Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling
Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic cor...
Saved in:
| Published in: | Communications biology Vol. 5; no. 1; pp. 1316 - 16 |
|---|---|
| Main Authors: | , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.12.2022
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2399-3642, 2399-3642 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.
Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis. |
|---|---|
| AbstractList | Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression. Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression. Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis. Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression. Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis. Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis. |
| ArticleNumber | 1316 |
| Author | Shen, Jian Guo, Yongzheng Wang, Lingbang Zhu, Wenyan Huang, Longxiang Luo, Minghao Li, Xiang Hu, Xiankang Luo, Suxin Xue, Yuzhou Hu, Yu Liu, Lin |
| Author_xml | – sequence: 1 givenname: Yuzhou surname: Xue fullname: Xue, Yuzhou organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital – sequence: 2 givenname: Minghao surname: Luo fullname: Luo, Minghao organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 3 givenname: Xiankang surname: Hu fullname: Hu, Xiankang organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 4 givenname: Xiang surname: Li fullname: Li, Xiang organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 5 givenname: Jian surname: Shen fullname: Shen, Jian organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 6 givenname: Wenyan surname: Zhu fullname: Zhu, Wenyan organization: Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College – sequence: 7 givenname: Longxiang surname: Huang fullname: Huang, Longxiang organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 8 givenname: Yu surname: Hu fullname: Hu, Yu organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 9 givenname: Yongzheng surname: Guo fullname: Guo, Yongzheng organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University – sequence: 10 givenname: Lin surname: Liu fullname: Liu, Lin organization: Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University – sequence: 11 givenname: Lingbang surname: Wang fullname: Wang, Lingbang organization: Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University – sequence: 12 givenname: Suxin surname: Luo fullname: Luo, Suxin email: luosuxin0204@163.com organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36456628$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u3CAUhVGVqknTvEAXFVI32bjB_Bk2laKoPyNN1UWna8QAthnZZgp2pKhvlQfpMxWP0zTJIsLCCL5zdOGe1-BoCIMD4G2JPpSIiItEMUKkQBgXiGLGCvwCnGAiZUE4xUcP1sfgLKUdQqiUUnJCX4HjvM04x-IE_P6mTQz7VjcuweiaqdOjg9c6mbyKMPUhjC3sp2Q6B43rOlhPgxl9GKCdoh8aqMfWxTCf59knuI-hiS6lGRnbGKamhat1Uf65vfixudwQmHwz6C5L34CXte6SO7v7n4Kfnz9trr4W6-9fVleX68IwisZCGE14qQWrDNOldUJu6xoTjLGsucifKGtacWsMZVZSwuVWCJZRwTirqSSnYLX42qB3ah99r-ONCtqrw0aIjdJx9PkGStLsKCqBjeW0RFojXGlijbBWMky32evj4rWftr2zxg1j1N0j08cng29VE66VrErGCcoG53cGMfyaXBpV79P8sHpwYUoKV5QTmbvFMvr-CboLU8xvd6CIICyPTL17WNF9Kf96nAG8ALnRKUVX3yMlUnOW1JIllbOkDllSOIvEE5Hxo577nm_lu-elZJGm_RwQF_-X_YzqLwNg3yg |
| CitedBy_id | crossref_primary_10_3724_abbs_2025004 crossref_primary_10_1515_tjb_2025_0086 crossref_primary_10_1002_jcp_31251 crossref_primary_10_1038_s41598_024_73159_4 crossref_primary_10_2174_0109298673303369240312092913 crossref_primary_10_1016_j_vph_2023_107264 crossref_primary_10_1016_j_lfs_2025_123817 crossref_primary_10_1016_j_intimp_2024_113691 crossref_primary_10_3389_fphys_2023_1179828 crossref_primary_10_3389_fimmu_2023_1196033 crossref_primary_10_1161_JAHA_123_034990 crossref_primary_10_1007_s11883_025_01294_y crossref_primary_10_1038_s41598_023_46770_0 crossref_primary_10_1161_CIRCRESAHA_125_325496 crossref_primary_10_3892_ijmm_2025_5499 crossref_primary_10_3389_fimmu_2024_1448662 crossref_primary_10_1016_j_cellsig_2025_111705 crossref_primary_10_1038_s41392_025_02220_z crossref_primary_10_1016_j_biopha_2023_115200 crossref_primary_10_3390_ijms25147755 crossref_primary_10_1016_j_atherosclerosis_2024_119085 crossref_primary_10_1016_j_ijbiomac_2025_140937 crossref_primary_10_1016_j_bcp_2024_116170 crossref_primary_10_1016_j_biopha_2023_115369 crossref_primary_10_1016_j_heliyon_2024_e24103 crossref_primary_10_1002_ptr_70027 crossref_primary_10_1016_j_heliyon_2024_e37727 crossref_primary_10_1016_j_clim_2023_109773 crossref_primary_10_20517_2574_1209_2025_40 crossref_primary_10_1016_j_vph_2025_107499 crossref_primary_10_1016_j_autrev_2025_103892 crossref_primary_10_3390_biom15030342 crossref_primary_10_1038_s44161_024_00474_4 crossref_primary_10_1016_j_vph_2024_107419 |
| Cites_doi | 10.1038/s41586-021-03392-8 10.1016/j.atherosclerosis.2016.06.012 10.1006/exmp.2002.2424 10.1038/nmeth.3337 10.1161/ATVBAHA.119.312131 10.1016/j.jacc.2020.08.011 10.1101/gr.240663.118 10.1016/j.jacc.2018.08.2147 10.1161/ATVBAHA.114.304029 10.1186/s13059-019-1874-1 10.1038/s41592-019-0667-5 10.1161/ATVBAHA.107.141069 10.1016/j.cell.2011.04.005 10.1038/s41569-019-0227-9 10.1089/omi.2011.0118 10.1016/j.immuni.2017.09.008 10.1038/mt.2008.76 10.1161/CIRCRESAHA.117.312509 10.1038/s42003-022-04056-7 10.1056/NEJMoa1707914 10.1161/ATVBAHA.119.312434 10.1111/bph.15631 10.1126/science.aah4573 10.1038/s41569-019-0265-3 10.1161/CIRCRESAHA.115.306361 10.1038/nm.3866 10.1007/s00018-012-0935-3 10.1161/ATVBAHA.121.316600 10.1182/blood-2008-02-078071 10.1161/CIRCRESAHA.116.301312 10.1007/s00395-021-00897-1 10.1038/s41569-021-00589-2 10.1038/s41590-018-0113-3 10.1093/cvr/cvv103 10.1038/nrm3823 10.1161/CIRCULATIONAHA.120.046672 10.1038/nri798 10.1016/j.vph.2012.02.011 10.1038/s41467-018-04447-7 10.1038/nrcardio.2017.97 10.7150/thno.35528 10.1161/CIRCRESAHA.107.167965 10.1161/ATVBAHA.108.180497 10.1161/CIRCULATIONAHA.120.048378 10.1016/j.cell.2019.05.054 10.1093/eurheartj/ehz008 10.1161/CIRCRESAHA.120.316770 10.1038/s41590-018-0276-y 10.1172/jci.insight.95890 10.1161/hh0901.090305 10.1126/science.1189731 10.1038/ng1721 10.1016/j.ebiom.2020.102706 10.1038/s41591-019-0590-4 10.1038/ni.3343 10.1161/CIRCRESAHA.117.312513 10.1161/CIRCRESAHA.120.316903 10.1161/CIRCRESAHA.115.304634 10.1016/j.jare.2020.06.005 10.1038/s41591-018-0124-5 10.1161/CIRCRESAHA.108.189803 10.1093/cvr/cvab046 10.1186/s13059-020-1949-z 10.1089/ars.2017.7171 10.3389/fimmu.2020.599415 10.1007/s12038-013-9310-2 10.1152/physrev.1995.75.3.487 10.1007/s12265-020-09961-y 10.1093/gigascience/giy083 10.1161/01.RES.0000160543.84254.f1 10.1002/path.5392 10.1016/j.ecoenv.2021.112872 10.1161/01.ATV.0000022407.91111.E4 10.1038/nmeth.4150 10.1073/pnas.1735526100 10.1161/CIRCRESAHA.118.312804 10.1038/nbt.4096 10.4161/auto.3427 10.1161/CIRCRESAHA.116.309799 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s42003-022-04255-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2399-3642 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_9468f8782cd6410aa027a3dc8dd9524b PMC9715630 36456628 10_1038_s42003_022_04255_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82070238 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Chongqing (Natural Science Foundation of Chongqing Municipality) grantid: cstc2020jcyj-msxmX1091 funderid: https://doi.org/10.13039/501100005230 – fundername: Chongqing Medical University (CQMU) grantid: ZHYX202017 funderid: https://doi.org/10.13039/501100004374 – fundername: ; grantid: cstc2020jcyj-msxmX1091 – fundername: ; grantid: ZHYX202017 – fundername: ; grantid: 82070238 |
| GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK AARCD LK8 PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-8ca361a857c5a1de89bff232229f68f6881f476dcc45d94369b8855a18565f493 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2399-3642 |
| IngestDate | Tue Oct 14 18:33:09 EDT 2025 Tue Nov 04 02:07:11 EST 2025 Wed Oct 01 14:25:59 EDT 2025 Wed Aug 13 07:15:49 EDT 2025 Thu Jan 02 22:54:48 EST 2025 Sat Nov 29 04:17:05 EST 2025 Tue Nov 18 21:44:21 EST 2025 Fri Feb 21 02:40:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-8ca361a857c5a1de89bff232229f68f6881f476dcc45d94369b8855a18565f493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2743835353?pq-origsite=%requestingapplication% |
| PMID | 36456628 |
| PQID | 2743835353 |
| PQPubID | 4669726 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9468f8782cd6410aa027a3dc8dd9524b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9715630 proquest_miscellaneous_2746390005 proquest_journals_2743835353 pubmed_primary_36456628 crossref_primary_10_1038_s42003_022_04255_2 crossref_citationtrail_10_1038_s42003_022_04255_2 springer_journals_10_1038_s42003_022_04255_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Communications biology |
| PublicationTitleAbbrev | Commun Biol |
| PublicationTitleAlternate | Commun Biol |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | FeilSTransdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesisCirc. Res.20141156626671:CAS:528:DC%2BC2cXhsFals7rE2507000310.1161/CIRCRESAHA.115.304634 GheldofAHulpiauPvan RoyFDe CraeneBBerxGEvolutionary functional analysis and molecular regulation of the ZEB transcription factorsCell. Mol. Life Sci.201269252725411:CAS:528:DC%2BC38XhtVansbbP2234926110.1007/s00018-012-0935-3 WolfMPHunzikerPAtherosclerosis: insights into vascular pathobiology and outlook to novel treatmentsJ. Cardiovasc. Transl. Res.2020137447573207256410.1007/s12265-020-09961-y ChenTMacrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosisEBioMedicine20205310270632151799706316710.1016/j.ebiom.2020.102706 BrowaeysRSaelensWSaeysYNicheNet: modeling intercellular communication by linking ligands to target genesNat. Methods2020171591621:CAS:528:DC%2BC1MXitlCht7%2FP3181926410.1038/s41592-019-0667-5 HuynhKAtherosclerosis: trehalose induces macrophage autophagy-lysosomal biogenesisNat. Rev. Cardiol.2017144442863175010.1038/nrcardio.2017.97 ShankmanLSKLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesisNat. Med.2015216286371:CAS:528:DC%2BC2MXhtFemtr7E25985364455208510.1038/nm.3866 HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1 JinSNotch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cellsCirc. Res.2008102148314911:CAS:528:DC%2BD1cXmvFOhsbo%3D1848341010.1161/CIRCRESAHA.107.167965 KimKTranscriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine modelsCirc. Res.2018123112711421:CAS:528:DC%2BC1cXhvFyktrrO30359200694512110.1161/CIRCRESAHA.118.312804 SorokinVRole of Vascular smooth muscle cell plasticity and interactions in vessel wall inflammationFront. Immunol.2020115994151:CAS:528:DC%2BB3MXitVCrtro%3D33324416772601110.3389/fimmu.2020.599415 VengrenyukYCholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotypeArterioscler. Thromb. Vasc. Biol.2015355355461:CAS:528:DC%2BC2MXjsVKhs70%3D25573853434440210.1161/ATVBAHA.114.304029 BennettMRSinhaSOwensGKVascular smooth muscle cells in atherosclerosisCirc. Res.20161186927021:CAS:528:DC%2BC28XislOms74%3D26892967476205310.1161/CIRCRESAHA.115.306361 FernandezDMSingle-cell immune landscape of human atherosclerotic plaquesNat. Med.201925157615881:CAS:528:DC%2BC1MXhvFaksbnI31591603731878410.1038/s41591-019-0590-4 ZhuLMutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosusNat. Genet.2006383433491:CAS:528:DC%2BD28XhslCjtr4%3D1644427410.1038/ng1721 KuznetsovaTPrangeKHMGlassCKde WintherMPJTranscriptional and epigenetic regulation of macrophages in atherosclerosisNat. Rev. Cardiol.2020172162281:CAS:528:DC%2BC1MXhvV2ktrbL3157851610.1038/s41569-019-0265-3 DutzmannJDanielJMBauersachsJHilfiker-KleinerDSeddingDGEmerging translational approaches to target STAT3 signalling and its impact on vascular diseaseCardiovasc. Res.20151063653741:CAS:528:DC%2BC28Xhsl2ms7%2FL25784694443166310.1093/cvr/cvv103 MüllerAMExpression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitroExp. Mol. Pathol.2002722212291200978610.1006/exmp.2002.2424 LibbyPThe changing landscape of atherosclerosisNature20215925245331:CAS:528:DC%2BB3MXptlOntbw%3D3388372810.1038/s41586-021-03392-8 VrommanAStage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosisEur. heart J.201940248224911:CAS:528:DC%2BB3cXhslGntrfL30698710668532310.1093/eurheartj/ehz008 HaoHHeterogeneity of smooth muscle cell populations cultured from pig coronary arteryArterioscler. Thromb. Vasc. Biol.200222109310991:CAS:528:DC%2BD38XlsFShtr0%3D1211772210.1161/01.ATV.0000022407.91111.E4 MajeskyMWDevelopmental basis of vascular smooth muscle diversityArterioscler. Thromb. Vasc. Biol.200727124812581:CAS:528:DC%2BD2sXltl2itbw%3D1737983910.1161/ATVBAHA.107.141069 Garcia-AlonsoLHollandCHIbrahimMMTureiDSaez-RodriguezJBenchmark and integration of resources for the estimation of human transcription factor activitiesGenome Res.201929136313751:CAS:528:DC%2BC1MXhslynsLvN31340985667371810.1101/gr.240663.118 GomezDInterleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of miceNat. Med.201824141814291:CAS:528:DC%2BC1cXhtlOis73J30038218613082210.1038/s41591-018-0124-5 Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science356, eaah4573 (2017). TabasILichtmanAHMonocyte-macrophages and T cells in atherosclerosisImmunity2017476216341:CAS:528:DC%2BC2sXhs1OhtrvO29045897574729710.1016/j.immuni.2017.09.008 JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e6141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054 YapCMieremetAde VriesCJMMichaDde WaardVSix shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-Like Factor 4)Arterioscler. Thromb. Vasc. Biol.202141269327071:CAS:528:DC%2BB3MXit12hu73P34470477854525410.1161/ATVBAHA.121.316600 Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol.5, 1084 (2022). OwensGKRegulation of differentiation of vascular smooth muscle cellsPhysiol. Rev.1995754875171:STN:280:DyaK2MzltVagtA%3D%3D762439210.1152/physrev.1995.75.3.487 MantovaniAGarlandaCLocatiMMacrophage diversity and polarization in atherosclerosis: a question of balanceArterioscler. Thromb.Vasc. Biol.200929141914231:CAS:528:DC%2BD1MXhtFWhur%2FL1969640710.1161/ATVBAHA.108.180497 Muñoz-EspínDSerranoMCellular senescence: from physiology to pathologyNat. Rev. Mol. Cell Biol.2014154824962495421010.1038/nrm3823 AlencarGFStem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesisCirculation2020142204520591:CAS:528:DC%2BB3cXisVyju7rJ32674599768279410.1161/CIRCULATIONAHA.120.046672 MooreKJMacrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD Series (Part 2)J. Am. Coll. Cardiol.201872218121971:CAS:528:DC%2BC1cXhvFynsLbM30360827652224610.1016/j.jacc.2018.08.2147 Albarrán-JuárezJKaurHGrimmMOffermannsSWettschureckNLineage tracing of cells involved in atherosclerosisAtherosclerosis20162514454532732017410.1016/j.atherosclerosis.2016.06.012 Zappia, L. Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience7, giy083 (2018). RongJXShapiroMTroganEFisherEATransdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loadingProc. Natl Acad. Sci. USA200310013531135361:CAS:528:DC%2BD3sXptFOit7o%3D1458161326384810.1073/pnas.1735526100 EverettBMInhibition of Interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trialJ. Am. Coll. Cardiol.202076166016701:CAS:528:DC%2BB3cXitFymsbjK3300413110.1016/j.jacc.2020.08.011 EnsanSSelf-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birthNat. Immunol.2016171591681:CAS:528:DC%2BC2MXhvFKgsb%2FJ2664235710.1038/ni.3343 AranDReference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophageNat. Immunol.2019201631721:CAS:528:DC%2BC1MXlvFSgu7k%3D30643263634074410.1038/s41590-018-0276-y StoletovKVascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafishCirc. Res.20091049529601:CAS:528:DC%2BD1MXksVCltb4%3D19265037283425010.1161/CIRCRESAHA.108.189803 Jacobsen K., et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI insight2, e95890 (2017). QiuXSingle-cell mRNA quantification and differential analysis with CensusNat. Methods2017143093151:CAS:528:DC%2BC2sXhtlKjsro%3D28114287533080510.1038/nmeth.4150 Grootaert M. O. J., Bennett M. R. Vascular smooth muscle cells in atherosclerosis:Time for a reassessment. Cardiovasc. Res.117, 2326–2339 (2021). KoelwynGJCorrEMErbayEMooreKJRegulation of macrophage immunometabolism in atherosclerosisNat. Immunol.2018195265371:CAS:528:DC%2BC1cXpvVCjsL4%3D29777212631467410.1038/s41590-018-0113-3 Han J. H., Heo K. S., Myung C. S. CIAPIN1 accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br. J. Pharmacol.178, 4533–4551 (2021). Yvan-CharvetLATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferationScience2010328168916931:CAS:528:DC%2BC3cXnvVektbo%3D20488992303259110.1126/science.1189731 WangYSmooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosisArterioscler. Thromb. Vasc. Biol.2019398768871:CAS:528:DC%2BC1MXot1Shtbo%3D30786740648208210.1161/ATVBAHA.119.312434 NewmanAMRobust enumeration of cell subsets from tissue expression profilesNat. Methods2015124534571:CAS:528:DC%2BC2MXlsVOgu7Y%3D25822800473964010.1038/nmeth.3337 ChanWLAtherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cellsCirc. Res.2005966756831:CAS:528:DC%2BD2MXis1elsLs%3D1573146310.1161/01.RES.0000160543.84254.f1 PatelVADefect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signalingCirc. Res.2001888959021:CAS:528:DC%2BD3MXjs1Gju7g%3D1134899810.1161/hh0901.090305 KogaJAikawaMCrosstalk between macrophages and smoo M Rao (4255_CR71) 2021; 116 MW Majesky (4255_CR45) 2007; 27 G Tellides (4255_CR14) 2015; 116 V Sorokin (4255_CR32) 2020; 11 A Zernecke (4255_CR11) 2020; 127 DA Jaitin (4255_CR36) 2019; 178 A Misra (4255_CR15) 2018; 9 GL Basatemur (4255_CR5) 2019; 16 L Willemsen (4255_CR39) 2020; 250 KJ Moore (4255_CR58) 2011; 145 AM Müller (4255_CR24) 2002; 72 H Hao (4255_CR78) 2002; 22 AM Newman (4255_CR77) 2015; 12 H Pan (4255_CR49) 2020; 142 X Qiu (4255_CR73) 2017; 14 MP Wolf (4255_CR46) 2020; 13 PM Ridker (4255_CR56) 2017; 377 C Zincarelli (4255_CR63) 2008; 16 4255_CR25 K Kim (4255_CR35) 2018; 123 KJ Moore (4255_CR55) 2018; 72 A Vromman (4255_CR60) 2019; 40 4255_CR69 L Zhu (4255_CR17) 2006; 38 H Winkels (4255_CR37) 2018; 122 L Yang (4255_CR44) 2021; 226 JX Rong (4255_CR31) 2003; 100 L Yvan-Charvet (4255_CR27) 2010; 328 VA Patel (4255_CR33) 2001; 88 DM Fernandez (4255_CR9) 2019; 25 J Koga (4255_CR13) 2012; 57 S Jin (4255_CR18) 2008; 102 S Feil (4255_CR7) 2014; 115 4255_CR65 4255_CR62 L Garcia-Alonso (4255_CR74) 2019; 29 4255_CR1 TW LeBien (4255_CR26) 2008; 112 4255_CR3 D Aran (4255_CR70) 2019; 20 P Libby (4255_CR2) 2021; 592 J Albarrán-Juárez (4255_CR50) 2016; 251 Y Vengrenyuk (4255_CR6) 2015; 35 GJ Koelwyn (4255_CR54) 2018; 19 G Yu (4255_CR72) 2012; 16 T Chen (4255_CR79) 2020; 53 K Huynh (4255_CR30) 2017; 14 Y Wang (4255_CR51) 2019; 39 B Yu (4255_CR28) 2018; 29 D Gomez (4255_CR59) 2018; 24 RN Germain (4255_CR23) 2002; 2 WL Chan (4255_CR29) 2005; 96 CH Holland (4255_CR75) 2020; 21 R Browaeys (4255_CR76) 2020; 17 GF Alencar (4255_CR53) 2020; 142 MR Bennett (4255_CR16) 2016; 118 D Muñoz-Espín (4255_CR34) 2014; 15 J Dutzmann (4255_CR43) 2015; 106 Q Chen (4255_CR42) 2019; 9 H Ayari (4255_CR66) 2013; 38 S Ensan (4255_CR38) 2016; 17 LS Shankman (4255_CR52) 2015; 21 M Liu (4255_CR4) 2019; 39 4255_CR47 C Yap (4255_CR64) 2021; 41 C Hafemeister (4255_CR68) 2019; 20 GK Owens (4255_CR19) 1995; 75 MAC Depuydt (4255_CR20) 2020; 127 A Butler (4255_CR67) 2018; 36 T Kuznetsova (4255_CR10) 2020; 17 G Jia (4255_CR40) 2007; 3 A Mantovani (4255_CR22) 2009; 29 A Gheldof (4255_CR41) 2012; 69 D Tian (4255_CR61) 2021; 27 K Stoletov (4255_CR21) 2009; 104 C Cochain (4255_CR12) 2018; 122 BM Everett (4255_CR57) 2020; 76 I Tabas (4255_CR8) 2017; 47 J Chappell (4255_CR48) 2016; 119 |
| References_xml | – reference: MüllerAMExpression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitroExp. Mol. Pathol.2002722212291200978610.1006/exmp.2002.2424 – reference: WinkelsHAtlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometryCirc. Res.2018122167516881:CAS:528:DC%2BC1cXhtVyltLzO29545366599360310.1161/CIRCRESAHA.117.312513 – reference: GheldofAHulpiauPvan RoyFDe CraeneBBerxGEvolutionary functional analysis and molecular regulation of the ZEB transcription factorsCell. Mol. Life Sci.201269252725411:CAS:528:DC%2BC38XhtVansbbP2234926110.1007/s00018-012-0935-3 – reference: MooreKJMacrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD Series (Part 2)J. Am. Coll. Cardiol.201872218121971:CAS:528:DC%2BC1cXhvFynsLbM30360827652224610.1016/j.jacc.2018.08.2147 – reference: TellidesGPoberJSInflammatory and immune responses in the arterial mediaCirc. Res.20151163123221:CAS:528:DC%2BC2MXpslKhtg%3D%3D2559327610.1161/CIRCRESAHA.116.301312 – reference: OwensGKRegulation of differentiation of vascular smooth muscle cellsPhysiol. Rev.1995754875171:STN:280:DyaK2MzltVagtA%3D%3D762439210.1152/physrev.1995.75.3.487 – reference: PatelVADefect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signalingCirc. Res.2001888959021:CAS:528:DC%2BD3MXjs1Gju7g%3D1134899810.1161/hh0901.090305 – reference: BennettMRSinhaSOwensGKVascular smooth muscle cells in atherosclerosisCirc. Res.20161186927021:CAS:528:DC%2BC28XislOms74%3D26892967476205310.1161/CIRCRESAHA.115.306361 – reference: DepuydtMACMicroanatomy of the human atherosclerotic plaque by single-cell transcriptomicsCirc. Res.2020127143714551:CAS:528:DC%2BB3cXit1KitLfK32981416764118910.1161/CIRCRESAHA.120.316770 – reference: Jacobsen K., et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI insight2, e95890 (2017). – reference: QiuXSingle-cell mRNA quantification and differential analysis with CensusNat. Methods2017143093151:CAS:528:DC%2BC2sXhtlKjsro%3D28114287533080510.1038/nmeth.4150 – reference: NewmanAMRobust enumeration of cell subsets from tissue expression profilesNat. Methods2015124534571:CAS:528:DC%2BC2MXlsVOgu7Y%3D25822800473964010.1038/nmeth.3337 – reference: YapCMieremetAde VriesCJMMichaDde WaardVSix shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-Like Factor 4)Arterioscler. Thromb. Vasc. Biol.202141269327071:CAS:528:DC%2BB3MXit12hu73P34470477854525410.1161/ATVBAHA.121.316600 – reference: MajeskyMWDevelopmental basis of vascular smooth muscle diversityArterioscler. Thromb. Vasc. Biol.200727124812581:CAS:528:DC%2BD2sXltl2itbw%3D1737983910.1161/ATVBAHA.107.141069 – reference: ButlerAHoffmanPSmibertPPapalexiESatijaRIntegrating single-cell transcriptomic data across different conditions, technologies, and speciesNat. Biotechnol.2018364114201:CAS:528:DC%2BC1cXmslKrtL0%3D29608179670074410.1038/nbt.4096 – reference: Han J. H., Heo K. S., Myung C. S. CIAPIN1 accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br. J. Pharmacol.178, 4533–4551 (2021). – reference: JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e6141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054 – reference: Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol.5, 1084 (2022). – reference: HaoHHeterogeneity of smooth muscle cell populations cultured from pig coronary arteryArterioscler. Thromb. Vasc. Biol.200222109310991:CAS:528:DC%2BD38XlsFShtr0%3D1211772210.1161/01.ATV.0000022407.91111.E4 – reference: KogaJAikawaMCrosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseasesVasc. Pharmacol.20125724281:CAS:528:DC%2BC38Xkt1yksLo%3D10.1016/j.vph.2012.02.011 – reference: TianDEndogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signalingJ. Adv. Res.2021271151251:CAS:528:DC%2BB3cXhsVGqsLzP3331887110.1016/j.jare.2020.06.005 – reference: Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science356, eaah4573 (2017). – reference: LeBienTWTedderTFB lymphocytes: how they develop and functionBlood2008112157015801:CAS:528:DC%2BD1cXhtVylurbE18725575251887310.1182/blood-2008-02-078071 – reference: LibbyPThe changing landscape of atherosclerosisNature20215925245331:CAS:528:DC%2BB3MXptlOntbw%3D3388372810.1038/s41586-021-03392-8 – reference: KimKTranscriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine modelsCirc. Res.2018123112711421:CAS:528:DC%2BC1cXhvFyktrrO30359200694512110.1161/CIRCRESAHA.118.312804 – reference: GomezDInterleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of miceNat. Med.201824141814291:CAS:528:DC%2BC1cXhtlOis73J30038218613082210.1038/s41591-018-0124-5 – reference: HuynhKAtherosclerosis: trehalose induces macrophage autophagy-lysosomal biogenesisNat. Rev. Cardiol.2017144442863175010.1038/nrcardio.2017.97 – reference: HollandCHRobustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq dataGenome Biol.2020211:CAS:528:DC%2BB3cXkvValsb8%3D32051003701757610.1186/s13059-020-1949-z – reference: FeilSTransdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesisCirc. Res.20141156626671:CAS:528:DC%2BC2cXhsFals7rE2507000310.1161/CIRCRESAHA.115.304634 – reference: ZincarelliCSoltysSRengoGRabinowitzJEAnalysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injectionMol. Ther.200816107310801:CAS:528:DC%2BD1cXmt1OrsrY%3D1841447610.1038/mt.2008.76 – reference: KuznetsovaTPrangeKHMGlassCKde WintherMPJTranscriptional and epigenetic regulation of macrophages in atherosclerosisNat. Rev. Cardiol.2020172162281:CAS:528:DC%2BC1MXhvV2ktrbL3157851610.1038/s41569-019-0265-3 – reference: PanHSingle-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and humanCirculation2020142206020751:CAS:528:DC%2BB3cXisVyju7rK32962412810426410.1161/CIRCULATIONAHA.120.048378 – reference: AranDReference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophageNat. Immunol.2019201631721:CAS:528:DC%2BC1MXlvFSgu7k%3D30643263634074410.1038/s41590-018-0276-y – reference: Albarrán-JuárezJKaurHGrimmMOffermannsSWettschureckNLineage tracing of cells involved in atherosclerosisAtherosclerosis20162514454532732017410.1016/j.atherosclerosis.2016.06.012 – reference: ZerneckeAMeta-analysis of leukocyte diversity in atherosclerotic mouse aortasCirc. Res.20201274024261:CAS:528:DC%2BB3cXhtl2hu7jO32673538737124410.1161/CIRCRESAHA.120.316903 – reference: Garcia-AlonsoLHollandCHIbrahimMMTureiDSaez-RodriguezJBenchmark and integration of resources for the estimation of human transcription factor activitiesGenome Res.201929136313751:CAS:528:DC%2BC1MXhslynsLvN31340985667371810.1101/gr.240663.118 – reference: RongJXShapiroMTroganEFisherEATransdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loadingProc. Natl Acad. Sci. USA200310013531135361:CAS:528:DC%2BD3sXptFOit7o%3D1458161326384810.1073/pnas.1735526100 – reference: ShankmanLSKLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesisNat. Med.2015216286371:CAS:528:DC%2BC2MXhtFemtr7E25985364455208510.1038/nm.3866 – reference: MisraAIntegrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cellsNat. Commun.2018929802249597016610.1038/s41467-018-04447-7 – reference: AyariHBriccaGIdentification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysisJ. Biosci.2013383113151:CAS:528:DC%2BC3sXnvFSqsrk%3D2366066510.1007/s12038-013-9310-2 – reference: ChanWLAtherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cellsCirc. Res.2005966756831:CAS:528:DC%2BD2MXis1elsLs%3D1573146310.1161/01.RES.0000160543.84254.f1 – reference: CochainCSingle-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosisCirc. Res.2018122166116741:CAS:528:DC%2BC1cXhtVyltLzN2954536510.1161/CIRCRESAHA.117.312509 – reference: ChenQTargeted inhibition of STAT3 as a potential treatment strategy for atherosclerosisTheranostics20199642464421:CAS:528:DC%2BB3cXltVKgsrs%3D31588227677124210.7150/thno.35528 – reference: EverettBMInhibition of Interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trialJ. Am. Coll. Cardiol.202076166016701:CAS:528:DC%2BB3cXitFymsbjK3300413110.1016/j.jacc.2020.08.011 – reference: AlencarGFStem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesisCirculation2020142204520591:CAS:528:DC%2BB3cXisVyju7rJ32674599768279410.1161/CIRCULATIONAHA.120.046672 – reference: VrommanAStage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosisEur. heart J.201940248224911:CAS:528:DC%2BB3cXhslGntrfL30698710668532310.1093/eurheartj/ehz008 – reference: BrowaeysRSaelensWSaeysYNicheNet: modeling intercellular communication by linking ligands to target genesNat. Methods2020171591621:CAS:528:DC%2BC1MXitlCht7%2FP3181926410.1038/s41592-019-0667-5 – reference: Grootaert M. O. J., Bennett M. R. Vascular smooth muscle cells in atherosclerosis:Time for a reassessment. Cardiovasc. Res.117, 2326–2339 (2021). – reference: JinSNotch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cellsCirc. Res.2008102148314911:CAS:528:DC%2BD1cXmvFOhsbo%3D1848341010.1161/CIRCRESAHA.107.167965 – reference: ZhuLMutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosusNat. Genet.2006383433491:CAS:528:DC%2BD28XhslCjtr4%3D1644427410.1038/ng1721 – reference: FernandezDMSingle-cell immune landscape of human atherosclerotic plaquesNat. Med.201925157615881:CAS:528:DC%2BC1MXhvFaksbnI31591603731878410.1038/s41591-019-0590-4 – reference: WangYSmooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosisArterioscler. Thromb. Vasc. Biol.2019398768871:CAS:528:DC%2BC1MXot1Shtbo%3D30786740648208210.1161/ATVBAHA.119.312434 – reference: EnsanSSelf-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birthNat. Immunol.2016171591681:CAS:528:DC%2BC2MXhvFKgsb%2FJ2664235710.1038/ni.3343 – reference: RidkerPMAntiinflammatory therapy with canakinumab for atherosclerotic diseaseN. Engl. J. Med.2017377111911311:CAS:528:DC%2BC2sXhsFOqurnE2884575110.1056/NEJMoa1707914 – reference: GermainRNT-cell development and the CD4-CD8 lineage decisionNat. Rev. Immunol.200223093221:CAS:528:DC%2BD38Xjsl2rsrc%3D1203373710.1038/nri798 – reference: SorokinVRole of Vascular smooth muscle cell plasticity and interactions in vessel wall inflammationFront. Immunol.2020115994151:CAS:528:DC%2BB3MXitVCrtro%3D33324416772601110.3389/fimmu.2020.599415 – reference: VengrenyukYCholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotypeArterioscler. Thromb. Vasc. Biol.2015355355461:CAS:528:DC%2BC2MXjsVKhs70%3D25573853434440210.1161/ATVBAHA.114.304029 – reference: WolfMPHunzikerPAtherosclerosis: insights into vascular pathobiology and outlook to novel treatmentsJ. Cardiovasc. Transl. Res.2020137447573207256410.1007/s12265-020-09961-y – reference: JiaGChengGAgrawalDKAutophagy of vascular smooth muscle cells in atherosclerotic lesionsAutophagy2007363641:CAS:528:DC%2BD2sXhtVeqsLfO1717280010.4161/auto.3427 – reference: YuGWangLGHanYHeQYclusterProfiler: an R package for comparing biological themes among gene clustersOMICS2012162842871:CAS:528:DC%2BC38XmsFarsLw%3D22455463333937910.1089/omi.2011.0118 – reference: TabasILichtmanAHMonocyte-macrophages and T cells in atherosclerosisImmunity2017476216341:CAS:528:DC%2BC2sXhs1OhtrvO29045897574729710.1016/j.immuni.2017.09.008 – reference: BasatemurGLJørgensenHFClarkeMCHBennettMRMallatZVascular smooth muscle cells in atherosclerosisNat. Rev. Cardiol.2019167277443124339110.1038/s41569-019-0227-9 – reference: YangLPM(2.5) promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reactionEcotoxicol. Environ. Saf.20212261128721:CAS:528:DC%2BB3MXitF2hsbbE3462453610.1016/j.ecoenv.2021.112872 – reference: MooreKJTabasIMacrophages in the pathogenesis of atherosclerosisCell20111453413551:CAS:528:DC%2BC3MXlsFSiu7c%3D21529710311106510.1016/j.cell.2011.04.005 – reference: RaoMResolving the intertwining of inflammation and fibrosis in human heart failure at single-cell levelBasic Res. Cardiol.20211163460165410.1007/s00395-021-00897-1 – reference: HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1 – reference: KoelwynGJCorrEMErbayEMooreKJRegulation of macrophage immunometabolism in atherosclerosisNat. Immunol.2018195265371:CAS:528:DC%2BC1cXpvVCjsL4%3D29777212631467410.1038/s41590-018-0113-3 – reference: Fernandez, D. M. & Giannarelli, C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat. Rev. Cardiol.19, 43–58 (2022). – reference: DutzmannJDanielJMBauersachsJHilfiker-KleinerDSeddingDGEmerging translational approaches to target STAT3 signalling and its impact on vascular diseaseCardiovasc. Res.20151063653741:CAS:528:DC%2BC28Xhsl2ms7%2FL25784694443166310.1093/cvr/cvv103 – reference: WillemsenLde WintherMPMacrophage subsets in atherosclerosis as defined by single-cell technologiesJ. Pathol.202025070571432003464721720110.1002/path.5392 – reference: ChenTMacrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosisEBioMedicine20205310270632151799706316710.1016/j.ebiom.2020.102706 – reference: Zappia, L. Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience7, giy083 (2018). – reference: LiuMGomezDSmooth muscle cell phenotypic diversityArterioscler. Thromb. Vasc. Biol.201939171517231:CAS:528:DC%2BC1MXhs1als7%2FE31340668698634710.1161/ATVBAHA.119.312131 – reference: StoletovKVascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafishCirc. Res.20091049529601:CAS:528:DC%2BD1MXksVCltb4%3D19265037283425010.1161/CIRCRESAHA.108.189803 – reference: YuBChenQLe BrasAZhangLXuQVascular stem/progenitor cell migration and differentiation in atherosclerosisAntioxid. Redox Signal.2018292192351:CAS:528:DC%2BC1cXhtFamu7%2FF2853742410.1089/ars.2017.7171 – reference: ChappellJExtensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis modelsCirc. Res.2016119131313231:CAS:528:DC%2BC28XitVegsbjJ27682618514907310.1161/CIRCRESAHA.116.309799 – reference: Yvan-CharvetLATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferationScience2010328168916931:CAS:528:DC%2BC3cXnvVektbo%3D20488992303259110.1126/science.1189731 – reference: MantovaniAGarlandaCLocatiMMacrophage diversity and polarization in atherosclerosis: a question of balanceArterioscler. Thromb.Vasc. Biol.200929141914231:CAS:528:DC%2BD1MXhtFWhur%2FL1969640710.1161/ATVBAHA.108.180497 – reference: Muñoz-EspínDSerranoMCellular senescence: from physiology to pathologyNat. Rev. Mol. Cell Biol.2014154824962495421010.1038/nrm3823 – volume: 592 start-page: 524 year: 2021 ident: 4255_CR2 publication-title: Nature doi: 10.1038/s41586-021-03392-8 – volume: 251 start-page: 445 year: 2016 ident: 4255_CR50 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.06.012 – volume: 72 start-page: 221 year: 2002 ident: 4255_CR24 publication-title: Exp. Mol. Pathol. doi: 10.1006/exmp.2002.2424 – volume: 12 start-page: 453 year: 2015 ident: 4255_CR77 publication-title: Nat. Methods doi: 10.1038/nmeth.3337 – volume: 39 start-page: 1715 year: 2019 ident: 4255_CR4 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.119.312131 – volume: 76 start-page: 1660 year: 2020 ident: 4255_CR57 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.08.011 – volume: 29 start-page: 1363 year: 2019 ident: 4255_CR74 publication-title: Genome Res. doi: 10.1101/gr.240663.118 – volume: 72 start-page: 2181 year: 2018 ident: 4255_CR55 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.08.2147 – volume: 35 start-page: 535 year: 2015 ident: 4255_CR6 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.114.304029 – volume: 20 year: 2019 ident: 4255_CR68 publication-title: Genome Biol. doi: 10.1186/s13059-019-1874-1 – volume: 17 start-page: 159 year: 2020 ident: 4255_CR76 publication-title: Nat. Methods doi: 10.1038/s41592-019-0667-5 – volume: 27 start-page: 1248 year: 2007 ident: 4255_CR45 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.107.141069 – volume: 145 start-page: 341 year: 2011 ident: 4255_CR58 publication-title: Cell doi: 10.1016/j.cell.2011.04.005 – volume: 16 start-page: 727 year: 2019 ident: 4255_CR5 publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-019-0227-9 – volume: 16 start-page: 284 year: 2012 ident: 4255_CR72 publication-title: OMICS doi: 10.1089/omi.2011.0118 – volume: 47 start-page: 621 year: 2017 ident: 4255_CR8 publication-title: Immunity doi: 10.1016/j.immuni.2017.09.008 – volume: 16 start-page: 1073 year: 2008 ident: 4255_CR63 publication-title: Mol. Ther. doi: 10.1038/mt.2008.76 – volume: 122 start-page: 1661 year: 2018 ident: 4255_CR12 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.312509 – ident: 4255_CR65 doi: 10.1038/s42003-022-04056-7 – volume: 377 start-page: 1119 year: 2017 ident: 4255_CR56 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1707914 – volume: 39 start-page: 876 year: 2019 ident: 4255_CR51 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.119.312434 – ident: 4255_CR62 doi: 10.1111/bph.15631 – ident: 4255_CR25 doi: 10.1126/science.aah4573 – volume: 17 start-page: 216 year: 2020 ident: 4255_CR10 publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-019-0265-3 – volume: 118 start-page: 692 year: 2016 ident: 4255_CR16 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.306361 – volume: 21 start-page: 628 year: 2015 ident: 4255_CR52 publication-title: Nat. Med. doi: 10.1038/nm.3866 – volume: 69 start-page: 2527 year: 2012 ident: 4255_CR41 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-0935-3 – volume: 41 start-page: 2693 year: 2021 ident: 4255_CR64 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.121.316600 – volume: 112 start-page: 1570 year: 2008 ident: 4255_CR26 publication-title: Blood doi: 10.1182/blood-2008-02-078071 – volume: 116 start-page: 312 year: 2015 ident: 4255_CR14 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.301312 – volume: 116 year: 2021 ident: 4255_CR71 publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-021-00897-1 – ident: 4255_CR1 doi: 10.1038/s41569-021-00589-2 – volume: 19 start-page: 526 year: 2018 ident: 4255_CR54 publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0113-3 – volume: 106 start-page: 365 year: 2015 ident: 4255_CR43 publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvv103 – volume: 15 start-page: 482 year: 2014 ident: 4255_CR34 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3823 – volume: 142 start-page: 2045 year: 2020 ident: 4255_CR53 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.046672 – volume: 2 start-page: 309 year: 2002 ident: 4255_CR23 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri798 – volume: 57 start-page: 24 year: 2012 ident: 4255_CR13 publication-title: Vasc. Pharmacol. doi: 10.1016/j.vph.2012.02.011 – volume: 9 year: 2018 ident: 4255_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04447-7 – volume: 14 start-page: 444 year: 2017 ident: 4255_CR30 publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2017.97 – volume: 9 start-page: 6424 year: 2019 ident: 4255_CR42 publication-title: Theranostics doi: 10.7150/thno.35528 – volume: 102 start-page: 1483 year: 2008 ident: 4255_CR18 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.167965 – volume: 29 start-page: 1419 year: 2009 ident: 4255_CR22 publication-title: Arterioscler. Thromb.Vasc. Biol. doi: 10.1161/ATVBAHA.108.180497 – volume: 142 start-page: 2060 year: 2020 ident: 4255_CR49 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.048378 – volume: 178 start-page: 686 year: 2019 ident: 4255_CR36 publication-title: Cell doi: 10.1016/j.cell.2019.05.054 – volume: 40 start-page: 2482 year: 2019 ident: 4255_CR60 publication-title: Eur. heart J. doi: 10.1093/eurheartj/ehz008 – volume: 127 start-page: 1437 year: 2020 ident: 4255_CR20 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.316770 – volume: 20 start-page: 163 year: 2019 ident: 4255_CR70 publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0276-y – ident: 4255_CR47 doi: 10.1172/jci.insight.95890 – volume: 88 start-page: 895 year: 2001 ident: 4255_CR33 publication-title: Circ. Res. doi: 10.1161/hh0901.090305 – volume: 328 start-page: 1689 year: 2010 ident: 4255_CR27 publication-title: Science doi: 10.1126/science.1189731 – volume: 38 start-page: 343 year: 2006 ident: 4255_CR17 publication-title: Nat. Genet. doi: 10.1038/ng1721 – volume: 53 start-page: 102706 year: 2020 ident: 4255_CR79 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102706 – volume: 25 start-page: 1576 year: 2019 ident: 4255_CR9 publication-title: Nat. Med. doi: 10.1038/s41591-019-0590-4 – volume: 17 start-page: 159 year: 2016 ident: 4255_CR38 publication-title: Nat. Immunol. doi: 10.1038/ni.3343 – volume: 122 start-page: 1675 year: 2018 ident: 4255_CR37 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.312513 – volume: 127 start-page: 402 year: 2020 ident: 4255_CR11 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.316903 – volume: 115 start-page: 662 year: 2014 ident: 4255_CR7 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.304634 – volume: 27 start-page: 115 year: 2021 ident: 4255_CR61 publication-title: J. Adv. Res. doi: 10.1016/j.jare.2020.06.005 – volume: 24 start-page: 1418 year: 2018 ident: 4255_CR59 publication-title: Nat. Med. doi: 10.1038/s41591-018-0124-5 – volume: 104 start-page: 952 year: 2009 ident: 4255_CR21 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.108.189803 – ident: 4255_CR3 doi: 10.1093/cvr/cvab046 – volume: 21 year: 2020 ident: 4255_CR75 publication-title: Genome Biol. doi: 10.1186/s13059-020-1949-z – volume: 29 start-page: 219 year: 2018 ident: 4255_CR28 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7171 – volume: 11 start-page: 599415 year: 2020 ident: 4255_CR32 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.599415 – volume: 38 start-page: 311 year: 2013 ident: 4255_CR66 publication-title: J. Biosci. doi: 10.1007/s12038-013-9310-2 – volume: 75 start-page: 487 year: 1995 ident: 4255_CR19 publication-title: Physiol. Rev. doi: 10.1152/physrev.1995.75.3.487 – volume: 13 start-page: 744 year: 2020 ident: 4255_CR46 publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-020-09961-y – ident: 4255_CR69 doi: 10.1093/gigascience/giy083 – volume: 96 start-page: 675 year: 2005 ident: 4255_CR29 publication-title: Circ. Res. doi: 10.1161/01.RES.0000160543.84254.f1 – volume: 250 start-page: 705 year: 2020 ident: 4255_CR39 publication-title: J. Pathol. doi: 10.1002/path.5392 – volume: 226 start-page: 112872 year: 2021 ident: 4255_CR44 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112872 – volume: 22 start-page: 1093 year: 2002 ident: 4255_CR78 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000022407.91111.E4 – volume: 14 start-page: 309 year: 2017 ident: 4255_CR73 publication-title: Nat. Methods doi: 10.1038/nmeth.4150 – volume: 100 start-page: 13531 year: 2003 ident: 4255_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1735526100 – volume: 123 start-page: 1127 year: 2018 ident: 4255_CR35 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.312804 – volume: 36 start-page: 411 year: 2018 ident: 4255_CR67 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 3 start-page: 63 year: 2007 ident: 4255_CR40 publication-title: Autophagy doi: 10.4161/auto.3427 – volume: 119 start-page: 1313 year: 2016 ident: 4255_CR48 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.116.309799 |
| SSID | ssj0001999634 |
| Score | 2.4094474 |
| Snippet | Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular... Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1316 |
| SubjectTerms | 13 13/1 13/89 14 14/32 38 38/91 64 64/60 692/4019/592/2727 692/4019/592/75 82 96 96/63 Apoptosis Arteriosclerosis Atherosclerosis Biology Biomedical and Life Sciences Carotid arteries Carotid artery Humans IL-1β Leukocyte Count Life Sciences Macrophages Muscle, Smooth, Vascular Myocytes, Smooth Muscle Phenotypes Plaques Smooth muscle Stat3 protein STAT3 Transcription Factor Transcription factors |
| SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEB_kUPBF_G_1lAi-adltm7STx1M8FPQQXOHeQpKm3ILXPba7B4ffyg_iZ3Im6a63_n2RQh-aFMLMJPObZPIbgGfBFzgNVuWucZjLzmPubFnkzByiPQXZdmpjsYnm6AiPj_WHS6W-OCcs0QMnwU20rLFD8mO-rWUxtZbiKFu1HttWq1I6Xn0J9VwKpuLuCuP4So63ZKYVTgYZ07A4eZ3tVOXljieKhP2_Q5m_Jkv-dGIaHdHhTbgxIkhxkEZ-C66E_jZcSzUlL-7Al_eWq3Kd0DoxiGWqNB_EJuFUDKcL0o04XQ_0s-Bte8GujdUj0pVFETHhgtvpPR9ETOFK9B1iLOsj3r7Li29fJx9nB7NKcA6I5Wvtd-HT4evZqzf5WGEh94TUVjl6W9WFRdV4ZYs2oHZdV_Lhi-5I7DVi0cmmbr2XqtWyqrVDVNQVCQd2Ulf3YK9f9OEBiKatLNaOHb6ToVPOWU3wyjfT0FkVmgyKjbSNH-nHuQrGZxOPwSs0SUOGNGSihkyZwfPtP2eJfOOvvV-yErc9mTg7fiBzMqM5mX-ZUwb7GxMw42weDEXuFMgrejJ4um2mechasn1YrGMfAnsMgTO4nyxmOxI-6q3rEjNodmxpZ6i7Lf38JHJ966ZgBrcMXmys7sew_iyKh_9DFI_gesnTJebu7MPearkOj-GqP1_Nh-WTON--A15NLoE priority: 102 providerName: Directory of Open Access Journals |
| Title | Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling |
| URI | https://link.springer.com/article/10.1038/s42003-022-04255-2 https://www.ncbi.nlm.nih.gov/pubmed/36456628 https://www.proquest.com/docview/2743835353 https://www.proquest.com/docview/2746390005 https://pubmed.ncbi.nlm.nih.gov/PMC9715630 https://doaj.org/article/9468f8782cd6410aa027a3dc8dd9524b |
| Volume | 5 |
| WOSCitedRecordID | wos000893214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: PIMPY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2399-3642 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001999634 issn: 2399-3642 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xFiRe-A8LjMpIvEHUJnFi-wltaBOTaFVBkcpT5DjOVok1W9MiIb4VH4TPxJ3jtip_9oIS-aF2JLt3tn--O98P4KU1kRxYnYaFKGTIKyPDQsdRSJlDlMFDth5oRzYhRiM5naqxN7g1PqxyvSa6hbqsDdnI-3h6wsNUis-by6uQWKPIu-opNPagS5nKeAe6R8ej8YetlYXwfML9bZlBIvsNd-FYFMRO-pqG8c6O5BL3_w1t_hk0-Zvn1G1IJ3f_dyj34I6Houyw1Z37cMPOH8Ctlpzy20P4PtRE73WOC07DFi1lvWXryFXWXNQoZHaxavBjRvZ_RnskyZm1dx-ZA5c11WM5a5iLBWvzgDDPD8RO34fRzx_9j5PDScIomETT_fhH8OnkePL2XeipGkKDkG8ZSqOTLNIyFSbVUWmlKqoqJi-OqjKJr4wqLrLSGJ6WiieZKqRMsalEQFlxlTyGzrye231goky0zApCDgW3VVoUWiFOM2JgK51aEUC0FldufB5zotP4kjt_eiLzVsQ5ijh3Is7jAF5tvrlss3hc2_qItGDTkjJwux_qxVnuJ3SuOI5LIr4yZcajgdZ4vtdJaWRZqjTmRQAHa-Hnfllo8q3kA3ixqcYJTVLSc1uvXBtEjYSlA3jSqtymJ-QzzrJYBiB2lHGnq7s189m5SxquRESp4AJ4vVbbbbf-_Vc8vX4Uz-B2TDPJhfccQGe5WNnncNN8Xc6aRQ_2xFT2_JTsOWsHlsN4TKXAsjs-HY4__wKt9EOc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3tBAASPBCaJNHCdxDgiVR9VVt6tKLFJvxnGcdqV2Uza7oIr_xIEfwm9ixkl2tTx66wFllcPakezkm8k38Xg-gGfWhDKwOvbzNJe-KI30c81DnyqHZAaDbB1oJzaRDofy4CDbX4Pv3V4YSqvsfKJz1EVl6Bt5D6MnDKZiPF6ffvZJNYpWVzsJjQYWu_bsK4Zs9av-O3y-zznffj96u-O3qgK-QXYy86XRURJqGacm1mFhZZaXJacFh6xMJP5kWIo0KYwRcZGJKMlyKWPsKpH7lIKKL6HLv4Q0gkuXKri__KZD0UMk2r05QSR7tXDJX5QyT9YR-3zl_edkAv7Gbf9M0fxtnda9_rZv_G837iZcb4k222os4xas2cltuNJIb57dgW97msTLjtCd1mxqD0nFzLIuL5fVJxVCmJ3Ma7yY0eoGIwZAKGbNzk7mqHNF7Xge18xlujVVTlirfsT6Az_8-aP3YbQ1ihilymja_X8XPl7IzO_B-qSa2A1gaRFpmeTEi3JhyzjPdYYs1KSBLXVsUw_CDh7KtFXaSSzkWLlsgUiqBlIKIaUcpBT34MXimtOmRsm5vd8Q6hY9qb64-6OaHqrWXalM4LwkskdTJCIMtA54qqPCyKLIYi5yDzY7sKnW6dVqiTQPni6a0V3RU9ITW81dH-TEFCl4cL-B-GIktCKeJFx6kK6Af2Woqy2T8ZEriZ6lIRW68-BlZybLYf37Vjw4fxZP4OrOaG-gBv3h7kO4xsmKXSLTJqzPpnP7CC6bL7NxPX3s3ACDTxdtPr8A7XmXyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrophages+regulate+vascular+smooth+muscle+cell+function+during+atherosclerosis+progression+through+IL-1%CE%B2%2FSTAT3+signaling&rft.jtitle=Communications+biology&rft.au=Xue%2C+Yuzhou&rft.au=Luo%2C+Minghao&rft.au=Hu%2C+Xiankang&rft.au=Li%2C+Xiang&rft.date=2022-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-022-04255-2&rft.externalDocID=10_1038_s42003_022_04255_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |