Recent advances in plant disease severity assessment using convolutional neural networks

In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 2336 - 13
Hauptverfasser: Shi, Tingting, Liu, Yongmin, Zheng, Xinying, Hu, Kui, Huang, Hao, Liu, Hanlin, Huang, Hongxu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 09.02.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.
AbstractList In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.
Abstract In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.
In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to effectively monitor and control the entire production process of plants, not only the type of disease, but also the severity of the disease must be clarified. In recent years, deep learning for plant disease species identification has been widely used. In particular, the application of convolutional neural network (CNN) to plant disease images has made breakthrough progress. However, there are relatively few studies on disease severity assessment. The group first traced the prevailing views of existing disease researchers to provide criteria for grading the severity of plant diseases. Then, depending on the network architecture, this study outlined 16 studies on CNN-based plant disease severity assessment in terms of classical CNN frameworks, improved CNN architectures and CNN-based segmentation networks, and provided a detailed comparative analysis of the advantages and disadvantages of each. Common methods for acquiring datasets and performance evaluation metrics for CNN models were investigated. Finally, this study discussed the major challenges faced by CNN-based plant disease severity assessment methods in practical applications, and provided feasible research ideas and possible solutions to address these challenges.
ArticleNumber 2336
Author Liu, Yongmin
Liu, Hanlin
Zheng, Xinying
Huang, Hao
Shi, Tingting
Hu, Kui
Huang, Hongxu
Author_xml – sequence: 1
  givenname: Tingting
  surname: Shi
  fullname: Shi, Tingting
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
– sequence: 2
  givenname: Yongmin
  surname: Liu
  fullname: Liu, Yongmin
  email: T20040550@csuft.edu.cn
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
– sequence: 3
  givenname: Xinying
  surname: Zheng
  fullname: Zheng, Xinying
  organization: Business School of Hunan Normal University
– sequence: 4
  givenname: Kui
  surname: Hu
  fullname: Hu, Kui
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
– sequence: 5
  givenname: Hao
  surname: Huang
  fullname: Huang, Hao
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
– sequence: 6
  givenname: Hanlin
  surname: Liu
  fullname: Liu, Hanlin
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
– sequence: 7
  givenname: Hongxu
  surname: Huang
  fullname: Huang, Hongxu
  organization: College of Computer and Information Engineering, Central South University of Forestry and Technology, Research Center of Smart Forestry Cloud, Central South University of Forestry and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36759626$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQtFAQCSE_wAGNxIXLgF_jxwUJRTwiRUJCIHGzPHbP4mXWXuyZjfL3eHZDSHKIL221q6qr2_0cHcUUAaGXBL8lmKl3hZNOqxZT1lJNGW7lE3RCMe9ayig9unM_RmelrHE9HdWc6GfomAnZaUHFCfr5DRzEqbF-Z6OD0oTYbEdbMz4UsAWaAjvIYbpubClQymZBzyXEVeNS3KVxnkKKdmwizHkfpquUf5cX6OlgxwJnN_EU_fj08fv5l_by6-eL8w-Xres4nlorMe6569lAmPbdYBm1igyKcgqeik4oL7hTcgDZMam5dBY0V71QQy-wxewUXRx0fbJrs81hY_O1STaYfSLllbF5Cm4Ew62TDGvruddcW9IPw-B7wZyQzEksqtb7g9Z27jfgl8HUlu6J3n-J4ZdZpZ3RmhDJeBV4cyOQ058ZymQ2oTgY60AhzcVQKTtBanFVoa8fQNdpznWQexSXVCu5OHp119GtlX8fWAH0AHA5lZJhuIUQbJZFMYdFMXVRzH5RjKwk9YDkwmSXf6xdhfFxKjtQS60TV5D_236E9ReUMNNa
CitedBy_id crossref_primary_10_46592_turkager_1592116
crossref_primary_10_2478_ata_2025_0020
crossref_primary_10_1016_j_biosystemseng_2024_05_014
crossref_primary_10_1186_s13007_025_01435_z
crossref_primary_10_1016_j_envsoft_2025_106496
crossref_primary_10_3389_fpls_2024_1305358
crossref_primary_10_1016_j_asoc_2025_113152
crossref_primary_10_1186_s13007_025_01391_8
crossref_primary_10_1016_j_biosystemseng_2023_12_014
crossref_primary_10_1080_23311932_2024_2336002
crossref_primary_10_3389_fpls_2024_1360729
crossref_primary_10_1094_MPMI_07_24_0075_FI
crossref_primary_10_1007_s10661_024_12454_z
crossref_primary_10_1007_s42161_025_01949_4
crossref_primary_10_3390_plants14132011
crossref_primary_10_3390_agronomy14123043
crossref_primary_10_1007_s40031_024_00993_5
crossref_primary_10_1186_s40537_025_01265_9
crossref_primary_10_3390_f14071290
crossref_primary_10_3390_w15223940
crossref_primary_10_1007_s42452_025_06568_3
crossref_primary_10_1088_2515_7620_ad58ae
crossref_primary_10_1139_cjps_2023_0127
crossref_primary_10_1007_s11042_024_20224_9
crossref_primary_10_1016_j_biosystemseng_2025_104162
crossref_primary_10_1051_e3sconf_202562401004
crossref_primary_10_34133_plantphenomics_0208
crossref_primary_10_3390_agriengineering6040199
crossref_primary_10_1016_j_micpath_2025_107611
crossref_primary_10_1016_j_aiia_2025_03_001
crossref_primary_10_3390_plants14111656
crossref_primary_10_3390_s24237646
crossref_primary_10_1007_s42452_025_07387_2
crossref_primary_10_1016_j_compag_2025_110531
crossref_primary_10_1016_j_inpa_2024_03_003
crossref_primary_10_1016_j_compag_2025_110574
crossref_primary_10_1155_int_7644407
crossref_primary_10_3390_agriculture15060583
crossref_primary_10_1016_j_biosystemseng_2025_02_007
crossref_primary_10_3390_agronomy14122985
Cites_doi 10.1016/j.compeleceng.2021.107023
10.1007/BF02478259
10.3390/agronomy12040906
10.1007/BF00344251
10.1155/2021/6663442
10.3390/rs14112519
10.1007/s11192-015-1765-5
10.1094/PHYTO-02-17-0069-FI
10.1117/1.OE.58.4.040901
10.1093/jhered/esh076
10.1016/j.rse.2012.09.019
10.3389/fpls.2021.673505
10.1080/07352681003617285
10.3390/pathogens10020131
10.1109/TPAMI.2016.2644615
10.1007/s11042-022-12392-3
10.1007/s41348-020-00423-w
10.1007/978-3-319-90403-0_6
10.1111/ppa.12435
10.1016/j.biosystemseng.2021.08.011
10.1113/jphysiol.1962.sp006837
10.1007/s10658-009-9455-x
10.3389/fpls.2016.01419
10.1007/1-4020-4581-6_2
10.1109/ACCESS.2022.3216285
10.1111/ppa.13148
10.1109/ACCESS.2020.3025196
10.3390/agriculture11050420
10.1109/TKDE.2021.3070203
10.1007/s11042-020-09461-w
10.1109/5.726791
10.1109/ACCESS.2019.2909522
10.1007/s42161-021-00886-2
10.1111/j.1365-3059.1994.tb01606.x
10.1016/j.compag.2019.01.034
10.1016/j.knosys.2020.106723
10.3390/s22020575
10.1186/s42483-020-00049-8
10.1162/neco.2006.18.7.1527
10.1109/CVPR.2017.243
10.1002/aps3.11390
10.1109/CVPRW.2018.00215
10.1016/j.compag.2019.105162
10.1109/CVPR.2017.195
10.3389/fpls.2022.914829
10.1109/SIU.2017.7960257
10.1109/CVPR.2016.91
10.1155/2017/2917536
10.1007/s00521-022-07743-y
10.1145/3207677.3277952
10.1109/ICCV.2015.169
10.1155/2022/6504616
10.1145/1014052.1014067
10.1016/j.asoc.2018.05.018
10.1007/978-3-319-10584-0_20
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-01328-8_16
10.1109/CVPR.2015.7298965
10.1109/CVPR.2017.660
10.1109/CVPR.2016.90
10.1007/978-3-030-01264-9_8
10.1609/aaai.v31i1.11231
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2015.7298594
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2014.81
10.1023/A:1007379606734
10.3390/rs13010026
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-29230-7
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_4ac7309ad4d949a1bfffdb63c673c706
PMC9911734
36759626
10_1038_s41598_023_29230_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hunan Provincial Education Science "13th Five-Year Plan" Fund
  grantid: No. XJK20BGD048
– fundername: Natural Science Foundation of Hunan Province China
  grantid: No. 2021JJ31163
– fundername: The National Natural Science Foundation of China
  grantid: No. 31870532
– fundername: ;
  grantid: No. 31870532
– fundername: ;
  grantid: No. XJK20BGD048
– fundername: ;
  grantid: No. 2021JJ31163
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-a700b4cb3f139d5fa32a81f8242ed26568d64c87fe7537947cae948b68fb60a03
IEDL.DBID M7P
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988268200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:05:48 EDT 2025
Tue Nov 04 02:07:07 EST 2025
Wed Oct 01 13:59:21 EDT 2025
Tue Oct 07 09:20:36 EDT 2025
Mon Jul 21 05:58:44 EDT 2025
Sat Nov 29 06:33:32 EST 2025
Tue Nov 18 21:03:33 EST 2025
Fri Feb 21 02:37:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-a700b4cb3f139d5fa32a81f8242ed26568d64c87fe7537947cae948b68fb60a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2774729876?pq-origsite=%requestingapplication%
PMID 36759626
PQID 2774729876
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4ac7309ad4d949a1bfffdb63c673c706
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9911734
proquest_miscellaneous_2775619498
proquest_journals_2774729876
pubmed_primary_36759626
crossref_primary_10_1038_s41598_023_29230_7
crossref_citationtrail_10_1038_s41598_023_29230_7
springer_journals_10_1038_s41598_023_29230_7
PublicationCentury 2000
PublicationDate 2023-02-09
PublicationDateYYYYMMDD 2023-02-09
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sibiya, Sumbwanyambe (CR65) 2021; 10
Forbes, Korva (CR11) 1994; 43
Goncalves (CR73) 2021; 210
Liang (CR3) 2019; 157
Del Ponte (CR14) 2017; 107
Hubel, Wiesel (CR18) 1962; 160
Hinton, Osindero, Teh (CR21) 2006; 18
CR38
CR37
CR36
CR35
CR34
CR78
CR33
Prabhakar (CR51) 2020; 79
CR32
Bock (CR1) 2010; 29
CR31
CR30
CR74
McCulloch, Pitts (CR16) 1943; 5
CR70
Kaur (CR89) 2022; 22
Zhang, Yang (CR50) 2021; 34
Gao (CR72) 2021; 214
CR5
Brahimi (CR64) 2018
Franceschi (CR85) 2020; 69
Barratt, Horsfall (CR10) 1945; 35
CR49
Yin (CR76) 2022; 12
CR48
Xu (CR8) 2004; 95
CR47
CR46
CR45
CR44
CR88
CR43
CR87
CR42
CR86
CR41
CR40
Liu (CR75) 2022; 14
Fukushima (CR17) 1980; 36
CR83
Ozguven (CR79) 2020; 29
Wang (CR19) 2019; 58
Fenu, Malloci (CR53) 2021; 2021
Bock (CR12) 2009; 125
LeCun (CR20) 1998; 86
Lanjewar (CR92) 2022; 81
Cobb (CR15) 1892; 3
Xiang (CR67) 2021; 128
Mahlein (CR2) 2013; 128
Fernández-Campos (CR81) 2021; 12
Hu (CR80) 2021; 90
CR58
Xie (CR94) 2021; 34
CR57
CR56
CR55
Cooke (CR6) 2006
Goodfellow, Bengio, Courville (CR59) 2016
Chen (CR71) 2021; 11
CR93
CR91
CR90
Horsfall, Cowling (CR9) 1978
Liu (CR4) 2019; 7
Zeng (CR52) 2020; 8
Chiang (CR7) 2016; 65
CR29
CR28
CR27
Liu, Gao, Zhang (CR77) 2022; 10
CR26
CR25
Mohanty, Hughes, Salathé (CR60) 2016; 7
CR69
CR24
CR68
CR23
CR22
CR66
Al Gubory (CR84) 2014; 3
Hayit (CR82) 2021; 103
CR63
CR62
CR61
Badrinarayanan (CR39) 2017; 39
Mongeon, Paul-Hus (CR54) 2016; 106
Bock (CR13) 2020; 2
KS Chiang (29230_CR7) 2016; 65
Y Liu (29230_CR77) 2022; 10
P Kaur (29230_CR89) 2022; 22
VT Franceschi (29230_CR85) 2020; 69
I Goodfellow (29230_CR59) 2016
P Mongeon (29230_CR54) 2016; 106
M Prabhakar (29230_CR51) 2020; 79
29230_CR90
DH Hubel (29230_CR18) 1962; 160
29230_CR91
WS McCulloch (29230_CR16) 1943; 5
G Fenu (29230_CR53) 2021; 2021
Y Xu (29230_CR8) 2004; 95
29230_CR83
29230_CR40
29230_CR41
29230_CR42
29230_CR86
29230_CR43
29230_CR87
29230_CR44
29230_CR88
29230_CR45
29230_CR46
L Liu (29230_CR4) 2019; 7
29230_CR47
KHJBSOA Al Gubory (29230_CR84) 2014; 3
29230_CR48
MG Lanjewar (29230_CR92) 2022; 81
29230_CR49
29230_CR5
R Barratt (29230_CR10) 1945; 35
J Horsfall (29230_CR9) 1978
Y Zhang (29230_CR50) 2021; 34
M Fernández-Campos (29230_CR81) 2021; 12
29230_CR30
29230_CR74
29230_CR31
29230_CR32
K Fukushima (29230_CR17) 1980; 36
29230_CR33
M Sibiya (29230_CR65) 2021; 10
29230_CR34
29230_CR78
29230_CR35
AK Mahlein (29230_CR2) 2013; 128
29230_CR36
S Chen (29230_CR71) 2021; 11
29230_CR37
W Wang (29230_CR19) 2019; 58
29230_CR38
G Forbes (29230_CR11) 1994; 43
Q Liang (29230_CR3) 2019; 157
T Hayit (29230_CR82) 2021; 103
JP Goncalves (29230_CR73) 2021; 210
B Cooke (29230_CR6) 2006
SP Mohanty (29230_CR60) 2016; 7
J Gao (29230_CR72) 2021; 214
29230_CR70
29230_CR61
29230_CR62
29230_CR63
29230_CR22
29230_CR66
CH Bock (29230_CR1) 2010; 29
29230_CR23
29230_CR24
29230_CR68
29230_CR25
29230_CR69
29230_CR26
29230_CR27
29230_CR28
C Yin (29230_CR76) 2022; 12
29230_CR29
V Badrinarayanan (29230_CR39) 2017; 39
MM Ozguven (29230_CR79) 2020; 29
CH Bock (29230_CR12) 2009; 125
NA Cobb (29230_CR15) 1892; 3
EM Del Ponte (29230_CR14) 2017; 107
B-Y Liu (29230_CR75) 2022; 14
E Xie (29230_CR94) 2021; 34
GE Hinton (29230_CR21) 2006; 18
M Brahimi (29230_CR64) 2018
29230_CR93
G Hu (29230_CR80) 2021; 90
Y LeCun (29230_CR20) 1998; 86
29230_CR55
Q Zeng (29230_CR52) 2020; 8
29230_CR56
29230_CR57
29230_CR58
S Xiang (29230_CR67) 2021; 128
CH Bock (29230_CR13) 2020; 2
References_xml – ident: CR45
– ident: CR70
– volume: 90
  start-page: 107023
  year: 2021
  ident: CR80
  article-title: Detection and severity analysis of tea leaf blight based on deep learning
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2021.107023
– ident: CR22
– ident: CR49
– ident: CR68
– ident: CR74
– ident: CR93
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR16
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: CR87
– volume: 12
  start-page: 906
  issue: 4
  year: 2022
  ident: CR76
  article-title: Maize small leaf spot classification based on improved deep convolutional neural networks with a multi-scale attention mechanism
  publication-title: Agronomy
  doi: 10.3390/agronomy12040906
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  end-page: 202
  ident: CR17
  article-title: Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR53
  article-title: Using multioutput learning to diagnose plant disease and stress severity
  publication-title: Complexity
  doi: 10.1155/2021/6663442
– ident: CR35
– ident: CR29
– ident: CR61
– ident: CR58
– volume: 14
  start-page: 2519
  issue: 11
  year: 2022
  ident: CR75
  article-title: Two-stage convolutional neural networks for diagnosing the severity of alternaria leaf blotch disease of the apple tree
  publication-title: Remote Sensing
  doi: 10.3390/rs14112519
– year: 1978
  ident: CR9
  publication-title: Pathometry: The Measurement of Plant Disease
– ident: CR25
– volume: 35
  start-page: 655
  year: 1945
  ident: CR10
  article-title: An improved grading system for measuring plant disease
  publication-title: Phytopathology
– volume: 106
  start-page: 213
  issue: 1
  year: 2016
  end-page: 228
  ident: CR54
  article-title: The journal coverage of Web of Science and Scopus: A comparative analysis
  publication-title: Scientometrics
  doi: 10.1007/s11192-015-1765-5
– ident: CR42
– ident: CR46
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  end-page: 2
  ident: CR84
  article-title: Plant polyphenols, prenatal development and health outcomes
  publication-title: Biol. Syst. Open Access
– volume: 107
  start-page: 1161
  issue: 10
  year: 2017
  end-page: 1174
  ident: CR14
  article-title: Standard area diagrams for aiding severity estimation: Scientometrics, pathosystems, and methodological trends in the last 25 years
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-02-17-0069-FI
– volume: 58
  start-page: 040901
  issue: 4
  year: 2019
  end-page: 040901
  ident: CR19
  article-title: Development of convolutional neural network and its application in image classification: a survey
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.58.4.040901
– ident: CR88
– volume: 95
  start-page: 498
  issue: 6
  year: 2004
  end-page: 502
  ident: CR8
  article-title: Inheritance of resistance to zucchini yellow mosaic virus and watermelon mosaic virus in watermelon
  publication-title: J. Hered.
  doi: 10.1093/jhered/esh076
– ident: CR57
– ident: CR32
– volume: 128
  start-page: 21
  year: 2013
  end-page: 30
  ident: CR2
  article-title: Development of spectral indices for detecting and identifying plant diseases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.019
– volume: 12
  start-page: 1054
  year: 2021
  ident: CR81
  article-title: Wheat spike blast image classification using deep convolutional neural networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.673505
– volume: 29
  start-page: 59
  issue: 2
  year: 2010
  end-page: 107
  ident: CR1
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352681003617285
– ident: CR36
– ident: CR78
– volume: 10
  start-page: 131
  issue: 2
  year: 2021
  ident: CR65
  article-title: Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning
  publication-title: Pathogens
  doi: 10.3390/pathogens10020131
– ident: CR5
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  end-page: 2495
  ident: CR39
  article-title: Segnet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 81
  start-page: 16537
  issue: 12
  year: 2022
  end-page: 16562
  ident: CR92
  article-title: Detection of tartrazine colored rice flour adulteration in turmeric from multi-spectral images on smartphone using convolutional neural network deployed on PaaS cloud
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12392-3
– year: 2016
  ident: CR59
  publication-title: Deep Learning
– volume: 128
  start-page: 557
  issue: 2
  year: 2021
  end-page: 569
  ident: CR67
  article-title: L-CSMS: Novel lightweight network for plant disease severity recognition
  publication-title: J. Plant Dis. Protect.
  doi: 10.1007/s41348-020-00423-w
– ident: CR26
– ident: CR43
– ident: CR66
– ident: CR91
– ident: CR47
– start-page: 93
  year: 2018
  end-page: 117
  ident: CR64
  article-title: Deep learning for plant diseases: Detection and saliency map visualisation
  publication-title: Human and Machine Learning
  doi: 10.1007/978-3-319-90403-0_6
– volume: 65
  start-page: 523
  issue: 4
  year: 2016
  end-page: 535
  ident: CR7
  article-title: Effects of rater bias and assessment method on disease severity estimation with regard to hypothesis testing
  publication-title: Plant. Pathol.
  doi: 10.1111/ppa.12435
– ident: CR37
– ident: CR30
– volume: 3
  start-page: 44
  year: 1892
  end-page: 48
  ident: CR15
  article-title: Contributions to an economic knowledge of the Australian rusts (Uredineae)
  publication-title: Agric. Gazette New South Wales
– ident: CR33
– volume: 34
  start-page: 12077
  year: 2021
  end-page: 12090
  ident: CR94
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 210
  start-page: 129
  year: 2021
  end-page: 142
  ident: CR73
  article-title: Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.08.011
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  ident: CR18
  article-title: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– volume: 125
  start-page: 23
  issue: 1
  year: 2009
  end-page: 38
  ident: CR12
  article-title: The Horsfall-Barratt scale and severity estimates of citrus canker
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-009-9455-x
– ident: CR56
– ident: CR86
– volume: 7
  start-page: 1419
  year: 2016
  ident: CR60
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– ident: CR40
– ident: CR63
– start-page: 43
  year: 2006
  end-page: 80
  ident: CR6
  article-title: Disease assessment and yield loss
  publication-title: The Epidemiology of Plant Diseases
  doi: 10.1007/1-4020-4581-6_2
– volume: 10
  start-page: 112066
  year: 2022
  end-page: 112075
  ident: CR77
  article-title: Crop disease recognition based on modified light-weight CNN with attention mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3216285
– volume: 69
  start-page: 495
  issue: 3
  year: 2020
  end-page: 505
  ident: CR85
  article-title: A new standard area diagram set for assessment of severity of soybean rust improves accuracy of estimates and optimizes resource use
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13148
– ident: CR27
– ident: CR23
– ident: CR69
– ident: CR44
– ident: CR48
– volume: 8
  start-page: 172882
  year: 2020
  end-page: 172891
  ident: CR52
  article-title: Gans-based data augmentation for citrus disease severity detection using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025196
– volume: 11
  start-page: 420
  issue: 5
  year: 2021
  ident: CR71
  article-title: An approach for rice bacterial leaf streak disease segmentation and disease severity estimation
  publication-title: Agriculture
  doi: 10.3390/agriculture11050420
– ident: CR90
– ident: CR38
– volume: 34
  start-page: 5586
  issue: 12
  year: 2021
  end-page: 5609
  ident: CR50
  article-title: A survey on multi-task learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3070203
– volume: 79
  start-page: 28773
  issue: 39
  year: 2020
  end-page: 28784
  ident: CR51
  article-title: Deep learning based assessment of disease severity for early blight in tomato crop
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09461-w
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR20
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: CR31
– volume: 7
  start-page: 45301
  year: 2019
  end-page: 45312
  ident: CR4
  article-title: PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909522
– volume: 29
  start-page: 7081
  issue: 8
  year: 2020
  end-page: 7087
  ident: CR79
  article-title: Deep learning algorithms for automatic detection and classification of mildew disease in cucumber
  publication-title: Fresenius Environ Bull
– ident: CR34
– volume: 103
  start-page: 923
  issue: 3
  year: 2021
  end-page: 934
  ident: CR82
  article-title: Determination of the severity level of yellow rust disease in wheat by using convolutional neural networks
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-021-00886-2
– volume: 43
  start-page: 675
  issue: 4
  year: 1994
  end-page: 682
  ident: CR11
  article-title: The effect of using a Horsfall-Barratt scale on precision and accuracy of visual estimation of potato late blight severity in the field
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.1994.tb01606.x
– volume: 157
  start-page: 518
  year: 2019
  end-page: 529
  ident: CR3
  article-title: (PDSE)-S-2-Net: Computer-assisted plant disease diagnosis and severity estimation network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.034
– ident: CR55
– volume: 214
  start-page: 106723
  year: 2021
  ident: CR72
  article-title: Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106723
– volume: 22
  start-page: 575
  issue: 2
  year: 2022
  ident: CR89
  article-title: Recognition of leaf disease using hybrid convolutional neural network by applying feature reduction
  publication-title: Sensors
  doi: 10.3390/s22020575
– volume: 2
  start-page: 1
  issue: 1
  year: 2020
  end-page: 30
  ident: CR13
  article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy
  publication-title: Phytopathol. Res.
  doi: 10.1186/s42483-020-00049-8
– ident: CR83
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR21
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR24
– ident: 29230_CR32
– volume: 11
  start-page: 420
  issue: 5
  year: 2021
  ident: 29230_CR71
  publication-title: Agriculture
  doi: 10.3390/agriculture11050420
– ident: 29230_CR27
  doi: 10.1109/CVPR.2017.243
– volume: 79
  start-page: 28773
  issue: 39
  year: 2020
  ident: 29230_CR51
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09461-w
– ident: 29230_CR55
– volume: 157
  start-page: 518
  year: 2019
  ident: 29230_CR3
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.034
– volume: 128
  start-page: 557
  issue: 2
  year: 2021
  ident: 29230_CR67
  publication-title: J. Plant Dis. Protect.
  doi: 10.1007/s41348-020-00423-w
– volume: 7
  start-page: 1419
  year: 2016
  ident: 29230_CR60
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 34
  start-page: 12077
  year: 2021
  ident: 29230_CR94
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 160
  start-page: 106
  year: 1962
  ident: 29230_CR18
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1962.sp006837
– ident: 29230_CR90
– ident: 29230_CR57
  doi: 10.1002/aps3.11390
– volume: 10
  start-page: 131
  issue: 2
  year: 2021
  ident: 29230_CR65
  publication-title: Pathogens
  doi: 10.3390/pathogens10020131
– volume: 36
  start-page: 193
  issue: 4
  year: 1980
  ident: 29230_CR17
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00344251
– volume: 8
  start-page: 172882
  year: 2020
  ident: 29230_CR52
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025196
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 29230_CR16
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 3
  start-page: 44
  year: 1892
  ident: 29230_CR15
  publication-title: Agric. Gazette New South Wales
– ident: 29230_CR78
  doi: 10.1109/CVPRW.2018.00215
– ident: 29230_CR23
– ident: 29230_CR61
– volume: 58
  start-page: 040901
  issue: 4
  year: 2019
  ident: 29230_CR19
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.58.4.040901
– ident: 29230_CR42
– ident: 29230_CR46
  doi: 10.1016/j.compag.2019.105162
– start-page: 93
  volume-title: Human and Machine Learning
  year: 2018
  ident: 29230_CR64
  doi: 10.1007/978-3-319-90403-0_6
– ident: 29230_CR31
  doi: 10.1109/CVPR.2017.195
– ident: 29230_CR83
– ident: 29230_CR74
  doi: 10.3389/fpls.2022.914829
– volume: 69
  start-page: 495
  issue: 3
  year: 2020
  ident: 29230_CR85
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13148
– volume: 12
  start-page: 1054
  year: 2021
  ident: 29230_CR81
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.673505
– volume: 2
  start-page: 1
  issue: 1
  year: 2020
  ident: 29230_CR13
  publication-title: Phytopathol. Res.
  doi: 10.1186/s42483-020-00049-8
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 29230_CR39
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 29230_CR21
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 125
  start-page: 23
  issue: 1
  year: 2009
  ident: 29230_CR12
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-009-9455-x
– volume: 14
  start-page: 2519
  issue: 11
  year: 2022
  ident: 29230_CR75
  publication-title: Remote Sensing
  doi: 10.3390/rs14112519
– volume: 90
  start-page: 107023
  year: 2021
  ident: 29230_CR80
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2021.107023
– ident: 29230_CR35
– ident: 29230_CR86
  doi: 10.1109/SIU.2017.7960257
– ident: 29230_CR36
  doi: 10.1109/CVPR.2016.91
– ident: 29230_CR93
– volume: 107
  start-page: 1161
  issue: 10
  year: 2017
  ident: 29230_CR14
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-02-17-0069-FI
– ident: 29230_CR66
– volume: 43
  start-page: 675
  issue: 4
  year: 1994
  ident: 29230_CR11
  publication-title: Plant Pathol.
  doi: 10.1111/j.1365-3059.1994.tb01606.x
– ident: 29230_CR44
  doi: 10.1155/2017/2917536
– volume: 34
  start-page: 5586
  issue: 12
  year: 2021
  ident: 29230_CR50
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3070203
– ident: 29230_CR91
  doi: 10.1007/s00521-022-07743-y
– volume: 35
  start-page: 655
  year: 1945
  ident: 29230_CR10
  publication-title: Phytopathology
– ident: 29230_CR87
– volume-title: Deep Learning
  year: 2016
  ident: 29230_CR59
– ident: 29230_CR49
– ident: 29230_CR58
  doi: 10.1145/3207677.3277952
– ident: 29230_CR28
– volume: 210
  start-page: 129
  year: 2021
  ident: 29230_CR73
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.08.011
– volume: 128
  start-page: 21
  year: 2013
  ident: 29230_CR2
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.019
– ident: 29230_CR24
– start-page: 43
  volume-title: The Epidemiology of Plant Diseases
  year: 2006
  ident: 29230_CR6
  doi: 10.1007/1-4020-4581-6_2
– ident: 29230_CR34
  doi: 10.1109/ICCV.2015.169
– ident: 29230_CR88
  doi: 10.1155/2022/6504616
– volume: 10
  start-page: 112066
  year: 2022
  ident: 29230_CR77
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3216285
– volume: 81
  start-page: 16537
  issue: 12
  year: 2022
  ident: 29230_CR92
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12392-3
– ident: 29230_CR48
  doi: 10.1145/1014052.1014067
– ident: 29230_CR69
  doi: 10.1016/j.asoc.2018.05.018
– volume: 65
  start-page: 523
  issue: 4
  year: 2016
  ident: 29230_CR7
  publication-title: Plant. Pathol.
  doi: 10.1111/ppa.12435
– ident: 29230_CR70
  doi: 10.1007/978-3-319-10584-0_20
– ident: 29230_CR40
  doi: 10.1007/978-3-319-24574-4_28
– ident: 29230_CR56
  doi: 10.1007/978-3-030-01328-8_16
– ident: 29230_CR38
  doi: 10.1109/CVPR.2015.7298965
– ident: 29230_CR63
– ident: 29230_CR41
  doi: 10.1109/CVPR.2017.660
– ident: 29230_CR26
  doi: 10.1109/CVPR.2016.90
– ident: 29230_CR29
– volume: 2021
  start-page: 1
  year: 2021
  ident: 29230_CR53
  publication-title: Complexity
  doi: 10.1155/2021/6663442
– volume: 214
  start-page: 106723
  year: 2021
  ident: 29230_CR72
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106723
– ident: 29230_CR30
  doi: 10.1007/978-3-030-01264-9_8
– ident: 29230_CR68
  doi: 10.1609/aaai.v31i1.11231
– volume: 29
  start-page: 59
  issue: 2
  year: 2010
  ident: 29230_CR1
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352681003617285
– ident: 29230_CR62
  doi: 10.1007/978-3-319-10590-1_53
– ident: 29230_CR25
  doi: 10.1109/CVPR.2015.7298594
– volume: 95
  start-page: 498
  issue: 6
  year: 2004
  ident: 29230_CR8
  publication-title: J. Hered.
  doi: 10.1093/jhered/esh076
– volume: 7
  start-page: 45301
  year: 2019
  ident: 29230_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909522
– volume-title: Pathometry: The Measurement of Plant Disease
  year: 1978
  ident: 29230_CR9
– ident: 29230_CR37
  doi: 10.1007/978-3-319-46448-0_2
– volume: 103
  start-page: 923
  issue: 3
  year: 2021
  ident: 29230_CR82
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-021-00886-2
– volume: 12
  start-page: 906
  issue: 4
  year: 2022
  ident: 29230_CR76
  publication-title: Agronomy
  doi: 10.3390/agronomy12040906
– volume: 22
  start-page: 575
  issue: 2
  year: 2022
  ident: 29230_CR89
  publication-title: Sensors
  doi: 10.3390/s22020575
– ident: 29230_CR5
– ident: 29230_CR33
  doi: 10.1109/CVPR.2014.81
– volume: 106
  start-page: 213
  issue: 1
  year: 2016
  ident: 29230_CR54
  publication-title: Scientometrics
  doi: 10.1007/s11192-015-1765-5
– volume: 29
  start-page: 7081
  issue: 8
  year: 2020
  ident: 29230_CR79
  publication-title: Fresenius Environ Bull
– volume: 3
  start-page: 1
  issue: 1
  year: 2014
  ident: 29230_CR84
  publication-title: Biol. Syst. Open Access
– ident: 29230_CR47
  doi: 10.1023/A:1007379606734
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 29230_CR20
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 29230_CR22
– ident: 29230_CR45
  doi: 10.3390/rs13010026
– ident: 29230_CR43
SSID ssj0000529419
Score 2.5779805
Snippet In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to...
Abstract In modern agricultural production, the severity of diseases is an important factor that directly affects the yield and quality of plants. In order to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2336
SubjectTerms 631/449/447
639/705/117
Agricultural production
Comparative analysis
Deep learning
Humanities and Social Sciences
Image Processing, Computer-Assisted - methods
multidisciplinary
Neural networks
Neural Networks, Computer
Patient Acuity
Plant diseases
Science
Science (multidisciplinary)
Segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VFZW4IKAFQgsyErc2amI7sX0ERMUBVRwK2pvl-AErVWnVbJH49x0_NnTL68Ip0sabWJNvNN9kJt8AvDbe0xDQ0yzCp-YiuFpRKupODZ1ADAmWugm_fBSnp3KxUJ9ujfqKPWFZHjgb7pibeBVlHHeKK9MOIQQ39Mz2glmRxbaR9dxKprKqN1W8VeUrmYbJ4wkjVfyajMbRZci7a7ERiZJg_-9Y5q_NkncqpikQnTyEB4VBkjd5549gy4-PYSfPlPyxCwskgngNUor7E1mO5PIc7UdKLYZgLPRxZB0xsyonie3vX0lsQS9QxDtEqct0SI3i0x58Pnl_9u5DXcYn1BZp2Ko2omkGbgcWkOW5LhhGjWyDxKDsHUUeJ13PrRTBY8qCbims8YrLoZdh6BvTsCewPV6M_hkQZYJxQQrjlOOKdUYGpiymt0Z4J5StoF2bUtuiLR5HXJzrVONmUmfzazS_TubXooLD-T-XWVnjr6vfxic0r4yq2OkHxIouWNH_wkoFB-vnq4urTpoiAcYMA6NCBa_m0-hksXJiRn9xndZ08XWPkhU8zXCYd8Iw5VKYFlYgNoCysdXNM-PyWxLyRm7eCsYrOFpD6ue2_myK5__DFPtwn0ZfiP3n6gC2V1fX_gXcs99Xy-nqZXKmGz0II44
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent advances in plant disease severity assessment using convolutional neural networks
URI https://link.springer.com/article/10.1038/s41598-023-29230-7
https://www.ncbi.nlm.nih.gov/pubmed/36759626
https://www.proquest.com/docview/2774729876
https://www.proquest.com/docview/2775619498
https://pubmed.ncbi.nlm.nih.gov/PMC9911734
https://doaj.org/article/4ac7309ad4d949a1bfffdb63c673c706
Volume 13
WOSCitedRecordID wos000988268200069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsgoSN4iaxE5snxBFrUCiqwgBWk6W40dZqcpuN1sk_j1jx5tqefTCJZHWjtbJzGQ-z3yZAXiprC2dQ0vTqD4ZZc5koixZVom2YqhDjAQ24dePbDrls5loYsCtj7TKzTsxvKjNQvsY-WGJOAWBIBrvm-VF5rtG-exqbKGxA3u-SgIJ1L1mjLH4LBYtRPxWJif8sEd_5b8pK30DM0TfGdvyR6Fs_9-w5p-Uyd_ypsEdndz93xu5B3ciEE3fDppzH27Y7gHcGlpT_nwIM8STuIg0cgT6dN6ly3MUQxpTOim6VOs736VqLO6Zehb9WeqZ7FGj8R98xcxwCnzz_hF8OTn-_O59FrswZBrR3DpTLM9bqlviECyayilSKl44jr7dmhLhIDc11Zw5izsftG6mlRWUtzV3bZ2rnDyG3W7R2X1IhXLKOM6UEYYKUinuiNC4S1bMGiZ0AsVGFlLHEuW-U8a5DKlywuUgP4nyk0F-kiXwarxmORTouHb2kRfxONMX1w4_LFZnMtqqpMorrlCGGkGFKlrnnGlromtGNMvrBA42kpXR4nt5JdYEXozDaKs-AaM6u7gMcyofNRI8gSeDPo0rIbhzE7i7TIBtadrWUrdHuvn3UA8cIX7BCE3g9UYnr5b170fx9Pq7eAa3S28mnqAuDmB3vbq0z-Gm_rGe96sJ7LAZC0c-gb2j42nzaRLCGXg8LZtJsEMcaT6cNt9-AcARN_o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFETOxvbB4R4Va26rHooqDfj-FFWqrLLZgvqn-I3MnYe1fLorQdOK22cXTv5vvFnz3gG4Jl2jnqPTDMIn7Tg3qaSUp6OZDXiiCHOYjTh5zGfTMTBgdxbg5_9WZgQVtnbxGio7cyEPfJNijoFhSCS9_X8WxqqRgXval9Co4XFrjv5gUu25tXOe3y_zynd-rD_bjvtqgqkBtXJMtU8y6rCVMyj-LEjrxnVIvcC5ypnKcobYcvCCO4dKnlEKzfayUJUpfBVmemM4e9egIsoI6iIoYJ7w55O8JoVuezO5mRMbDY4P4YzbDQUTEO1n_KV-S-WCfibtv0zRPM3P22c_rau_28P7gZc64Q2edMy4yasufoWXG5Lb57chgPUyzho0sVANGRak_kRwox0LiuCksGFyn5ED8lLSTglcEhCpH7HWPyHkBE0fsR4-uYOfDqXYd2F9XpWu_tApPbaesG1lbaQbKSFZ9LkjGnuLJcmgbx_98p0KdhDJZAjFUMBmFAtXhTiRUW8KJ7Ai-GeeZuA5MzWbwOkhpYheXj8YrY4VJ0tUoUOxJTaFlYWUueV995WJTMlZ4ZnZQIbPZJUZ9EadQqjBJ4Ol9EWBQeTrt3sOLYZhV0xKRK41-J36AnDlanE1XMCfAXZK11dvVJPv8Z857iEyTkrEnjZc-C0W_9-FA_OHsUTuLK9_3GsxjuT3YdwlQaKhmB8uQHry8WxewSXzPfltFk8jhwn8OW8ufEL-ICNLg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4ty0NceD8CCxgJThA1iZPYPiAELBWrXVU9AOrNOH4slVZpabqg_Wv8OsbOY1Uee9sDp0qJmzruN-PPns8zAM-UtZlzaGka4RPnzJlYZBmLC1EVDDHEaFATfj5gkwmfzcR0C372Z2G8rLL3icFRm4X2e-SjDHkKEkE03pHrZBHT3fHr5bfYV5Dykda-nEYLkX178gOXb82rvV38r59n2fj9x3cf4q7CQKyRqaxjxZKkynVFHRIhUzhFM8VTx3HesiZDqsNNmWvOnEVWj8hlWlmR86rkrioTlVB87gW4yHzS8iAbnA77Oz6ClqeiO6eTUD5qcK7059kyXzwNmX_MNubCUDLgbzz3T7nmbzHbMBWOr__Pg3gDrnUEnLxpLeYmbNn6FlxuS3Ke3IYZ8mgcANJpIxoyr8nyCOFHulAWQSphfcU_ooakpsSfHjgkXsHfWTL-gs8UGj6Czr65A5_O5bXuwna9qO19IEI5ZRxnygiTC1oo7qjQKaWKWcOEjiDtcSB1l5rdVwg5kkEiQLlssSMROzJgR7IIXgzfWbaJSc5s_dbDa2jpk4qHC4vVoex8lMyVN1ihTG5ELlRaOedMVVJdMqpZUkaw06NKdp6ukaeQiuDpcBt9lA88qdoujkObwu-WCR7BvRbLQ08orlgFrqojYBso3-jq5p16_jXkQcelTcpoHsHL3h5Ou_XvoXhw9ls8gStoEvJgb7L_EK5m3lq9Rl_swPZ6dWwfwSX9fT1vVo-DuRP4ct6m8QvrP5Xr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+plant+disease+severity+assessment+using+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Shi%2C+Tingting&rft.au=Liu%2C+Yongmin&rft.au=Zheng%2C+Xinying&rft.au=Hu%2C+Kui&rft.date=2023-02-09&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=2336&rft_id=info:doi/10.1038%2Fs41598-023-29230-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon