Recent advances in plant disease severity assessment using convolutional neural networks
In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be cl...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 13; H. 1; S. 2336 - 13 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
09.02.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges. |
|---|---|
| AbstractList | In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges. Abstract In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges. In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges. |
| ArticleNumber | 2336 |
| Author | Liu, Yongmin Liu, Hanlin Zheng, Xinying Huang, Hao Shi, Tingting Hu, Kui Huang, Hongxu |
| Author_xml | – sequence: 1 givenname: Tingting surname: Shi fullname: Shi, Tingting organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology – sequence: 2 givenname: Yongmin surname: Liu fullname: Liu, Yongmin email: T20040550@csuft.edu.cn organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology – sequence: 3 givenname: Xinying surname: Zheng fullname: Zheng, Xinying organization: Business School of Hunan Normal University – sequence: 4 givenname: Kui surname: Hu fullname: Hu, Kui organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology – sequence: 5 givenname: Hao surname: Huang fullname: Huang, Hao organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology – sequence: 6 givenname: Hanlin surname: Liu fullname: Liu, Hanlin organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology – sequence: 7 givenname: Hongxu surname: Huang fullname: Huang, Hongxu organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36759626$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQtFAQCSE_wAGNxIXLgF_jxwUJRTwiRUJCIHGzPHbP4mXWXuyZjfL3eHZDSHKIL221q6qr2_0cHcUUAaGXBL8lmKl3hZNOqxZT1lJNGW7lE3RCMe9ayig9unM_RmelrHE9HdWc6GfomAnZaUHFCfr5DRzEqbF-Z6OD0oTYbEdbMz4UsAWaAjvIYbpubClQymZBzyXEVeNS3KVxnkKKdmwizHkfpquUf5cX6OlgxwJnN_EU_fj08fv5l_by6-eL8w-Xres4nlorMe6569lAmPbdYBm1igyKcgqeik4oL7hTcgDZMam5dBY0V71QQy-wxewUXRx0fbJrs81hY_O1STaYfSLllbF5Cm4Ew62TDGvruddcW9IPw-B7wZyQzEksqtb7g9Z27jfgl8HUlu6J3n-J4ZdZpZ3RmhDJeBV4cyOQ058ZymQ2oTgY60AhzcVQKTtBanFVoa8fQNdpznWQexSXVCu5OHp119GtlX8fWAH0AHA5lZJhuIUQbJZFMYdFMXVRzH5RjKwk9YDkwmSXf6xdhfFxKjtQS60TV5D_236E9ReUMNNa |
| CitedBy_id | crossref_primary_10_46592_turkager_1592116 crossref_primary_10_2478_ata_2025_0020 crossref_primary_10_1016_j_biosystemseng_2024_05_014 crossref_primary_10_1186_s13007_025_01435_z crossref_primary_10_1016_j_envsoft_2025_106496 crossref_primary_10_3389_fpls_2024_1305358 crossref_primary_10_1016_j_asoc_2025_113152 crossref_primary_10_1186_s13007_025_01391_8 crossref_primary_10_1016_j_biosystemseng_2023_12_014 crossref_primary_10_1080_23311932_2024_2336002 crossref_primary_10_3389_fpls_2024_1360729 crossref_primary_10_1094_MPMI_07_24_0075_FI crossref_primary_10_1007_s10661_024_12454_z crossref_primary_10_1007_s42161_025_01949_4 crossref_primary_10_3390_plants14132011 crossref_primary_10_3390_agronomy14123043 crossref_primary_10_1007_s40031_024_00993_5 crossref_primary_10_1186_s40537_025_01265_9 crossref_primary_10_3390_f14071290 crossref_primary_10_3390_w15223940 crossref_primary_10_1007_s42452_025_06568_3 crossref_primary_10_1088_2515_7620_ad58ae crossref_primary_10_1139_cjps_2023_0127 crossref_primary_10_1007_s11042_024_20224_9 crossref_primary_10_1016_j_biosystemseng_2025_104162 crossref_primary_10_1051_e3sconf_202562401004 crossref_primary_10_34133_plantphenomics_0208 crossref_primary_10_3390_agriengineering6040199 crossref_primary_10_1016_j_micpath_2025_107611 crossref_primary_10_1016_j_aiia_2025_03_001 crossref_primary_10_3390_plants14111656 crossref_primary_10_3390_s24237646 crossref_primary_10_1007_s42452_025_07387_2 crossref_primary_10_1016_j_compag_2025_110531 crossref_primary_10_1016_j_inpa_2024_03_003 crossref_primary_10_1016_j_compag_2025_110574 crossref_primary_10_1155_int_7644407 crossref_primary_10_3390_agriculture15060583 crossref_primary_10_1016_j_biosystemseng_2025_02_007 crossref_primary_10_3390_agronomy14122985 |
| Cites_doi | 10.1016/j.compeleceng.2021.107023 10.1007/BF02478259 10.3390/agronomy12040906 10.1007/BF00344251 10.1155/2021/6663442 10.3390/rs14112519 10.1007/s11192-015-1765-5 10.1094/PHYTO-02-17-0069-FI 10.1117/1.OE.58.4.040901 10.1093/jhered/esh076 10.1016/j.rse.2012.09.019 10.3389/fpls.2021.673505 10.1080/07352681003617285 10.3390/pathogens10020131 10.1109/TPAMI.2016.2644615 10.1007/s11042-022-12392-3 10.1007/s41348-020-00423-w 10.1007/978-3-319-90403-0_6 10.1111/ppa.12435 10.1016/j.biosystemseng.2021.08.011 10.1113/jphysiol.1962.sp006837 10.1007/s10658-009-9455-x 10.3389/fpls.2016.01419 10.1007/1-4020-4581-6_2 10.1109/ACCESS.2022.3216285 10.1111/ppa.13148 10.1109/ACCESS.2020.3025196 10.3390/agriculture11050420 10.1109/TKDE.2021.3070203 10.1007/s11042-020-09461-w 10.1109/5.726791 10.1109/ACCESS.2019.2909522 10.1007/s42161-021-00886-2 10.1111/j.1365-3059.1994.tb01606.x 10.1016/j.compag.2019.01.034 10.1016/j.knosys.2020.106723 10.3390/s22020575 10.1186/s42483-020-00049-8 10.1162/neco.2006.18.7.1527 10.1109/CVPR.2017.243 10.1002/aps3.11390 10.1109/CVPRW.2018.00215 10.1016/j.compag.2019.105162 10.1109/CVPR.2017.195 10.3389/fpls.2022.914829 10.1109/SIU.2017.7960257 10.1109/CVPR.2016.91 10.1155/2017/2917536 10.1007/s00521-022-07743-y 10.1145/3207677.3277952 10.1109/ICCV.2015.169 10.1155/2022/6504616 10.1145/1014052.1014067 10.1016/j.asoc.2018.05.018 10.1007/978-3-319-10584-0_20 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-01328-8_16 10.1109/CVPR.2015.7298965 10.1109/CVPR.2017.660 10.1109/CVPR.2016.90 10.1007/978-3-030-01264-9_8 10.1609/aaai.v31i1.11231 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2015.7298594 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2014.81 10.1023/A:1007379606734 10.3390/rs13010026 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-023-29230-7 |
| DatabaseName | Springer Nature Link CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_4ac7309ad4d949a1bfffdb63c673c706 PMC9911734 36759626 10_1038_s41598_023_29230_7 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Hunan Provincial Education Science "13th Five-Year Plan" Fund grantid: No. XJK20BGD048 – fundername: Natural Science Foundation of Hunan Province China grantid: No. 2021JJ31163 – fundername: The National Natural Science Foundation of China grantid: No. 31870532 – fundername: ; grantid: No. 31870532 – fundername: ; grantid: No. XJK20BGD048 – fundername: ; grantid: No. 2021JJ31163 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-a700b4cb3f139d5fa32a81f8242ed26568d64c87fe7537947cae948b68fb60a03 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988268200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 19:05:48 EDT 2025 Tue Nov 04 02:07:07 EST 2025 Wed Oct 01 13:59:21 EDT 2025 Tue Oct 07 09:20:36 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Sat Nov 29 06:33:32 EST 2025 Tue Nov 18 21:03:33 EST 2025 Fri Feb 21 02:37:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-a700b4cb3f139d5fa32a81f8242ed26568d64c87fe7537947cae948b68fb60a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2774729876?pq-origsite=%requestingapplication% |
| PMID | 36759626 |
| PQID | 2774729876 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4ac7309ad4d949a1bfffdb63c673c706 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9911734 proquest_miscellaneous_2775619498 proquest_journals_2774729876 pubmed_primary_36759626 crossref_primary_10_1038_s41598_023_29230_7 crossref_citationtrail_10_1038_s41598_023_29230_7 springer_journals_10_1038_s41598_023_29230_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-09 |
| PublicationDateYYYYMMDD | 2023-02-09 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Sibiya, Sumbwanyambe (CR65) 2021; 10 Forbes, Korva (CR11) 1994; 43 Goncalves (CR73) 2021; 210 Liang (CR3) 2019; 157 Del Ponte (CR14) 2017; 107 Hubel, Wiesel (CR18) 1962; 160 Hinton, Osindero, Teh (CR21) 2006; 18 CR38 CR37 CR36 CR35 CR34 CR78 CR33 Prabhakar (CR51) 2020; 79 CR32 Bock (CR1) 2010; 29 CR31 CR30 CR74 McCulloch, Pitts (CR16) 1943; 5 CR70 Kaur (CR89) 2022; 22 Zhang, Yang (CR50) 2021; 34 Gao (CR72) 2021; 214 CR5 Brahimi (CR64) 2018 Franceschi (CR85) 2020; 69 Barratt, Horsfall (CR10) 1945; 35 CR49 Yin (CR76) 2022; 12 CR48 Xu (CR8) 2004; 95 CR47 CR46 CR45 CR44 CR88 CR43 CR87 CR42 CR86 CR41 CR40 Liu (CR75) 2022; 14 Fukushima (CR17) 1980; 36 CR83 Ozguven (CR79) 2020; 29 Wang (CR19) 2019; 58 Fenu, Malloci (CR53) 2021; 2021 Bock (CR12) 2009; 125 LeCun (CR20) 1998; 86 Lanjewar (CR92) 2022; 81 Cobb (CR15) 1892; 3 Xiang (CR67) 2021; 128 Mahlein (CR2) 2013; 128 Fernández-Campos (CR81) 2021; 12 Hu (CR80) 2021; 90 CR58 Xie (CR94) 2021; 34 CR57 CR56 CR55 Cooke (CR6) 2006 Goodfellow, Bengio, Courville (CR59) 2016 Chen (CR71) 2021; 11 CR93 CR91 CR90 Horsfall, Cowling (CR9) 1978 Liu (CR4) 2019; 7 Zeng (CR52) 2020; 8 Chiang (CR7) 2016; 65 CR29 CR28 CR27 Liu, Gao, Zhang (CR77) 2022; 10 CR26 CR25 Mohanty, Hughes, Salathé (CR60) 2016; 7 CR69 CR24 CR68 CR23 CR22 CR66 Al Gubory (CR84) 2014; 3 Hayit (CR82) 2021; 103 CR63 CR62 CR61 Badrinarayanan (CR39) 2017; 39 Mongeon, Paul-Hus (CR54) 2016; 106 Bock (CR13) 2020; 2 KS Chiang (29230_CR7) 2016; 65 Y Liu (29230_CR77) 2022; 10 P Kaur (29230_CR89) 2022; 22 VT Franceschi (29230_CR85) 2020; 69 I Goodfellow (29230_CR59) 2016 P Mongeon (29230_CR54) 2016; 106 M Prabhakar (29230_CR51) 2020; 79 29230_CR90 DH Hubel (29230_CR18) 1962; 160 29230_CR91 WS McCulloch (29230_CR16) 1943; 5 G Fenu (29230_CR53) 2021; 2021 Y Xu (29230_CR8) 2004; 95 29230_CR83 29230_CR40 29230_CR41 29230_CR42 29230_CR86 29230_CR43 29230_CR87 29230_CR44 29230_CR88 29230_CR45 29230_CR46 L Liu (29230_CR4) 2019; 7 29230_CR47 KHJBSOA Al Gubory (29230_CR84) 2014; 3 29230_CR48 MG Lanjewar (29230_CR92) 2022; 81 29230_CR49 29230_CR5 R Barratt (29230_CR10) 1945; 35 J Horsfall (29230_CR9) 1978 Y Zhang (29230_CR50) 2021; 34 M Fernández-Campos (29230_CR81) 2021; 12 29230_CR30 29230_CR74 29230_CR31 29230_CR32 K Fukushima (29230_CR17) 1980; 36 29230_CR33 M Sibiya (29230_CR65) 2021; 10 29230_CR34 29230_CR78 29230_CR35 AK Mahlein (29230_CR2) 2013; 128 29230_CR36 S Chen (29230_CR71) 2021; 11 29230_CR37 W Wang (29230_CR19) 2019; 58 29230_CR38 G Forbes (29230_CR11) 1994; 43 Q Liang (29230_CR3) 2019; 157 T Hayit (29230_CR82) 2021; 103 JP Goncalves (29230_CR73) 2021; 210 B Cooke (29230_CR6) 2006 SP Mohanty (29230_CR60) 2016; 7 J Gao (29230_CR72) 2021; 214 29230_CR70 29230_CR61 29230_CR62 29230_CR63 29230_CR22 29230_CR66 CH Bock (29230_CR1) 2010; 29 29230_CR23 29230_CR24 29230_CR68 29230_CR25 29230_CR69 29230_CR26 29230_CR27 29230_CR28 C Yin (29230_CR76) 2022; 12 29230_CR29 V Badrinarayanan (29230_CR39) 2017; 39 MM Ozguven (29230_CR79) 2020; 29 CH Bock (29230_CR12) 2009; 125 NA Cobb (29230_CR15) 1892; 3 EM Del Ponte (29230_CR14) 2017; 107 B-Y Liu (29230_CR75) 2022; 14 E Xie (29230_CR94) 2021; 34 GE Hinton (29230_CR21) 2006; 18 M Brahimi (29230_CR64) 2018 29230_CR93 G Hu (29230_CR80) 2021; 90 Y LeCun (29230_CR20) 1998; 86 29230_CR55 Q Zeng (29230_CR52) 2020; 8 29230_CR56 29230_CR57 29230_CR58 S Xiang (29230_CR67) 2021; 128 CH Bock (29230_CR13) 2020; 2 |
| References_xml | – ident: CR45 – ident: CR70 – volume: 90 start-page: 107023 year: 2021 ident: CR80 article-title: Detection and severity analysis of tea leaf blight based on deep learning publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2021.107023 – ident: CR22 – ident: CR49 – ident: CR68 – ident: CR74 – ident: CR93 – volume: 5 start-page: 115 issue: 4 year: 1943 end-page: 133 ident: CR16 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – ident: CR87 – volume: 12 start-page: 906 issue: 4 year: 2022 ident: CR76 article-title: Maize small leaf spot classification based on improved deep convolutional neural networks with a multi-scale attention mechanism publication-title: Agronomy doi: 10.3390/agronomy12040906 – volume: 36 start-page: 193 issue: 4 year: 1980 end-page: 202 ident: CR17 article-title: Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 2021 start-page: 1 year: 2021 end-page: 11 ident: CR53 article-title: Using multioutput learning to diagnose plant disease and stress severity publication-title: Complexity doi: 10.1155/2021/6663442 – ident: CR35 – ident: CR29 – ident: CR61 – ident: CR58 – volume: 14 start-page: 2519 issue: 11 year: 2022 ident: CR75 article-title: Two-stage convolutional neural networks for diagnosing the severity of alternaria leaf blotch disease of the apple tree publication-title: Remote Sensing doi: 10.3390/rs14112519 – year: 1978 ident: CR9 publication-title: Pathometry: The Measurement of Plant Disease – ident: CR25 – volume: 35 start-page: 655 year: 1945 ident: CR10 article-title: An improved grading system for measuring plant disease publication-title: Phytopathology – volume: 106 start-page: 213 issue: 1 year: 2016 end-page: 228 ident: CR54 article-title: The journal coverage of Web of Science and Scopus: A comparative analysis publication-title: Scientometrics doi: 10.1007/s11192-015-1765-5 – ident: CR42 – ident: CR46 – volume: 3 start-page: 1 issue: 1 year: 2014 end-page: 2 ident: CR84 article-title: Plant polyphenols, prenatal development and health outcomes publication-title: Biol. Syst. Open Access – volume: 107 start-page: 1161 issue: 10 year: 2017 end-page: 1174 ident: CR14 article-title: Standard area diagrams for aiding severity estimation: Scientometrics, pathosystems, and methodological trends in the last 25 years publication-title: Phytopathology doi: 10.1094/PHYTO-02-17-0069-FI – volume: 58 start-page: 040901 issue: 4 year: 2019 end-page: 040901 ident: CR19 article-title: Development of convolutional neural network and its application in image classification: a survey publication-title: Opt. Eng. doi: 10.1117/1.OE.58.4.040901 – ident: CR88 – volume: 95 start-page: 498 issue: 6 year: 2004 end-page: 502 ident: CR8 article-title: Inheritance of resistance to zucchini yellow mosaic virus and watermelon mosaic virus in watermelon publication-title: J. Hered. doi: 10.1093/jhered/esh076 – ident: CR57 – ident: CR32 – volume: 128 start-page: 21 year: 2013 end-page: 30 ident: CR2 article-title: Development of spectral indices for detecting and identifying plant diseases publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.019 – volume: 12 start-page: 1054 year: 2021 ident: CR81 article-title: Wheat spike blast image classification using deep convolutional neural networks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.673505 – volume: 29 start-page: 59 issue: 2 year: 2010 end-page: 107 ident: CR1 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352681003617285 – ident: CR36 – ident: CR78 – volume: 10 start-page: 131 issue: 2 year: 2021 ident: CR65 article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning publication-title: Pathogens doi: 10.3390/pathogens10020131 – ident: CR5 – volume: 39 start-page: 2481 issue: 12 year: 2017 end-page: 2495 ident: CR39 article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 81 start-page: 16537 issue: 12 year: 2022 end-page: 16562 ident: CR92 article-title: Detection of tartrazine colored rice flour adulteration in turmeric from multi-spectral images on smartphone using convolutional neural network deployed on PaaS cloud publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12392-3 – year: 2016 ident: CR59 publication-title: Deep Learning – volume: 128 start-page: 557 issue: 2 year: 2021 end-page: 569 ident: CR67 article-title: L-CSMS: Novel lightweight network for plant disease severity recognition publication-title: J. Plant Dis. Protect. doi: 10.1007/s41348-020-00423-w – ident: CR26 – ident: CR43 – ident: CR66 – ident: CR91 – ident: CR47 – start-page: 93 year: 2018 end-page: 117 ident: CR64 article-title: Deep learning for plant diseases: Detection and saliency map visualisation publication-title: Human and Machine Learning doi: 10.1007/978-3-319-90403-0_6 – volume: 65 start-page: 523 issue: 4 year: 2016 end-page: 535 ident: CR7 article-title: Effects of rater bias and assessment method on disease severity estimation with regard to hypothesis testing publication-title: Plant. Pathol. doi: 10.1111/ppa.12435 – ident: CR37 – ident: CR30 – volume: 3 start-page: 44 year: 1892 end-page: 48 ident: CR15 article-title: Contributions to an economic knowledge of the Australian rusts (Uredineae) publication-title: Agric. Gazette New South Wales – ident: CR33 – volume: 34 start-page: 12077 year: 2021 end-page: 12090 ident: CR94 article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers publication-title: Adv. Neural Inf. Process. Syst. – volume: 210 start-page: 129 year: 2021 end-page: 142 ident: CR73 article-title: Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.08.011 – volume: 160 start-page: 106 year: 1962 end-page: 154 ident: CR18 article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – volume: 125 start-page: 23 issue: 1 year: 2009 end-page: 38 ident: CR12 article-title: The Horsfall-Barratt scale and severity estimates of citrus canker publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-009-9455-x – ident: CR56 – ident: CR86 – volume: 7 start-page: 1419 year: 2016 ident: CR60 article-title: Using deep learning for image-based plant disease detection publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – ident: CR40 – ident: CR63 – start-page: 43 year: 2006 end-page: 80 ident: CR6 article-title: Disease assessment and yield loss publication-title: The Epidemiology of Plant Diseases doi: 10.1007/1-4020-4581-6_2 – volume: 10 start-page: 112066 year: 2022 end-page: 112075 ident: CR77 article-title: Crop disease recognition based on modified light-weight CNN with attention mechanism publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3216285 – volume: 69 start-page: 495 issue: 3 year: 2020 end-page: 505 ident: CR85 article-title: A new standard area diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use publication-title: Plant Pathol. doi: 10.1111/ppa.13148 – ident: CR27 – ident: CR23 – ident: CR69 – ident: CR44 – ident: CR48 – volume: 8 start-page: 172882 year: 2020 end-page: 172891 ident: CR52 article-title: Gans-based data augmentation for citrus disease severity detection using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025196 – volume: 11 start-page: 420 issue: 5 year: 2021 ident: CR71 article-title: An approach for rice bacterial leaf streak disease segmentation and disease severity estimation publication-title: Agriculture doi: 10.3390/agriculture11050420 – ident: CR90 – ident: CR38 – volume: 34 start-page: 5586 issue: 12 year: 2021 end-page: 5609 ident: CR50 article-title: A survey on multi-task learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3070203 – volume: 79 start-page: 28773 issue: 39 year: 2020 end-page: 28784 ident: CR51 article-title: Deep learning based assessment of disease severity for early blight in tomato crop publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09461-w – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR20 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: CR31 – volume: 7 start-page: 45301 year: 2019 end-page: 45312 ident: CR4 article-title: PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909522 – volume: 29 start-page: 7081 issue: 8 year: 2020 end-page: 7087 ident: CR79 article-title: Deep learning algorithms for automatic detection and classification of mildew disease in cucumber publication-title: Fresenius Environ Bull – ident: CR34 – volume: 103 start-page: 923 issue: 3 year: 2021 end-page: 934 ident: CR82 article-title: Determination of the severity level of yellow rust disease in wheat by using convolutional neural networks publication-title: J. Plant Pathol. doi: 10.1007/s42161-021-00886-2 – volume: 43 start-page: 675 issue: 4 year: 1994 end-page: 682 ident: CR11 article-title: The effect of using a Horsfall-Barratt scale on precision and accuracy of visual estimation of potato late blight severity in the field publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01606.x – volume: 157 start-page: 518 year: 2019 end-page: 529 ident: CR3 article-title: (PDSE)-S-2-Net: Computer-assisted plant disease diagnosis and severity estimation network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.034 – ident: CR55 – volume: 214 start-page: 106723 year: 2021 ident: CR72 article-title: Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106723 – volume: 22 start-page: 575 issue: 2 year: 2022 ident: CR89 article-title: Recognition of leaf disease using hybrid convolutional neural network by applying feature reduction publication-title: Sensors doi: 10.3390/s22020575 – volume: 2 start-page: 1 issue: 1 year: 2020 end-page: 30 ident: CR13 article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy publication-title: Phytopathol. Res. doi: 10.1186/s42483-020-00049-8 – ident: CR83 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR21 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR24 – ident: 29230_CR32 – volume: 11 start-page: 420 issue: 5 year: 2021 ident: 29230_CR71 publication-title: Agriculture doi: 10.3390/agriculture11050420 – ident: 29230_CR27 doi: 10.1109/CVPR.2017.243 – volume: 79 start-page: 28773 issue: 39 year: 2020 ident: 29230_CR51 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09461-w – ident: 29230_CR55 – volume: 157 start-page: 518 year: 2019 ident: 29230_CR3 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.01.034 – volume: 128 start-page: 557 issue: 2 year: 2021 ident: 29230_CR67 publication-title: J. Plant Dis. Protect. doi: 10.1007/s41348-020-00423-w – volume: 7 start-page: 1419 year: 2016 ident: 29230_CR60 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01419 – volume: 34 start-page: 12077 year: 2021 ident: 29230_CR94 publication-title: Adv. Neural Inf. Process. Syst. – volume: 160 start-page: 106 year: 1962 ident: 29230_CR18 publication-title: J. Physiol. doi: 10.1113/jphysiol.1962.sp006837 – ident: 29230_CR90 – ident: 29230_CR57 doi: 10.1002/aps3.11390 – volume: 10 start-page: 131 issue: 2 year: 2021 ident: 29230_CR65 publication-title: Pathogens doi: 10.3390/pathogens10020131 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 29230_CR17 publication-title: Biol. Cybern. doi: 10.1007/BF00344251 – volume: 8 start-page: 172882 year: 2020 ident: 29230_CR52 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025196 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 29230_CR16 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 3 start-page: 44 year: 1892 ident: 29230_CR15 publication-title: Agric. Gazette New South Wales – ident: 29230_CR78 doi: 10.1109/CVPRW.2018.00215 – ident: 29230_CR23 – ident: 29230_CR61 – volume: 58 start-page: 040901 issue: 4 year: 2019 ident: 29230_CR19 publication-title: Opt. Eng. doi: 10.1117/1.OE.58.4.040901 – ident: 29230_CR42 – ident: 29230_CR46 doi: 10.1016/j.compag.2019.105162 – start-page: 93 volume-title: Human and Machine Learning year: 2018 ident: 29230_CR64 doi: 10.1007/978-3-319-90403-0_6 – ident: 29230_CR31 doi: 10.1109/CVPR.2017.195 – ident: 29230_CR83 – ident: 29230_CR74 doi: 10.3389/fpls.2022.914829 – volume: 69 start-page: 495 issue: 3 year: 2020 ident: 29230_CR85 publication-title: Plant Pathol. doi: 10.1111/ppa.13148 – volume: 12 start-page: 1054 year: 2021 ident: 29230_CR81 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.673505 – volume: 2 start-page: 1 issue: 1 year: 2020 ident: 29230_CR13 publication-title: Phytopathol. Res. doi: 10.1186/s42483-020-00049-8 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 29230_CR39 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 29230_CR21 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 125 start-page: 23 issue: 1 year: 2009 ident: 29230_CR12 publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-009-9455-x – volume: 14 start-page: 2519 issue: 11 year: 2022 ident: 29230_CR75 publication-title: Remote Sensing doi: 10.3390/rs14112519 – volume: 90 start-page: 107023 year: 2021 ident: 29230_CR80 publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2021.107023 – ident: 29230_CR35 – ident: 29230_CR86 doi: 10.1109/SIU.2017.7960257 – ident: 29230_CR36 doi: 10.1109/CVPR.2016.91 – ident: 29230_CR93 – volume: 107 start-page: 1161 issue: 10 year: 2017 ident: 29230_CR14 publication-title: Phytopathology doi: 10.1094/PHYTO-02-17-0069-FI – ident: 29230_CR66 – volume: 43 start-page: 675 issue: 4 year: 1994 ident: 29230_CR11 publication-title: Plant Pathol. doi: 10.1111/j.1365-3059.1994.tb01606.x – ident: 29230_CR44 doi: 10.1155/2017/2917536 – volume: 34 start-page: 5586 issue: 12 year: 2021 ident: 29230_CR50 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3070203 – ident: 29230_CR91 doi: 10.1007/s00521-022-07743-y – volume: 35 start-page: 655 year: 1945 ident: 29230_CR10 publication-title: Phytopathology – ident: 29230_CR87 – volume-title: Deep Learning year: 2016 ident: 29230_CR59 – ident: 29230_CR49 – ident: 29230_CR58 doi: 10.1145/3207677.3277952 – ident: 29230_CR28 – volume: 210 start-page: 129 year: 2021 ident: 29230_CR73 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.08.011 – volume: 128 start-page: 21 year: 2013 ident: 29230_CR2 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.019 – ident: 29230_CR24 – start-page: 43 volume-title: The Epidemiology of Plant Diseases year: 2006 ident: 29230_CR6 doi: 10.1007/1-4020-4581-6_2 – ident: 29230_CR34 doi: 10.1109/ICCV.2015.169 – ident: 29230_CR88 doi: 10.1155/2022/6504616 – volume: 10 start-page: 112066 year: 2022 ident: 29230_CR77 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3216285 – volume: 81 start-page: 16537 issue: 12 year: 2022 ident: 29230_CR92 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12392-3 – ident: 29230_CR48 doi: 10.1145/1014052.1014067 – ident: 29230_CR69 doi: 10.1016/j.asoc.2018.05.018 – volume: 65 start-page: 523 issue: 4 year: 2016 ident: 29230_CR7 publication-title: Plant. Pathol. doi: 10.1111/ppa.12435 – ident: 29230_CR70 doi: 10.1007/978-3-319-10584-0_20 – ident: 29230_CR40 doi: 10.1007/978-3-319-24574-4_28 – ident: 29230_CR56 doi: 10.1007/978-3-030-01328-8_16 – ident: 29230_CR38 doi: 10.1109/CVPR.2015.7298965 – ident: 29230_CR63 – ident: 29230_CR41 doi: 10.1109/CVPR.2017.660 – ident: 29230_CR26 doi: 10.1109/CVPR.2016.90 – ident: 29230_CR29 – volume: 2021 start-page: 1 year: 2021 ident: 29230_CR53 publication-title: Complexity doi: 10.1155/2021/6663442 – volume: 214 start-page: 106723 year: 2021 ident: 29230_CR72 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106723 – ident: 29230_CR30 doi: 10.1007/978-3-030-01264-9_8 – ident: 29230_CR68 doi: 10.1609/aaai.v31i1.11231 – volume: 29 start-page: 59 issue: 2 year: 2010 ident: 29230_CR1 publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352681003617285 – ident: 29230_CR62 doi: 10.1007/978-3-319-10590-1_53 – ident: 29230_CR25 doi: 10.1109/CVPR.2015.7298594 – volume: 95 start-page: 498 issue: 6 year: 2004 ident: 29230_CR8 publication-title: J. Hered. doi: 10.1093/jhered/esh076 – volume: 7 start-page: 45301 year: 2019 ident: 29230_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2909522 – volume-title: Pathometry: The Measurement of Plant Disease year: 1978 ident: 29230_CR9 – ident: 29230_CR37 doi: 10.1007/978-3-319-46448-0_2 – volume: 103 start-page: 923 issue: 3 year: 2021 ident: 29230_CR82 publication-title: J. Plant Pathol. doi: 10.1007/s42161-021-00886-2 – volume: 12 start-page: 906 issue: 4 year: 2022 ident: 29230_CR76 publication-title: Agronomy doi: 10.3390/agronomy12040906 – volume: 22 start-page: 575 issue: 2 year: 2022 ident: 29230_CR89 publication-title: Sensors doi: 10.3390/s22020575 – ident: 29230_CR5 – ident: 29230_CR33 doi: 10.1109/CVPR.2014.81 – volume: 106 start-page: 213 issue: 1 year: 2016 ident: 29230_CR54 publication-title: Scientometrics doi: 10.1007/s11192-015-1765-5 – volume: 29 start-page: 7081 issue: 8 year: 2020 ident: 29230_CR79 publication-title: Fresenius Environ Bull – volume: 3 start-page: 1 issue: 1 year: 2014 ident: 29230_CR84 publication-title: Biol. Syst. Open Access – ident: 29230_CR47 doi: 10.1023/A:1007379606734 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 29230_CR20 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 29230_CR22 – ident: 29230_CR45 doi: 10.3390/rs13010026 – ident: 29230_CR43 |
| SSID | ssj0000529419 |
| Score | 2.5779805 |
| Snippet | In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to... Abstract In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2336 |
| SubjectTerms | 631/449/447 639/705/117 Agricultural production Comparative analysis Deep learning Humanities and Social Sciences Image Processing, Computer-Assisted - methods multidisciplinary Neural networks Neural Networks, Computer Patient Acuity Plant diseases Science Science (multidisciplinary) Segmentation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VFZW4IKAFQgsyErc2amI7sX0ERMUBVRwK2pvl-AErVWnVbJH49x0_NnTL68Ip0sabWJNvNN9kJt8AvDbe0xDQ0yzCp-YiuFpRKupODZ1ADAmWugm_fBSnp3KxUJ9ujfqKPWFZHjgb7pibeBVlHHeKK9MOIQQ39Mz2glmRxbaR9dxKprKqN1W8VeUrmYbJ4wkjVfyajMbRZci7a7ERiZJg_-9Y5q_NkncqpikQnTyEB4VBkjd5549gy4-PYSfPlPyxCwskgngNUor7E1mO5PIc7UdKLYZgLPRxZB0xsyonie3vX0lsQS9QxDtEqct0SI3i0x58Pnl_9u5DXcYn1BZp2Ko2omkGbgcWkOW5LhhGjWyDxKDsHUUeJ13PrRTBY8qCbims8YrLoZdh6BvTsCewPV6M_hkQZYJxQQrjlOOKdUYGpiymt0Z4J5StoF2bUtuiLR5HXJzrVONmUmfzazS_TubXooLD-T-XWVnjr6vfxic0r4yq2OkHxIouWNH_wkoFB-vnq4urTpoiAcYMA6NCBa_m0-hksXJiRn9xndZ08XWPkhU8zXCYd8Iw5VKYFlYgNoCysdXNM-PyWxLyRm7eCsYrOFpD6ue2_myK5__DFPtwn0ZfiP3n6gC2V1fX_gXcs99Xy-nqZXKmGz0II44 priority: 102 providerName: Directory of Open Access Journals |
| Title | Recent advances in plant disease severity assessment using convolutional neural networks |
| URI | https://link.springer.com/article/10.1038/s41598-023-29230-7 https://www.ncbi.nlm.nih.gov/pubmed/36759626 https://www.proquest.com/docview/2774729876 https://www.proquest.com/docview/2775619498 https://pubmed.ncbi.nlm.nih.gov/PMC9911734 https://doaj.org/article/4ac7309ad4d949a1bfffdb63c673c706 |
| Volume | 13 |
| WOSCitedRecordID | wos000988268200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsgoSN4iaxE5snxBFrUCiqwgBWk6W40dZqcpuN1sk_j1jx5tqefTCJZHWjtbJzGQ-z3yZAXiprC2dQ0vTqD4ZZc5koixZVom2YqhDjAQ24dePbDrls5loYsCtj7TKzTsxvKjNQvsY-WGJOAWBIBrvm-VF5rtG-exqbKGxA3u-SgIJ1L1mjLH4LBYtRPxWJif8sEd_5b8pK30DM0TfGdvyR6Fs_9-w5p-Uyd_ypsEdndz93xu5B3ciEE3fDppzH27Y7gHcGlpT_nwIM8STuIg0cgT6dN6ly3MUQxpTOim6VOs736VqLO6Zehb9WeqZ7FGj8R98xcxwCnzz_hF8OTn-_O59FrswZBrR3DpTLM9bqlviECyayilSKl44jr7dmhLhIDc11Zw5izsftG6mlRWUtzV3bZ2rnDyG3W7R2X1IhXLKOM6UEYYKUinuiNC4S1bMGiZ0AsVGFlLHEuW-U8a5DKlywuUgP4nyk0F-kiXwarxmORTouHb2kRfxONMX1w4_LFZnMtqqpMorrlCGGkGFKlrnnGlromtGNMvrBA42kpXR4nt5JdYEXozDaKs-AaM6u7gMcyofNRI8gSeDPo0rIbhzE7i7TIBtadrWUrdHuvn3UA8cIX7BCE3g9UYnr5b170fx9Pq7eAa3S28mnqAuDmB3vbq0z-Gm_rGe96sJ7LAZC0c-gb2j42nzaRLCGXg8LZtJsEMcaT6cNt9-AcARN_o |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETOxvbB4R4Va26rHooqDfj-FFWqrLLZgvqn-I3MnYe1fLorQdOK22cXTv5vvFnz3gG4Jl2jnqPTDMIn7Tg3qaSUp6OZDXiiCHOYjTh5zGfTMTBgdxbg5_9WZgQVtnbxGio7cyEPfJNijoFhSCS9_X8WxqqRgXval9Co4XFrjv5gUu25tXOe3y_zynd-rD_bjvtqgqkBtXJMtU8y6rCVMyj-LEjrxnVIvcC5ypnKcobYcvCCO4dKnlEKzfayUJUpfBVmemM4e9egIsoI6iIoYJ7w55O8JoVuezO5mRMbDY4P4YzbDQUTEO1n_KV-S-WCfibtv0zRPM3P22c_rau_28P7gZc64Q2edMy4yasufoWXG5Lb57chgPUyzho0sVANGRak_kRwox0LiuCksGFyn5ED8lLSTglcEhCpH7HWPyHkBE0fsR4-uYOfDqXYd2F9XpWu_tApPbaesG1lbaQbKSFZ9LkjGnuLJcmgbx_98p0KdhDJZAjFUMBmFAtXhTiRUW8KJ7Ai-GeeZuA5MzWbwOkhpYheXj8YrY4VJ0tUoUOxJTaFlYWUueV995WJTMlZ4ZnZQIbPZJUZ9EadQqjBJ4Ol9EWBQeTrt3sOLYZhV0xKRK41-J36AnDlanE1XMCfAXZK11dvVJPv8Z857iEyTkrEnjZc-C0W_9-FA_OHsUTuLK9_3GsxjuT3YdwlQaKhmB8uQHry8WxewSXzPfltFk8jhwn8OW8ufEL-ICNLg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8CCxgJThA1iZPYPiAELBWrXVU9AOrNOH4slVZpabqg_Wv8OsbOY1Uee9sDp0qJmzruN-PPns8zAM-UtZlzaGka4RPnzJlYZBmLC1EVDDHEaFATfj5gkwmfzcR0C372Z2G8rLL3icFRm4X2e-SjDHkKEkE03pHrZBHT3fHr5bfYV5Dykda-nEYLkX178gOXb82rvV38r59n2fj9x3cf4q7CQKyRqaxjxZKkynVFHRIhUzhFM8VTx3HesiZDqsNNmWvOnEVWj8hlWlmR86rkrioTlVB87gW4yHzS8iAbnA77Oz6ClqeiO6eTUD5qcK7059kyXzwNmX_MNubCUDLgbzz3T7nmbzHbMBWOr__Pg3gDrnUEnLxpLeYmbNn6FlxuS3Ke3IYZ8mgcANJpIxoyr8nyCOFHulAWQSphfcU_ooakpsSfHjgkXsHfWTL-gs8UGj6Czr65A5_O5bXuwna9qO19IEI5ZRxnygiTC1oo7qjQKaWKWcOEjiDtcSB1l5rdVwg5kkEiQLlssSMROzJgR7IIXgzfWbaJSc5s_dbDa2jpk4qHC4vVoex8lMyVN1ihTG5ELlRaOedMVVJdMqpZUkaw06NKdp6ukaeQiuDpcBt9lA88qdoujkObwu-WCR7BvRbLQ08orlgFrqojYBso3-jq5p16_jXkQcelTcpoHsHL3h5Ou_XvoXhw9ls8gStoEvJgb7L_EK5m3lq9Rl_swPZ6dWwfwSX9fT1vVo-DuRP4ct6m8QvrP5Xr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+plant+disease+severity+assessment+using+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Tingting&rft.au=Liu%2C+Yongmin&rft.au=Zheng%2C+Xinying&rft.au=Hu%2C+Kui&rft.date=2023-02-09&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=2336&rft_id=info:doi/10.1038%2Fs41598-023-29230-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |