: 2018 ident: 26788_CR47 publication-title: J. Vis. Exp. – volume: 20 start-page: 427 year: 2017 ident: 26788_CR30 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.06.061 – reference: 35577818 - Nat Commun. 2022 May 16;13(1):2828 |
| SSID | ssj0000391844 |
| Score | 2.5234306 |
| Snippet | Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by
p53
in primary cells hampering their growth. This... Recent studies have reported that genome editing by CRISPR-Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This... Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This... CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6512 |
| SubjectTerms | 13/89 38/23 38/39 38/47 38/71 42/34 45/41 631/114 631/337/4041/3196 631/67 96/63 Cancer Computational Biology Computer applications CRISPR CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism Damage DNA damage Gene Editing - methods Gene mapping Genetic modification Genome editing Genomes Humanities and Social Sciences Humans multidisciplinary Mutants Mutation Mutation - genetics p53 Protein Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF8ialICNxA6t5-JUTaldUIKGqKiDtzfIr7UpsUja7IP59x443q-XRC7doPRs5mRnP2DP5PoReM59z33BGtCwpodrUxGhuSO6KhjEnC-4ja8kncXIip9P6NB249amtcr0mxoXadTackR9Amg7BVoCDvrv8TgJrVKiuJgqNm-hWoM0Odi6mYjxjCejnktL0rUxeyYOexpUh9CWUsExLwrfiUYTt_1uu-WfL5G910xiOjnf_90Huo3spEcWHg-U8QDd8-xDdGagpfz1C5hBvQJ5xQHKde_Jz5jye6wDpcI67Bnet7WAIBOaroaSP-8irE66GDyDx5Ozj59MzMtF9nW6DIV6GZuvH6Ovx-y-TDyTxMRALed2SmNpr2E4KrmGTVFtfuLxoIAgKF0BzDOVNo33EGjWQNwWktNIYnzMpBEg3tnqCdtqu9c8QrqwpeV1QLVlJXcNNXlXWQfZZyVxTxzJUrLWibAIrD5wZ31QsmldSDZpUoEkVNal4ht6M_7kcoDqulT4Kyh4lA8x2_KFbnKvktYo1HozV1GC1lnrhTCTI8ZJaBomxlBnaX-tYJd_v1UbBGXo1DoPXhlKMbn23ijKCQrIraYaeDpY1zqSiAjaFNM-Q2LK5raluj7Szi4gMLhlsUCuY1tu1dW6m9e9XsXf9UzxHd8vgMKH3sdhHO8vFyr9At-2P5axfvIwedwVv8zGS priority: 102 providerName: ProQuest |
| Title | A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing |
| URI | https://link.springer.com/article/10.1038/s41467-021-26788-6 https://www.ncbi.nlm.nih.gov/pubmed/34764240 https://www.proquest.com/docview/2596177153 https://www.proquest.com/docview/2597485184 https://pubmed.ncbi.nlm.nih.gov/PMC8586238 https://doaj.org/article/5fe16eb955dc4e7db09618e84c592388 |
| Volume | 12 |
| WOSCitedRecordID | wos000717958200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0VPBF_LZ6LhF803Bt89nHu-UOD3Qpq8LqS0nS9FxwW7ndVfzvnaTdvVs_X3wppZmUITPJzDCT3wA8Fz6VvpGCGp1zyo0tqDXS0rTOGiFqnUkfu5a8VpOJns2K8lKrr1AT1sMD9wt3IBqP9LbAiY57VdvYo8Rr7gT6Jjpe801VcSmYimcwKzB04cMtmZTpgyWPZ0KoSMjxgNZU7liiCNj_Oy_z12LJnzKm0RCd3IZbgwdJDnvO78AV396FG31Pye_3wB6SC3RmEiBYF55-m9eeLEzAYjgjXUO61nU4hASLdZ-LJ8vYECe89TcXyXh6-rac0rFZFsNvCBq6UCV9H96fHL8bv6JDIwXq0CFbUVt4g3Ggkgajm8L5rE6zBq2XqgPajeWyaYyPIKEWHZ4AcZZb61OhlULqxrEHsNd2rX8EhDmbyyLjRouc1420KWOuRreR6dTwWiSQbRa1cgPKeGh28bmK2W6mq14QFQqiioKoZAIvtnO-9Bgbf6U-CrLaUgZ87PgBtaYatKb6l9YksL-RdDVs2mWFkSD6cwptQALPtsO43UIOxbS-W0caxdFL1TyBh71ibDlhXGE0x9ME1I7K7LC6O9LOP0VIby0wsmTI1suNcl2w9eelePw_luIJ3MzDrgiljdk-7K3O1_4pXHdfV_Pl-QiuqpmKTz2Ca0fHk3I6ilttFKpkS3yW4iOOlKdvyg8_ANqRKoc |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuF8CA4wET2AtFydxHhAahWnVuqoaQ9qejO04YxJNRtMy7U_xGzl2klblsrc98FbVp5GTfufi-Pj7AF7Gxk9MkcRU8pBRJlVGlUwU9fOgiOOcB4lxqiXDdDTih4fZeA1-dmdhbFtlFxNdoM4rbd-Rb2KZjsk2RQd9d_qdWtUou7vaSWg0sNg152e4ZKvfDj7g__sqDLc_HvR3aKsqQDVWJzOqMiNxUZQmEkv9TJsg94MCQ3maW-oXxZKikMYxZirM_pbvK1TK-DFPU7QudITXvQLrDMHu92B9PNgbHy3e6li-dc5YezrHj_hmzVwssp0QISYGTpOVDOiEAv5W3f7ZpPnbTq1LgNu3_rdHdxtutqU22Wp84w6smfIuXGvEN8_vgdoiSxprYrlqJ4aeneSGTKQlrTgmVUGqUlc4hAaTedO0QGqnHGQ_NUc8SX9_8Gm8T_uyztrLEKwIbDv5ffh8KTf4AHplVZpHQCKtwiQLmORxyPIiUX4U6Rzr64j7kuWxB0GHAqFbOnarCvJNuLaAiIsGOQKRIxxyROLB68VvThsykgut31twLSwtkbj7opoeizYuibgw6I4qQ7_UzKS5chJAhjMdY-nPuQcbHaZEG91qsQSUBy8WwxiX7GaTLE01dzYpw3KeMw8eNkhezCRiKS57me9BuoLxlamujpQnXx33OY9xCR7htN503rCc1r8fxeOL7-I5XN852BuK4WC0-wRuhNZZbadnsAG92XRunsJV_WN2Uk-ftf5O4Mtl-8kvAlWOig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3g9DgUWCE1jxY-1dHxBq00ZEraIogNSbu7tel0jELnFC1b_Gr2N2_YjCo7ceuEXZibV2vpmd8c5-H8DrSHuxzuPIFTygLhUycaWIpetlfh5FGfdjbVVLjth4zI-Pk8kW_GzPwpi2yjYm2kCdlcq8I-9jmo6LLUMH7edNW8Rkf_jh7LtrFKTMTmsrp1FD5FBfnGP5Vr0f7eN__SYIhgefBx_dRmHAVZipLF2ZaIEFEosFpv2J0n7m-TmGdZYZGhhJ4zwX2rJnSswEDPdXIKX2Is4YWucqxOteg20WYtHTg-29g_Fk2r3hMdzrnNLmpI4X8n5FbVwyXREBLhLcjTdWQysa8LdM98-Gzd92be1iOLzzPz_Gu3C7ScHJbu0z92BLF_fhRi3KefEA5C5Z01sTw2E71-75LNNkLgyZxSkpc1IWqsQhNJiv6mYGUllFIfOpPvpJBtPRp8nUHYgqaS5DMFMwbeYP4cuV3OAj6BVloZ8ACZUM4sSngkcBzfJYemGoMsy7Q-4JmkUO-C0iUtXQtBu1kG-pbRcIeVqjKEUUpRZFaezA2-43ZzVJyaXWewZonaUhGLdflIvTtIlXaZRrdFOZoL8qqlkmrTSQ5lRFWBJw7sBOi6-0iXpVugaXA6-6YYxXZhNKFLpcWRtGMc3n1IHHNaq7mYSUYTlMPQfYBt43pro5Usy-Wk50HmFpHuK03rWesZ7Wvx_F08vv4iXcROdIj0bjw2dwKzB-axpA_R3oLRcr_Ryuqx_LWbV40bg-gZOrdpNfRYOXJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+genome-wide+mapping+of+oncogenic+mutation+selection+during+CRISPR-Cas9+genome+editing&rft.jtitle=Nature+communications&rft.au=Sinha%2C+Sanju&rft.au=Barbosa%2C+Karina&rft.au=Cheng%2C+Kuoyuan&rft.au=Leiserson%2C+Mark+D.+M.&rft.date=2021-11-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-26788-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_26788_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |