Variational autoencoder-based estimation of chronological age and changes in morphological features of teeth

This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 13; číslo 1; s. 704 - 11
Hlavní autori: Joo, Subin, Jung, Won, Oh, Seung Eel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 13.01.2023
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10–79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
AbstractList This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10-79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10-79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10–79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
Abstract This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10–79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10–79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
ArticleNumber 704
Author Jung, Won
Joo, Subin
Oh, Seung Eel
Author_xml – sequence: 1
  givenname: Subin
  surname: Joo
  fullname: Joo, Subin
  email: sbjoo@kimm.re.kr
  organization: Department of Medical Robotics, Korea Institute of Machinery and Materials
– sequence: 2
  givenname: Won
  surname: Jung
  fullname: Jung, Won
  organization: Department of Oral Medicine, School of Dentistry, Institute of Oral Bioscience, Jeonbuk National University, Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital
– sequence: 3
  givenname: Seung Eel
  surname: Oh
  fullname: Oh, Seung Eel
  organization: Research Group of Consumer Safety, Korea Food Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36639691$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAQhSNUREvpH-CAInHhErDHdmJfkFBFS6VKXICrNWs7Wa-y9mInlfj3eDdlaXtoLo4833see97r6iTE4KrqLSUfKWHyU-ZUKNkQYA10SpCGv6jOgHDRAAM4efB_Wl3kvCHlE6A4Va-qU9a2TLWKnlXjL0weJx8DjjXOU3TBROtSs8LsbO3y5LeHch372qxTDHGMgzd7enA1Blt2MQwu1z7U25h26yPQO5zmVCpFOjk3rd9UL3scs7u4X8-rn1dff1x-a26_X99cfrltjOBkalbSgup5a6Q0ihGFVIkeFWdUARMOOmJWgiBaZ6noAVrGLAgOLUjSCzDsvLpZfG3Ejd6lcoX0R0f0-rAR06AxTd6MTnMuLQXSYucYp7JFidIpg1ZKZpQlxevz4rWbV1tnjQtTwvGR6eNK8Gs9xDutJFMdEcXgw71Bir_n8qB667Nx44jBxTlr6FrRdSAkL-j7J-gmzqlMZqGAF09WqHcPOzq28m-oBYAFMCnmnFx_RCjR-_DoJTy6hEcfwqP3Z8snIuOnw-TLrfz4vJQt0lzOKVFI_9t-RvUXHpDZGQ
CitedBy_id crossref_primary_10_1038_s41405_024_00198_4
crossref_primary_10_1002_cre2_70035
crossref_primary_10_1007_s00414_024_03162_x
crossref_primary_10_1109_ACCESS_2025_3593933
crossref_primary_10_3390_bioengineering10121354
crossref_primary_10_12797_AHiFM_86_2023_86_05
crossref_primary_10_1016_j_media_2025_103671
crossref_primary_10_1038_s41598_025_03305_z
Cites_doi 10.1016/j.media.2022.102423
10.1371/journal.pone.0220242
10.1016/j.cmpb.2020.105754
10.1016/0379-0738(95)01760-G
10.1007/s00414-019-02147-5
10.1109/TMI.2020.2968765
10.1109/JSTARS.2020.2993731
10.1007/s00414-021-02542-x
10.1007/s00414-022-02796-z
10.1016/j.eswa.2019.112951
10.1016/j.eswa.2021.116038
10.1016/j.forsciint.2017.03.007
10.1007/978-3-030-32245-8_91
10.1520/JFS2002253
10.1109/TCDS.2018.2883368
10.1109/JBHI.2021.3095476
10.1109/TMI.2020.3013825
10.1007/s00521-019-04449-6
10.1111/j.1556-4029.2011.01720.x
10.1016/j.forsciint.2009.09.008
10.32725/jab.2020.013
10.1038/s41598-020-80182-8
10.1016/j.forsciint.2017.10.005
10.1109/TMI.2020.2985861
10.1016/j.media.2016.10.010
10.1111/j.1600-051X.1988.tb01602.x
10.1007/s12024-019-00200-8
10.1109/CVPR.2017.463
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-27950-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_448d1206a7e34186a8a8e9cad883c9d0
PMC9839705
36639691
10_1038_s41598_023_27950_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Program of the Korea Institute of Machinery and Materials
  grantid: NK238D
– fundername: ;
  grantid: NK238D
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-b8d29f46c88c9309a195fa94319235e270cb50aaded15f22633d25426280f52c3
IEDL.DBID BENPR
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968670400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:08:43 EDT 2025
Tue Nov 04 02:06:31 EST 2025
Sun Nov 09 13:19:57 EST 2025
Tue Oct 07 09:06:12 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
Sat Nov 29 02:07:50 EST 2025
Tue Nov 18 22:49:43 EST 2025
Fri Feb 21 02:37:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b8d29f46c88c9309a195fa94319235e270cb50aaded15f22633d25426280f52c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2765249833?pq-origsite=%requestingapplication%
PMID 36639691
PQID 2765249833
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_448d1206a7e34186a8a8e9cad883c9d0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9839705
proquest_miscellaneous_2765772584
proquest_journals_2765249833
pubmed_primary_36639691
crossref_primary_10_1038_s41598_023_27950_4
crossref_citationtrail_10_1038_s41598_023_27950_4
springer_journals_10_1038_s41598_023_27950_4
PublicationCentury 2000
PublicationDate 2023-01-13
PublicationDateYYYYMMDD 2023-01-13
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Papapanou, Wennström, Gröndahl (CR25) 1988; 15
Cunha (CR24) 2009; 193
Han, Wang (CR6) 2020; 197
Alyafeai, Ghouti (CR12) 2020; 141
Milošević, Vodanović, Galić, Subašić (CR13) 2022; 189
CR14
Han (CR9) 2022; 136
Spampinato, Palazzo, Giordano, Aldinucci, Leonardi (CR10) 2017; 36
Ai (CR19) 2020; 13
Zhao, Adeli, Honnorat, Leng, Pohl, Shen, Liu, Peters, Staib, Essert, Zhou, Yap, Khan (CR15) 2019
Yoon, Hyong Kim, Joo, Eel Oh (CR11) 2020; 18
Yan, Smith, Lu, Zhang (CR20) 2018; 12
Kim, Lee, Noh, Park, Auh (CR1) 2021; 11
Kazmi, Mânica, Revie, Shepherd, Hector (CR16) 2019; 133
Lee (CR2) 2017; 281
Dallora, Anderberg, Kvist, Mendes, Diaz Ruiz, Sanmartin Berglund (CR4) 2019; 14
Cheng, Gao, Liu, Yue, Kuang, Liu, Wang (CR27) 2021; 26
Soomer, Ranta, Lincoln, Penttila, Leibur (CR21) 2003; 48
Kvaal, Kolltveit, Thomsen, Solheim (CR26) 1995; 74
Tardivo (CR17) 2011; 56
Marroquin (CR18) 2017; 275
Kahaki, Nordin, Ahmad, Arzoky, Ismail (CR7) 2020; 32
Yue, Liu, Li, Kuang, Lang, Cheng, Peng, Han, Bai, Wang, Wang (CR28) 2022; 79
Zelic, Pavlovic, Mijucic, Djuric, Djonic (CR3) 2020; 16
Nasser, Jennane, Chetouani, Lespessailles, El Hassouni (CR23) 2020; 39
Hu (CR22) 2020; 39
Vila-Blanco, Carreira, Varas-Quintana, Balsa-Castro, Tomas (CR5) 2020; 39
Guo (CR8) 2021; 135
B Ai (27950_CR19) 2020; 13
D Hu (27950_CR22) 2020; 39
D Tardivo (27950_CR17) 2011; 56
AL Dallora (27950_CR4) 2019; 14
N Vila-Blanco (27950_CR5) 2020; 39
Y Nasser (27950_CR23) 2020; 39
Q Zhao (27950_CR15) 2019
Y Han (27950_CR6) 2020; 197
SI Kvaal (27950_CR26) 1995; 74
M Han (27950_CR9) 2022; 136
J Cheng (27950_CR27) 2021; 26
K Zelic (27950_CR3) 2020; 16
Z Alyafeai (27950_CR12) 2020; 141
SJ Yoon (27950_CR11) 2020; 18
S Yan (27950_CR20) 2018; 12
E Cunha (27950_CR24) 2009; 193
YC Guo (27950_CR8) 2021; 135
S Kim (27950_CR1) 2021; 11
D Milošević (27950_CR13) 2022; 189
S Kazmi (27950_CR16) 2019; 133
JH Lee (27950_CR2) 2017; 281
TY Marroquin (27950_CR18) 2017; 275
SM Kahaki (27950_CR7) 2020; 32
H Yue (27950_CR28) 2022; 79
H Soomer (27950_CR21) 2003; 48
PN Papapanou (27950_CR25) 1988; 15
C Spampinato (27950_CR10) 2017; 36
27950_CR14
References_xml – volume: 79
  start-page: 102423
  year: 2022
  ident: CR28
  article-title: MLDRL: Multi-loss disentangled representation learning for predicting esophageal cancer response to neoadjuvant chemoradiotherapy using longitudinal CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102423
– volume: 14
  start-page: e0220242
  issue: 7
  year: 2019
  ident: CR4
  article-title: Bone age assessment with various machine learning techniques: A systematic literature review and meta-analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220242
– volume: 197
  start-page: 105754
  year: 2020
  ident: CR6
  article-title: Skeletal bone age prediction based on a deep residual network with spatial transformer
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105754
– ident: CR14
– volume: 74
  start-page: 175
  issue: 3
  year: 1995
  end-page: 185
  ident: CR26
  article-title: Age estimation of adults from dental radiographs
  publication-title: Forensic Sci. Int.
  doi: 10.1016/0379-0738(95)01760-G
– volume: 133
  start-page: 1967
  issue: 6
  year: 2019
  end-page: 1976
  ident: CR16
  article-title: Age estimation using canine pulp volumes in adults: a CBCT image analysis
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-019-02147-5
– volume: 39
  start-page: 2374
  issue: 7
  year: 2020
  end-page: 2384
  ident: CR5
  article-title: Deep neural networks for chronological age estimation from OPG images
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2020.2968765
– volume: 13
  start-page: 2888
  year: 2020
  end-page: 2898
  ident: CR19
  article-title: Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2993731
– volume: 135
  start-page: 1589
  issue: 4
  year: 2021
  end-page: 1597
  ident: CR8
  article-title: Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-021-02542-x
– volume: 136
  start-page: 821
  issue: 3
  year: 2022
  end-page: 831
  ident: CR9
  article-title: With or without human interference for precise age estimation based on machine learning?
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-022-02796-z
– volume: 141
  start-page: 112951
  year: 2020
  ident: CR12
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112951
– volume: 189
  start-page: 116038
  year: 2022
  ident: CR13
  article-title: Automated estimation of chronological age from panoramic dental X-ray images using deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116038
– volume: 275
  start-page: 203
  year: 2017
  end-page: 211
  ident: CR18
  article-title: Age estimation in adults by dental imaging assessment systematic review
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.03.007
– start-page: 823
  year: 2019
  end-page: 831
  ident: CR15
  article-title: Variational Autoencoder for Regression: Application to Brain Aging Analysis
  publication-title: Medical Image Computing and Computer Assisted Intervention
  doi: 10.1007/978-3-030-32245-8_91
– volume: 48
  start-page: 1
  issue: 1
  year: 2003
  end-page: 4
  ident: CR21
  article-title: Reliability and validity of eight dental age estimation methods for adults
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2002253
– volume: 12
  start-page: 30
  issue: 1
  year: 2018
  end-page: 42
  ident: CR20
  article-title: Abnormal event detection from videos using a two-stream recurrent variational autoencoder
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2018.2883368
– volume: 26
  start-page: 673
  issue: 2
  year: 2021
  end-page: 684
  ident: CR27
  article-title: Multimodal disentangled variational autoencoder with game theoretic interpretability for glioma grading
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2021.3095476
– volume: 39
  start-page: 4137
  issue: 12
  year: 2020
  end-page: 4149
  ident: CR22
  article-title: Disentangled-multimodal adversarial autoencoder: Application to infant age prediction with incomplete multimodal neuroimages
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3013825
– volume: 32
  start-page: 9357
  issue: 13
  year: 2020
  end-page: 9368
  ident: CR7
  article-title: Deep convolutional neural network designed for age assessment based on orthopantomography data
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-019-04449-6
– volume: 56
  start-page: 766
  issue: 3
  year: 2011
  end-page: 770
  ident: CR17
  article-title: Three-dimensional modeling of the various volumes of canines to determine age and sex: a preliminary study
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2011.01720.x
– volume: 193
  start-page: 1
  issue: 1–3
  year: 2009
  end-page: 13
  ident: CR24
  article-title: The problem of aging human remains and living individuals: a review
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2009.09.008
– volume: 18
  start-page: 97
  issue: 4
  year: 2020
  end-page: 105
  ident: CR11
  article-title: Automatic multi-class intertrochanteric femur fracture detection from CT images based on AO/OTA classification using faster R-CNN-BO method
  publication-title: J. Appl. Biomed.
  doi: 10.32725/jab.2020.013
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  ident: CR1
  article-title: Age-group determination of living individuals using first molar images based on artificial intelligence
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80182-8
– volume: 281
  start-page: 186
  year: 2017
  end-page: e1
  ident: CR2
  article-title: Morphological analysis of the lower second premolar for age estimation of Korean adults
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.10.005
– volume: 39
  start-page: 2976
  issue: 9
  year: 2020
  end-page: 2984
  ident: CR23
  article-title: Discriminative regularized auto-encoder for early detection of knee osteoarthritis: Data from the osteoarthritis initiative
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2985861
– volume: 36
  start-page: 41
  year: 2017
  end-page: 51
  ident: CR10
  article-title: Deep learning for automated skeletal bone age assessment in X-ray images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.010
– volume: 15
  start-page: 469
  issue: 7
  year: 1988
  end-page: 478
  ident: CR25
  article-title: Periodontal status in relation to age and tooth type: A cross-sectional radiographic study
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/j.1600-051X.1988.tb01602.x
– volume: 16
  start-page: 43
  issue: 1
  year: 2020
  end-page: 48
  ident: CR3
  article-title: Applicability of pulp/tooth ratio method for age estimation
  publication-title: Forensic Sci. Med. Pathol.
  doi: 10.1007/s12024-019-00200-8
– volume: 13
  start-page: 2888
  year: 2020
  ident: 27950_CR19
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.2993731
– volume: 74
  start-page: 175
  issue: 3
  year: 1995
  ident: 27950_CR26
  publication-title: Forensic Sci. Int.
  doi: 10.1016/0379-0738(95)01760-G
– start-page: 823
  volume-title: Medical Image Computing and Computer Assisted Intervention
  year: 2019
  ident: 27950_CR15
  doi: 10.1007/978-3-030-32245-8_91
– volume: 32
  start-page: 9357
  issue: 13
  year: 2020
  ident: 27950_CR7
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-019-04449-6
– volume: 189
  start-page: 116038
  year: 2022
  ident: 27950_CR13
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116038
– volume: 39
  start-page: 2976
  issue: 9
  year: 2020
  ident: 27950_CR23
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2985861
– volume: 193
  start-page: 1
  issue: 1–3
  year: 2009
  ident: 27950_CR24
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2009.09.008
– volume: 275
  start-page: 203
  year: 2017
  ident: 27950_CR18
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.03.007
– volume: 14
  start-page: e0220242
  issue: 7
  year: 2019
  ident: 27950_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0220242
– volume: 26
  start-page: 673
  issue: 2
  year: 2021
  ident: 27950_CR27
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2021.3095476
– volume: 36
  start-page: 41
  year: 2017
  ident: 27950_CR10
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.010
– volume: 39
  start-page: 2374
  issue: 7
  year: 2020
  ident: 27950_CR5
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2020.2968765
– volume: 135
  start-page: 1589
  issue: 4
  year: 2021
  ident: 27950_CR8
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-021-02542-x
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 27950_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-80182-8
– volume: 141
  start-page: 112951
  year: 2020
  ident: 27950_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112951
– volume: 39
  start-page: 4137
  issue: 12
  year: 2020
  ident: 27950_CR22
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3013825
– volume: 12
  start-page: 30
  issue: 1
  year: 2018
  ident: 27950_CR20
  publication-title: IEEE Trans. Cognit. Dev. Syst.
  doi: 10.1109/TCDS.2018.2883368
– volume: 56
  start-page: 766
  issue: 3
  year: 2011
  ident: 27950_CR17
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2011.01720.x
– volume: 136
  start-page: 821
  issue: 3
  year: 2022
  ident: 27950_CR9
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-022-02796-z
– volume: 281
  start-page: 186
  year: 2017
  ident: 27950_CR2
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.10.005
– ident: 27950_CR14
  doi: 10.1109/CVPR.2017.463
– volume: 18
  start-page: 97
  issue: 4
  year: 2020
  ident: 27950_CR11
  publication-title: J. Appl. Biomed.
  doi: 10.32725/jab.2020.013
– volume: 16
  start-page: 43
  issue: 1
  year: 2020
  ident: 27950_CR3
  publication-title: Forensic Sci. Med. Pathol.
  doi: 10.1007/s12024-019-00200-8
– volume: 79
  start-page: 102423
  year: 2022
  ident: 27950_CR28
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102423
– volume: 15
  start-page: 469
  issue: 7
  year: 1988
  ident: 27950_CR25
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/j.1600-051X.1988.tb01602.x
– volume: 197
  start-page: 105754
  year: 2020
  ident: 27950_CR6
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105754
– volume: 133
  start-page: 1967
  issue: 6
  year: 2019
  ident: 27950_CR16
  publication-title: Int. J. Legal Med.
  doi: 10.1007/s00414-019-02147-5
– volume: 48
  start-page: 1
  issue: 1
  year: 2003
  ident: 27950_CR21
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2002253
SSID ssj0000529419
Score 2.4529924
Snippet This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their...
Abstract This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 704
SubjectTerms 631/114/1305
631/114/1314
631/114/1564
639/166/985
Age
Age determination
Age Determination by Teeth - methods
Artificial Intelligence
Canine teeth
Cuspid
Humanities and Social Sciences
Molar - diagnostic imaging
multidisciplinary
Science
Science (multidisciplinary)
Teeth
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQVSQuqOwpBRmJG1j1Ejv2kSIqDqjiAFVvkeNFHakk1SSDxL_n2c6EDuuFa2wnlt_2vdjvM0Ivo1Y1RIGaKG4jqW1gxChriHRGdobSLuYq1_MPzdmZvrgwH29c9ZXOhBV64LJwx5A-eMapsk0Ah6uV1VYH46zXWjjjc7YOqOdGMlVYvbmpmZmrZKjQxyNEqlRNxgXhjZGU1DuRKBP2_w5l_npY8qcd0xyITg_Q3RlB4jdl5vfQrdDfR7fLnZLfHqCrc8h-5z982G6mITFV-rAmKV55nEg1SrUiHiJ2iRp36_4wuBZse49LMfCIVz3-MoAclg4xZBrQMQ2dQpguH6LPp-8-vX1P5isViANoNpFOe25irZzWzghqLDMyWgMoAoCeDLyhrpPUWh88kxGgmRAeUkiuuKZRciceob1-6MMThIWNNfPgMKRltexUB2-S1DvlAHKE6CrEtsvbuplvPF17cdXmfW-h2yKSFkTSZpG0dYVeLWOuC9vGX3ufJKktPRNTdn4A-tPO-tP-S38qdLSVeTub7wgfUBLyUi1EhV4szWB4aTfF9mHYlD6QmgCAq9DjoiLLTATgOKMMq1Czozw7U91t6VeXmdwbPmoaKiv0eqtmP6b156U4_B9L8RTd4ck-KCNMHKG9ab0Jz9C--zqtxvXzbGDfAbb2J-Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Variational autoencoder-based estimation of chronological age and changes in morphological features of teeth
URI https://link.springer.com/article/10.1038/s41598-023-27950-4
https://www.ncbi.nlm.nih.gov/pubmed/36639691
https://www.proquest.com/docview/2765249833
https://www.proquest.com/docview/2765772584
https://pubmed.ncbi.nlm.nih.gov/PMC9839705
https://doaj.org/article/448d1206a7e34186a8a8e9cad883c9d0
Volume 13
WOSCitedRecordID wos000968670400049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYFiQuvB-BpQoSN7DWjzixT4hFuwKJrSoEq3KKHNthKy3J0qRI_HvGjptVeeyFiw-N0zode-abmcw3CL2oZZ6BFchwznSNM-0oVrlWWBglKkVIVYcq19MPxXwul0u1iAG3Lr5WudWJQVHb1vgY-QErcgGuguT89cV37LtG-exqbKGxh6aeqSyboOnh0XzxcYyy-DxWRlWsliFcHnRgsXxVGeOYFUoQnO1YpEDc_ze0-edLk79lToNBOr79v49yB92KUDR9M-ydu-iaa-6hG0Nzyp_30fkpuNExVJjqTd96ykvr1tgbPpt6do6h7DFt69R4jt2tHk1BR6W6selQVdylqyb91oJAxwm1C3yinb-1d64_e4A-Hx99evsOx94M2ADG63ElLVN1lhspjeJEaapErRXAEUCMwrGCmEoQra2zVNSA8Ti34IuynElSC2b4QzRp2sY9RinXdUYtaB6haSaqvIJvEsSa3AB2cbVJEN3KpzSRuNz3zzgvQwKdy3KQaQkyLYNMyyxBL8d7LgbajitnH3qxjzM95Xb4oF1_LeMJLsGPtZSRXBcOLL_MtdTSKaOtlNwoSxK0v5V2GfVAV16KOkHPx8twgn1aRjeu3QxzwMcBJJigR8MeG1fCARCqXNEEFTu7b2epu1ea1VlgCYcfVQURCXq13aeXy_r3X_Hk6qd4im4yf3QIxZTvo0m_3rhn6Lr50a-69QztFcsijHIWT-IsBDlgPGELPxYwThfvTxZffgHtmD3y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwEhwAquOHTv2ASFeVasuKw6l2lvq2A5dqSRlkwX1T_EbGedVLY_eeuCa2I6TfDPzje2ZQehZoWQCViAhkpmCJMbHREujibBa5JrSvGijXPcn6XSqZjP9aQ39HGJhwrHKQSe2itpVNqyRb7JUCnAVFOevj7-RUDUq7K4OJTQ6WOz6kx_gstWvdt7D_33O2NaHvXfbpK8qQCywk4bkyjFdJNIqZTWn2sRaFEaDIQWuIzxLqc0FNcZ5F4sC2AnnDrwoJpmihWCWw7gX0EXQ42k4QpbO0nFNJ-yaJbHuY3MoV5s12McQw8Y4YakWlCQr9q8tE_A3bvvnEc3f9mlb87d1_X_7cDfQtZ5o4zedZNxEa768hS53pTdPbqOjfbOY9wuh2CybKiT0dH5Bgll3OOQe6YI6cVVgGzIID1YCgwbGpnS4i5mu8bzEXyuA69ig8G221Dp0bbxvDu-gz-fyqnfRelmV_j7C3BRJ7ECvChMnIpc5jCSos9ICM_OFjVA84CGzfVr2UB3kKGuPB3CVdRjKAENZi6EsidCLsc9xl5TkzNZvA8zGliGheHuhWnzJev2UgZfuYkalST3wGiWNMspra5xS3GpHI7QxoCvrtVydnUIrQk_H26CfwqaTKX217NqABwc8N0L3OkyPM-FAd7XUcYTSFbSvTHX1Tjk_bHOgw0N1SkWEXg5ycTqtf3-KB2e_xRN0ZXvv4ySb7Ex3H6KrLIgtjUnMN9B6s1j6R-iS_d7M68XjVu4xOjhvefkF-_6QiA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeYgL70eggJHgBNY6dpzYB4SAUlG1rPYAVW-p4wddqSRlkwX1r_HrGOdVLY_eeuCa2I6TfDPzje2ZQeiZl2kCViAhKdOeJNrFRKVaEWGUKBSlhW-jXPd2s-lU7u-r2Rr6OcTChGOVg05sFbWtTFgjn7AsFeAqSM4nvj8WMdvcen38jYQKUmGndSin0UFkx538APetfrW9Cf_6OWNb7z-9-0D6CgPEAFNpSCEtUz5JjZRGcap0rITXCowq8B7hWEZNIajW1tlYeGAqnFvwqFjKJPWCGQ7jXkAXs0SIIF0f2Wxc3wk7aEms-jgdyuWkBlsZ4tkYJyxTgpJkxRa2JQP-xnP_PK75255tawq3rv_PH_EGutYTcPymk5ibaM2Vt9DlriTnyW10tKcX836BFOtlU4VEn9YtSDD3FoecJF2wJ648NiGz8GA9MGhmrEuLu1jqGs9L_LUCGI8NvGuzqNaha-Ncc3gHfT6XV72L1suqdPcR5tonsQV9K3SciCItYCRBrUkNMDbnTYTiARu56dO1h6ohR3l7bIDLvMNTDnjKWzzlSYRejH2Ou2QlZ7Z-GyA3tgyJxtsL1eJL3uutHLx3GzOa6swB35Gpllo6ZbSVkhtlaYQ2BqTlvfar81OYRejpeBv0VtiM0qWrll0b8OyA_0boXofvcSYcaLBKVRyhbAX5K1NdvVPOD9vc6PBQlVERoZeDjJxO69-f4sHZb_EEXQExyXe3pzsP0VUWJJjGJOYbaL1ZLN0jdMl8b-b14nGrAjA6OG9x-QW_UZlV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+autoencoder-based+estimation+of+chronological+age+and+changes+in+morphological+features+of+teeth&rft.jtitle=Scientific+reports&rft.au=Joo%2C+Subin&rft.au=Jung%2C+Won&rft.au=Oh%2C+Seung+Eel&rft.date=2023-01-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=704&rft_id=info:doi/10.1038%2Fs41598-023-27950-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon