Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling

Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic cor...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology Vol. 5; no. 1; pp. 1316 - 16
Main Authors: Xue, Yuzhou, Luo, Minghao, Hu, Xiankang, Li, Xiang, Shen, Jian, Zhu, Wenyan, Huang, Longxiang, Hu, Yu, Guo, Yongzheng, Liu, Lin, Wang, Lingbang, Luo, Suxin
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.12.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2399-3642, 2399-3642
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression. Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis.
AbstractList Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.
Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.
Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression.Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis.
Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular crosstalk during atherosclerosis progression remain unknown. Here we show that scRNA-seq analysis of proximal adjacent (PA) and atherosclerotic core (AC) regions of human carotid artery plaques identifies functional alterations in macrophage-like VSMCs, elucidating the main state differences between PA and AC VSMCs. And, IL-1β mediates macrophage-macrophage-like VSMC crosstalk through regulating key transcription factors involved in macrophage-like VSMCs functional alterations during atherosclerosis progression. In vitro assays reveal VSMCs trans-differentiated into a macrophage-like phenotype and then functional alterations in response to macrophage-derived stimuli. IL-1β promots the adhesion, inflammation, and apoptosis of macrophage-like VSMCs in a STAT3 dependent manner. The current findings provide interesting insight into the macrophages-macrophage-like VSMC crosstalk, which would drive functional alterations in the latter cell type through IL-1β/STAT3 axis during atherosclerosis progression. Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis.
Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through the IL-1β/STAT3 axis.
ArticleNumber 1316
Author Shen, Jian
Guo, Yongzheng
Wang, Lingbang
Zhu, Wenyan
Huang, Longxiang
Luo, Minghao
Li, Xiang
Hu, Xiankang
Luo, Suxin
Xue, Yuzhou
Hu, Yu
Liu, Lin
Author_xml – sequence: 1
  givenname: Yuzhou
  surname: Xue
  fullname: Xue, Yuzhou
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital
– sequence: 2
  givenname: Minghao
  surname: Luo
  fullname: Luo, Minghao
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 3
  givenname: Xiankang
  surname: Hu
  fullname: Hu, Xiankang
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 5
  givenname: Jian
  surname: Shen
  fullname: Shen, Jian
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 6
  givenname: Wenyan
  surname: Zhu
  fullname: Zhu, Wenyan
  organization: Medical Department, Yidu Cloud (Beijing) Technology Co., Ltd., Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College
– sequence: 7
  givenname: Longxiang
  surname: Huang
  fullname: Huang, Longxiang
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 8
  givenname: Yu
  surname: Hu
  fullname: Hu, Yu
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 9
  givenname: Yongzheng
  surname: Guo
  fullname: Guo, Yongzheng
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 10
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: Department of Dermatology, the First Affiliated Hospital of Chongqing Medical University
– sequence: 11
  givenname: Lingbang
  surname: Wang
  fullname: Wang, Lingbang
  organization: Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University
– sequence: 12
  givenname: Suxin
  surname: Luo
  fullname: Luo, Suxin
  email: luosuxin0204@163.com
  organization: Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36456628$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u3CAUhVGVqknTvEAXFVI32bjB_Bk2laKoPyNN1UWna8QAthnZZgp2pKhvlQfpMxWP0zTJIsLCCL5zdOGe1-BoCIMD4G2JPpSIiItEMUKkQBgXiGLGCvwCnGAiZUE4xUcP1sfgLKUdQqiUUnJCX4HjvM04x-IE_P6mTQz7VjcuweiaqdOjg9c6mbyKMPUhjC3sp2Q6B43rOlhPgxl9GKCdoh8aqMfWxTCf59knuI-hiS6lGRnbGKamhat1Uf65vfixudwQmHwz6C5L34CXte6SO7v7n4Kfnz9trr4W6-9fVleX68IwisZCGE14qQWrDNOldUJu6xoTjLGsucifKGtacWsMZVZSwuVWCJZRwTirqSSnYLX42qB3ah99r-ONCtqrw0aIjdJx9PkGStLsKCqBjeW0RFojXGlijbBWMky32evj4rWftr2zxg1j1N0j08cng29VE66VrErGCcoG53cGMfyaXBpV79P8sHpwYUoKV5QTmbvFMvr-CboLU8xvd6CIICyPTL17WNF9Kf96nAG8ALnRKUVX3yMlUnOW1JIllbOkDllSOIvEE5Hxo577nm_lu-elZJGm_RwQF_-X_YzqLwNg3yg
CitedBy_id crossref_primary_10_3724_abbs_2025004
crossref_primary_10_1515_tjb_2025_0086
crossref_primary_10_1002_jcp_31251
crossref_primary_10_1038_s41598_024_73159_4
crossref_primary_10_2174_0109298673303369240312092913
crossref_primary_10_1016_j_vph_2023_107264
crossref_primary_10_1016_j_lfs_2025_123817
crossref_primary_10_1016_j_intimp_2024_113691
crossref_primary_10_3389_fphys_2023_1179828
crossref_primary_10_3389_fimmu_2023_1196033
crossref_primary_10_1161_JAHA_123_034990
crossref_primary_10_1007_s11883_025_01294_y
crossref_primary_10_1038_s41598_023_46770_0
crossref_primary_10_1161_CIRCRESAHA_125_325496
crossref_primary_10_3892_ijmm_2025_5499
crossref_primary_10_3389_fimmu_2024_1448662
crossref_primary_10_1016_j_cellsig_2025_111705
crossref_primary_10_1038_s41392_025_02220_z
crossref_primary_10_1016_j_biopha_2023_115200
crossref_primary_10_3390_ijms25147755
crossref_primary_10_1016_j_atherosclerosis_2024_119085
crossref_primary_10_1016_j_ijbiomac_2025_140937
crossref_primary_10_1016_j_bcp_2024_116170
crossref_primary_10_1016_j_biopha_2023_115369
crossref_primary_10_1016_j_heliyon_2024_e24103
crossref_primary_10_1002_ptr_70027
crossref_primary_10_1016_j_heliyon_2024_e37727
crossref_primary_10_1016_j_clim_2023_109773
crossref_primary_10_20517_2574_1209_2025_40
crossref_primary_10_1016_j_vph_2025_107499
crossref_primary_10_1016_j_autrev_2025_103892
crossref_primary_10_3390_biom15030342
crossref_primary_10_1038_s44161_024_00474_4
crossref_primary_10_1016_j_vph_2024_107419
Cites_doi 10.1038/s41586-021-03392-8
10.1016/j.atherosclerosis.2016.06.012
10.1006/exmp.2002.2424
10.1038/nmeth.3337
10.1161/ATVBAHA.119.312131
10.1016/j.jacc.2020.08.011
10.1101/gr.240663.118
10.1016/j.jacc.2018.08.2147
10.1161/ATVBAHA.114.304029
10.1186/s13059-019-1874-1
10.1038/s41592-019-0667-5
10.1161/ATVBAHA.107.141069
10.1016/j.cell.2011.04.005
10.1038/s41569-019-0227-9
10.1089/omi.2011.0118
10.1016/j.immuni.2017.09.008
10.1038/mt.2008.76
10.1161/CIRCRESAHA.117.312509
10.1038/s42003-022-04056-7
10.1056/NEJMoa1707914
10.1161/ATVBAHA.119.312434
10.1111/bph.15631
10.1126/science.aah4573
10.1038/s41569-019-0265-3
10.1161/CIRCRESAHA.115.306361
10.1038/nm.3866
10.1007/s00018-012-0935-3
10.1161/ATVBAHA.121.316600
10.1182/blood-2008-02-078071
10.1161/CIRCRESAHA.116.301312
10.1007/s00395-021-00897-1
10.1038/s41569-021-00589-2
10.1038/s41590-018-0113-3
10.1093/cvr/cvv103
10.1038/nrm3823
10.1161/CIRCULATIONAHA.120.046672
10.1038/nri798
10.1016/j.vph.2012.02.011
10.1038/s41467-018-04447-7
10.1038/nrcardio.2017.97
10.7150/thno.35528
10.1161/CIRCRESAHA.107.167965
10.1161/ATVBAHA.108.180497
10.1161/CIRCULATIONAHA.120.048378
10.1016/j.cell.2019.05.054
10.1093/eurheartj/ehz008
10.1161/CIRCRESAHA.120.316770
10.1038/s41590-018-0276-y
10.1172/jci.insight.95890
10.1161/hh0901.090305
10.1126/science.1189731
10.1038/ng1721
10.1016/j.ebiom.2020.102706
10.1038/s41591-019-0590-4
10.1038/ni.3343
10.1161/CIRCRESAHA.117.312513
10.1161/CIRCRESAHA.120.316903
10.1161/CIRCRESAHA.115.304634
10.1016/j.jare.2020.06.005
10.1038/s41591-018-0124-5
10.1161/CIRCRESAHA.108.189803
10.1093/cvr/cvab046
10.1186/s13059-020-1949-z
10.1089/ars.2017.7171
10.3389/fimmu.2020.599415
10.1007/s12038-013-9310-2
10.1152/physrev.1995.75.3.487
10.1007/s12265-020-09961-y
10.1093/gigascience/giy083
10.1161/01.RES.0000160543.84254.f1
10.1002/path.5392
10.1016/j.ecoenv.2021.112872
10.1161/01.ATV.0000022407.91111.E4
10.1038/nmeth.4150
10.1073/pnas.1735526100
10.1161/CIRCRESAHA.118.312804
10.1038/nbt.4096
10.4161/auto.3427
10.1161/CIRCRESAHA.116.309799
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s42003-022-04255-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 16
ExternalDocumentID oai_doaj_org_article_9468f8782cd6410aa027a3dc8dd9524b
PMC9715630
36456628
10_1038_s42003_022_04255_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82070238
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Chongqing (Natural Science Foundation of Chongqing Municipality)
  grantid: cstc2020jcyj-msxmX1091
  funderid: https://doi.org/10.13039/501100005230
– fundername: Chongqing Medical University (CQMU)
  grantid: ZHYX202017
  funderid: https://doi.org/10.13039/501100004374
– fundername: ;
  grantid: cstc2020jcyj-msxmX1091
– fundername: ;
  grantid: ZHYX202017
– fundername: ;
  grantid: 82070238
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-8ca361a857c5a1de89bff232229f68f6881f476dcc45d94369b8855a18565f493
IEDL.DBID BENPR
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000893214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3642
IngestDate Tue Oct 14 18:33:09 EDT 2025
Tue Nov 04 02:07:11 EST 2025
Wed Oct 01 14:25:59 EDT 2025
Wed Aug 13 07:15:49 EDT 2025
Thu Jan 02 22:54:48 EST 2025
Sat Nov 29 04:17:05 EST 2025
Tue Nov 18 21:44:21 EST 2025
Fri Feb 21 02:40:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-8ca361a857c5a1de89bff232229f68f6881f476dcc45d94369b8855a18565f493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2743835353?pq-origsite=%requestingapplication%
PMID 36456628
PQID 2743835353
PQPubID 4669726
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9468f8782cd6410aa027a3dc8dd9524b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9715630
proquest_miscellaneous_2746390005
proquest_journals_2743835353
pubmed_primary_36456628
crossref_primary_10_1038_s42003_022_04255_2
crossref_citationtrail_10_1038_s42003_022_04255_2
springer_journals_10_1038_s42003_022_04255_2
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References FeilSTransdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesisCirc. Res.20141156626671:CAS:528:DC%2BC2cXhsFals7rE2507000310.1161/CIRCRESAHA.115.304634
GheldofAHulpiauPvan RoyFDe CraeneBBerxGEvolutionary functional analysis and molecular regulation of the ZEB transcription factorsCell. Mol. Life Sci.201269252725411:CAS:528:DC%2BC38XhtVansbbP2234926110.1007/s00018-012-0935-3
WolfMPHunzikerPAtherosclerosis: insights into vascular pathobiology and outlook to novel treatmentsJ. Cardiovasc. Transl. Res.2020137447573207256410.1007/s12265-020-09961-y
ChenTMacrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosisEBioMedicine20205310270632151799706316710.1016/j.ebiom.2020.102706
BrowaeysRSaelensWSaeysYNicheNet: modeling intercellular communication by linking ligands to target genesNat. Methods2020171591621:CAS:528:DC%2BC1MXitlCht7%2FP3181926410.1038/s41592-019-0667-5
HuynhKAtherosclerosis: trehalose induces macrophage autophagy-lysosomal biogenesisNat. Rev. Cardiol.2017144442863175010.1038/nrcardio.2017.97
ShankmanLSKLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesisNat. Med.2015216286371:CAS:528:DC%2BC2MXhtFemtr7E25985364455208510.1038/nm.3866
HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1
JinSNotch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cellsCirc. Res.2008102148314911:CAS:528:DC%2BD1cXmvFOhsbo%3D1848341010.1161/CIRCRESAHA.107.167965
KimKTranscriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine modelsCirc. Res.2018123112711421:CAS:528:DC%2BC1cXhvFyktrrO30359200694512110.1161/CIRCRESAHA.118.312804
SorokinVRole of Vascular smooth muscle cell plasticity and interactions in vessel wall inflammationFront. Immunol.2020115994151:CAS:528:DC%2BB3MXitVCrtro%3D33324416772601110.3389/fimmu.2020.599415
VengrenyukYCholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotypeArterioscler. Thromb. Vasc. Biol.2015355355461:CAS:528:DC%2BC2MXjsVKhs70%3D25573853434440210.1161/ATVBAHA.114.304029
BennettMRSinhaSOwensGKVascular smooth muscle cells in atherosclerosisCirc. Res.20161186927021:CAS:528:DC%2BC28XislOms74%3D26892967476205310.1161/CIRCRESAHA.115.306361
FernandezDMSingle-cell immune landscape of human atherosclerotic plaquesNat. Med.201925157615881:CAS:528:DC%2BC1MXhvFaksbnI31591603731878410.1038/s41591-019-0590-4
ZhuLMutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosusNat. Genet.2006383433491:CAS:528:DC%2BD28XhslCjtr4%3D1644427410.1038/ng1721
KuznetsovaTPrangeKHMGlassCKde WintherMPJTranscriptional and epigenetic regulation of macrophages in atherosclerosisNat. Rev. Cardiol.2020172162281:CAS:528:DC%2BC1MXhvV2ktrbL3157851610.1038/s41569-019-0265-3
DutzmannJDanielJMBauersachsJHilfiker-KleinerDSeddingDGEmerging translational approaches to target STAT3 signalling and its impact on vascular diseaseCardiovasc. Res.20151063653741:CAS:528:DC%2BC28Xhsl2ms7%2FL25784694443166310.1093/cvr/cvv103
MüllerAMExpression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitroExp. Mol. Pathol.2002722212291200978610.1006/exmp.2002.2424
LibbyPThe changing landscape of atherosclerosisNature20215925245331:CAS:528:DC%2BB3MXptlOntbw%3D3388372810.1038/s41586-021-03392-8
VrommanAStage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosisEur. heart J.201940248224911:CAS:528:DC%2BB3cXhslGntrfL30698710668532310.1093/eurheartj/ehz008
HaoHHeterogeneity of smooth muscle cell populations cultured from pig coronary arteryArterioscler. Thromb. Vasc. Biol.200222109310991:CAS:528:DC%2BD38XlsFShtr0%3D1211772210.1161/01.ATV.0000022407.91111.E4
MajeskyMWDevelopmental basis of vascular smooth muscle diversityArterioscler. Thromb. Vasc. Biol.200727124812581:CAS:528:DC%2BD2sXltl2itbw%3D1737983910.1161/ATVBAHA.107.141069
Garcia-AlonsoLHollandCHIbrahimMMTureiDSaez-RodriguezJBenchmark and integration of resources for the estimation of human transcription factor activitiesGenome Res.201929136313751:CAS:528:DC%2BC1MXhslynsLvN31340985667371810.1101/gr.240663.118
GomezDInterleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of miceNat. Med.201824141814291:CAS:528:DC%2BC1cXhtlOis73J30038218613082210.1038/s41591-018-0124-5
Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science356, eaah4573 (2017).
TabasILichtmanAHMonocyte-macrophages and T cells in atherosclerosisImmunity2017476216341:CAS:528:DC%2BC2sXhs1OhtrvO29045897574729710.1016/j.immuni.2017.09.008
JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e6141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054
YapCMieremetAde VriesCJMMichaDde WaardVSix shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-Like Factor 4)Arterioscler. Thromb. Vasc. Biol.202141269327071:CAS:528:DC%2BB3MXit12hu73P34470477854525410.1161/ATVBAHA.121.316600
Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol.5, 1084 (2022).
OwensGKRegulation of differentiation of vascular smooth muscle cellsPhysiol. Rev.1995754875171:STN:280:DyaK2MzltVagtA%3D%3D762439210.1152/physrev.1995.75.3.487
MantovaniAGarlandaCLocatiMMacrophage diversity and polarization in atherosclerosis: a question of balanceArterioscler. Thromb.Vasc. Biol.200929141914231:CAS:528:DC%2BD1MXhtFWhur%2FL1969640710.1161/ATVBAHA.108.180497
Muñoz-EspínDSerranoMCellular senescence: from physiology to pathologyNat. Rev. Mol. Cell Biol.2014154824962495421010.1038/nrm3823
AlencarGFStem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesisCirculation2020142204520591:CAS:528:DC%2BB3cXisVyju7rJ32674599768279410.1161/CIRCULATIONAHA.120.046672
MooreKJMacrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD Series (Part 2)J. Am. Coll. Cardiol.201872218121971:CAS:528:DC%2BC1cXhvFynsLbM30360827652224610.1016/j.jacc.2018.08.2147
Albarrán-JuárezJKaurHGrimmMOffermannsSWettschureckNLineage tracing of cells involved in atherosclerosisAtherosclerosis20162514454532732017410.1016/j.atherosclerosis.2016.06.012
Zappia, L. Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience7, giy083 (2018).
RongJXShapiroMTroganEFisherEATransdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loadingProc. Natl Acad. Sci. USA200310013531135361:CAS:528:DC%2BD3sXptFOit7o%3D1458161326384810.1073/pnas.1735526100
EverettBMInhibition of Interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trialJ. Am. Coll. Cardiol.202076166016701:CAS:528:DC%2BB3cXitFymsbjK3300413110.1016/j.jacc.2020.08.011
EnsanSSelf-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birthNat. Immunol.2016171591681:CAS:528:DC%2BC2MXhvFKgsb%2FJ2664235710.1038/ni.3343
AranDReference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophageNat. Immunol.2019201631721:CAS:528:DC%2BC1MXlvFSgu7k%3D30643263634074410.1038/s41590-018-0276-y
StoletovKVascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafishCirc. Res.20091049529601:CAS:528:DC%2BD1MXksVCltb4%3D19265037283425010.1161/CIRCRESAHA.108.189803
Jacobsen K., et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI insight2, e95890 (2017).
QiuXSingle-cell mRNA quantification and differential analysis with CensusNat. Methods2017143093151:CAS:528:DC%2BC2sXhtlKjsro%3D28114287533080510.1038/nmeth.4150
Grootaert M. O. J., Bennett M. R. Vascular smooth muscle cells in atherosclerosis:Time for a reassessment. Cardiovasc. Res.117, 2326–2339 (2021).
KoelwynGJCorrEMErbayEMooreKJRegulation of macrophage immunometabolism in atherosclerosisNat. Immunol.2018195265371:CAS:528:DC%2BC1cXpvVCjsL4%3D29777212631467410.1038/s41590-018-0113-3
Han J. H., Heo K. S., Myung C. S. CIAPIN1 accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br. J. Pharmacol.178, 4533–4551 (2021).
Yvan-CharvetLATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferationScience2010328168916931:CAS:528:DC%2BC3cXnvVektbo%3D20488992303259110.1126/science.1189731
WangYSmooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosisArterioscler. Thromb. Vasc. Biol.2019398768871:CAS:528:DC%2BC1MXot1Shtbo%3D30786740648208210.1161/ATVBAHA.119.312434
NewmanAMRobust enumeration of cell subsets from tissue expression profilesNat. Methods2015124534571:CAS:528:DC%2BC2MXlsVOgu7Y%3D25822800473964010.1038/nmeth.3337
ChanWLAtherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cellsCirc. Res.2005966756831:CAS:528:DC%2BD2MXis1elsLs%3D1573146310.1161/01.RES.0000160543.84254.f1
PatelVADefect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signalingCirc. Res.2001888959021:CAS:528:DC%2BD3MXjs1Gju7g%3D1134899810.1161/hh0901.090305
KogaJAikawaMCrosstalk between macrophages and smoo
M Rao (4255_CR71) 2021; 116
MW Majesky (4255_CR45) 2007; 27
G Tellides (4255_CR14) 2015; 116
V Sorokin (4255_CR32) 2020; 11
A Zernecke (4255_CR11) 2020; 127
DA Jaitin (4255_CR36) 2019; 178
A Misra (4255_CR15) 2018; 9
GL Basatemur (4255_CR5) 2019; 16
L Willemsen (4255_CR39) 2020; 250
KJ Moore (4255_CR58) 2011; 145
AM Müller (4255_CR24) 2002; 72
H Hao (4255_CR78) 2002; 22
AM Newman (4255_CR77) 2015; 12
H Pan (4255_CR49) 2020; 142
X Qiu (4255_CR73) 2017; 14
MP Wolf (4255_CR46) 2020; 13
PM Ridker (4255_CR56) 2017; 377
C Zincarelli (4255_CR63) 2008; 16
4255_CR25
K Kim (4255_CR35) 2018; 123
KJ Moore (4255_CR55) 2018; 72
A Vromman (4255_CR60) 2019; 40
4255_CR69
L Zhu (4255_CR17) 2006; 38
H Winkels (4255_CR37) 2018; 122
L Yang (4255_CR44) 2021; 226
JX Rong (4255_CR31) 2003; 100
L Yvan-Charvet (4255_CR27) 2010; 328
VA Patel (4255_CR33) 2001; 88
DM Fernandez (4255_CR9) 2019; 25
J Koga (4255_CR13) 2012; 57
S Jin (4255_CR18) 2008; 102
S Feil (4255_CR7) 2014; 115
4255_CR65
4255_CR62
L Garcia-Alonso (4255_CR74) 2019; 29
4255_CR1
TW LeBien (4255_CR26) 2008; 112
4255_CR3
D Aran (4255_CR70) 2019; 20
P Libby (4255_CR2) 2021; 592
J Albarrán-Juárez (4255_CR50) 2016; 251
Y Vengrenyuk (4255_CR6) 2015; 35
GJ Koelwyn (4255_CR54) 2018; 19
G Yu (4255_CR72) 2012; 16
T Chen (4255_CR79) 2020; 53
K Huynh (4255_CR30) 2017; 14
Y Wang (4255_CR51) 2019; 39
B Yu (4255_CR28) 2018; 29
D Gomez (4255_CR59) 2018; 24
RN Germain (4255_CR23) 2002; 2
WL Chan (4255_CR29) 2005; 96
CH Holland (4255_CR75) 2020; 21
R Browaeys (4255_CR76) 2020; 17
GF Alencar (4255_CR53) 2020; 142
MR Bennett (4255_CR16) 2016; 118
D Muñoz-Espín (4255_CR34) 2014; 15
J Dutzmann (4255_CR43) 2015; 106
Q Chen (4255_CR42) 2019; 9
H Ayari (4255_CR66) 2013; 38
S Ensan (4255_CR38) 2016; 17
LS Shankman (4255_CR52) 2015; 21
M Liu (4255_CR4) 2019; 39
4255_CR47
C Yap (4255_CR64) 2021; 41
C Hafemeister (4255_CR68) 2019; 20
GK Owens (4255_CR19) 1995; 75
MAC Depuydt (4255_CR20) 2020; 127
A Butler (4255_CR67) 2018; 36
T Kuznetsova (4255_CR10) 2020; 17
G Jia (4255_CR40) 2007; 3
A Mantovani (4255_CR22) 2009; 29
A Gheldof (4255_CR41) 2012; 69
D Tian (4255_CR61) 2021; 27
K Stoletov (4255_CR21) 2009; 104
C Cochain (4255_CR12) 2018; 122
BM Everett (4255_CR57) 2020; 76
I Tabas (4255_CR8) 2017; 47
J Chappell (4255_CR48) 2016; 119
References_xml – reference: MüllerAMExpression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitroExp. Mol. Pathol.2002722212291200978610.1006/exmp.2002.2424
– reference: WinkelsHAtlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometryCirc. Res.2018122167516881:CAS:528:DC%2BC1cXhtVyltLzO29545366599360310.1161/CIRCRESAHA.117.312513
– reference: GheldofAHulpiauPvan RoyFDe CraeneBBerxGEvolutionary functional analysis and molecular regulation of the ZEB transcription factorsCell. Mol. Life Sci.201269252725411:CAS:528:DC%2BC38XhtVansbbP2234926110.1007/s00018-012-0935-3
– reference: MooreKJMacrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD Series (Part 2)J. Am. Coll. Cardiol.201872218121971:CAS:528:DC%2BC1cXhvFynsLbM30360827652224610.1016/j.jacc.2018.08.2147
– reference: TellidesGPoberJSInflammatory and immune responses in the arterial mediaCirc. Res.20151163123221:CAS:528:DC%2BC2MXpslKhtg%3D%3D2559327610.1161/CIRCRESAHA.116.301312
– reference: OwensGKRegulation of differentiation of vascular smooth muscle cellsPhysiol. Rev.1995754875171:STN:280:DyaK2MzltVagtA%3D%3D762439210.1152/physrev.1995.75.3.487
– reference: PatelVADefect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signalingCirc. Res.2001888959021:CAS:528:DC%2BD3MXjs1Gju7g%3D1134899810.1161/hh0901.090305
– reference: BennettMRSinhaSOwensGKVascular smooth muscle cells in atherosclerosisCirc. Res.20161186927021:CAS:528:DC%2BC28XislOms74%3D26892967476205310.1161/CIRCRESAHA.115.306361
– reference: DepuydtMACMicroanatomy of the human atherosclerotic plaque by single-cell transcriptomicsCirc. Res.2020127143714551:CAS:528:DC%2BB3cXit1KitLfK32981416764118910.1161/CIRCRESAHA.120.316770
– reference: Jacobsen K., et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI insight2, e95890 (2017).
– reference: QiuXSingle-cell mRNA quantification and differential analysis with CensusNat. Methods2017143093151:CAS:528:DC%2BC2sXhtlKjsro%3D28114287533080510.1038/nmeth.4150
– reference: NewmanAMRobust enumeration of cell subsets from tissue expression profilesNat. Methods2015124534571:CAS:528:DC%2BC2MXlsVOgu7Y%3D25822800473964010.1038/nmeth.3337
– reference: YapCMieremetAde VriesCJMMichaDde WaardVSix shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-Like Factor 4)Arterioscler. Thromb. Vasc. Biol.202141269327071:CAS:528:DC%2BB3MXit12hu73P34470477854525410.1161/ATVBAHA.121.316600
– reference: MajeskyMWDevelopmental basis of vascular smooth muscle diversityArterioscler. Thromb. Vasc. Biol.200727124812581:CAS:528:DC%2BD2sXltl2itbw%3D1737983910.1161/ATVBAHA.107.141069
– reference: ButlerAHoffmanPSmibertPPapalexiESatijaRIntegrating single-cell transcriptomic data across different conditions, technologies, and speciesNat. Biotechnol.2018364114201:CAS:528:DC%2BC1cXmslKrtL0%3D29608179670074410.1038/nbt.4096
– reference: Han J. H., Heo K. S., Myung C. S. CIAPIN1 accelerates vascular remodelling via p53 and JAK2-STAT3 regulation in vascular smooth muscle cells. Br. J. Pharmacol.178, 4533–4551 (2021).
– reference: JaitinDALipid-associated macrophages control metabolic homeostasis in a Trem2-dependent mannerCell2019178686698.e6141:CAS:528:DC%2BC1MXht1Ojsr3M31257031706868910.1016/j.cell.2019.05.054
– reference: Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol.5, 1084 (2022).
– reference: HaoHHeterogeneity of smooth muscle cell populations cultured from pig coronary arteryArterioscler. Thromb. Vasc. Biol.200222109310991:CAS:528:DC%2BD38XlsFShtr0%3D1211772210.1161/01.ATV.0000022407.91111.E4
– reference: KogaJAikawaMCrosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseasesVasc. Pharmacol.20125724281:CAS:528:DC%2BC38Xkt1yksLo%3D10.1016/j.vph.2012.02.011
– reference: TianDEndogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signalingJ. Adv. Res.2021271151251:CAS:528:DC%2BB3cXhsVGqsLzP3331887110.1016/j.jare.2020.06.005
– reference: Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science356, eaah4573 (2017).
– reference: LeBienTWTedderTFB lymphocytes: how they develop and functionBlood2008112157015801:CAS:528:DC%2BD1cXhtVylurbE18725575251887310.1182/blood-2008-02-078071
– reference: LibbyPThe changing landscape of atherosclerosisNature20215925245331:CAS:528:DC%2BB3MXptlOntbw%3D3388372810.1038/s41586-021-03392-8
– reference: KimKTranscriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine modelsCirc. Res.2018123112711421:CAS:528:DC%2BC1cXhvFyktrrO30359200694512110.1161/CIRCRESAHA.118.312804
– reference: GomezDInterleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of miceNat. Med.201824141814291:CAS:528:DC%2BC1cXhtlOis73J30038218613082210.1038/s41591-018-0124-5
– reference: HuynhKAtherosclerosis: trehalose induces macrophage autophagy-lysosomal biogenesisNat. Rev. Cardiol.2017144442863175010.1038/nrcardio.2017.97
– reference: HollandCHRobustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq dataGenome Biol.2020211:CAS:528:DC%2BB3cXkvValsb8%3D32051003701757610.1186/s13059-020-1949-z
– reference: FeilSTransdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesisCirc. Res.20141156626671:CAS:528:DC%2BC2cXhsFals7rE2507000310.1161/CIRCRESAHA.115.304634
– reference: ZincarelliCSoltysSRengoGRabinowitzJEAnalysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injectionMol. Ther.200816107310801:CAS:528:DC%2BD1cXmt1OrsrY%3D1841447610.1038/mt.2008.76
– reference: KuznetsovaTPrangeKHMGlassCKde WintherMPJTranscriptional and epigenetic regulation of macrophages in atherosclerosisNat. Rev. Cardiol.2020172162281:CAS:528:DC%2BC1MXhvV2ktrbL3157851610.1038/s41569-019-0265-3
– reference: PanHSingle-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and humanCirculation2020142206020751:CAS:528:DC%2BB3cXisVyju7rK32962412810426410.1161/CIRCULATIONAHA.120.048378
– reference: AranDReference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophageNat. Immunol.2019201631721:CAS:528:DC%2BC1MXlvFSgu7k%3D30643263634074410.1038/s41590-018-0276-y
– reference: Albarrán-JuárezJKaurHGrimmMOffermannsSWettschureckNLineage tracing of cells involved in atherosclerosisAtherosclerosis20162514454532732017410.1016/j.atherosclerosis.2016.06.012
– reference: ZerneckeAMeta-analysis of leukocyte diversity in atherosclerotic mouse aortasCirc. Res.20201274024261:CAS:528:DC%2BB3cXhtl2hu7jO32673538737124410.1161/CIRCRESAHA.120.316903
– reference: Garcia-AlonsoLHollandCHIbrahimMMTureiDSaez-RodriguezJBenchmark and integration of resources for the estimation of human transcription factor activitiesGenome Res.201929136313751:CAS:528:DC%2BC1MXhslynsLvN31340985667371810.1101/gr.240663.118
– reference: RongJXShapiroMTroganEFisherEATransdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loadingProc. Natl Acad. Sci. USA200310013531135361:CAS:528:DC%2BD3sXptFOit7o%3D1458161326384810.1073/pnas.1735526100
– reference: ShankmanLSKLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesisNat. Med.2015216286371:CAS:528:DC%2BC2MXhtFemtr7E25985364455208510.1038/nm.3866
– reference: MisraAIntegrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cellsNat. Commun.2018929802249597016610.1038/s41467-018-04447-7
– reference: AyariHBriccaGIdentification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysisJ. Biosci.2013383113151:CAS:528:DC%2BC3sXnvFSqsrk%3D2366066510.1007/s12038-013-9310-2
– reference: ChanWLAtherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cellsCirc. Res.2005966756831:CAS:528:DC%2BD2MXis1elsLs%3D1573146310.1161/01.RES.0000160543.84254.f1
– reference: CochainCSingle-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosisCirc. Res.2018122166116741:CAS:528:DC%2BC1cXhtVyltLzN2954536510.1161/CIRCRESAHA.117.312509
– reference: ChenQTargeted inhibition of STAT3 as a potential treatment strategy for atherosclerosisTheranostics20199642464421:CAS:528:DC%2BB3cXltVKgsrs%3D31588227677124210.7150/thno.35528
– reference: EverettBMInhibition of Interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trialJ. Am. Coll. Cardiol.202076166016701:CAS:528:DC%2BB3cXitFymsbjK3300413110.1016/j.jacc.2020.08.011
– reference: AlencarGFStem cell pluripotency genes Klf4 and Oct4 regulate complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesisCirculation2020142204520591:CAS:528:DC%2BB3cXisVyju7rJ32674599768279410.1161/CIRCULATIONAHA.120.046672
– reference: VrommanAStage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosisEur. heart J.201940248224911:CAS:528:DC%2BB3cXhslGntrfL30698710668532310.1093/eurheartj/ehz008
– reference: BrowaeysRSaelensWSaeysYNicheNet: modeling intercellular communication by linking ligands to target genesNat. Methods2020171591621:CAS:528:DC%2BC1MXitlCht7%2FP3181926410.1038/s41592-019-0667-5
– reference: Grootaert M. O. J., Bennett M. R. Vascular smooth muscle cells in atherosclerosis:Time for a reassessment. Cardiovasc. Res.117, 2326–2339 (2021).
– reference: JinSNotch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cellsCirc. Res.2008102148314911:CAS:528:DC%2BD1cXmvFOhsbo%3D1848341010.1161/CIRCRESAHA.107.167965
– reference: ZhuLMutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosusNat. Genet.2006383433491:CAS:528:DC%2BD28XhslCjtr4%3D1644427410.1038/ng1721
– reference: FernandezDMSingle-cell immune landscape of human atherosclerotic plaquesNat. Med.201925157615881:CAS:528:DC%2BC1MXhvFaksbnI31591603731878410.1038/s41591-019-0590-4
– reference: WangYSmooth muscle cells contribute the majority of foam cells in ApoE (apolipoprotein E)-deficient mouse atherosclerosisArterioscler. Thromb. Vasc. Biol.2019398768871:CAS:528:DC%2BC1MXot1Shtbo%3D30786740648208210.1161/ATVBAHA.119.312434
– reference: EnsanSSelf-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birthNat. Immunol.2016171591681:CAS:528:DC%2BC2MXhvFKgsb%2FJ2664235710.1038/ni.3343
– reference: RidkerPMAntiinflammatory therapy with canakinumab for atherosclerotic diseaseN. Engl. J. Med.2017377111911311:CAS:528:DC%2BC2sXhsFOqurnE2884575110.1056/NEJMoa1707914
– reference: GermainRNT-cell development and the CD4-CD8 lineage decisionNat. Rev. Immunol.200223093221:CAS:528:DC%2BD38Xjsl2rsrc%3D1203373710.1038/nri798
– reference: SorokinVRole of Vascular smooth muscle cell plasticity and interactions in vessel wall inflammationFront. Immunol.2020115994151:CAS:528:DC%2BB3MXitVCrtro%3D33324416772601110.3389/fimmu.2020.599415
– reference: VengrenyukYCholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotypeArterioscler. Thromb. Vasc. Biol.2015355355461:CAS:528:DC%2BC2MXjsVKhs70%3D25573853434440210.1161/ATVBAHA.114.304029
– reference: WolfMPHunzikerPAtherosclerosis: insights into vascular pathobiology and outlook to novel treatmentsJ. Cardiovasc. Transl. Res.2020137447573207256410.1007/s12265-020-09961-y
– reference: JiaGChengGAgrawalDKAutophagy of vascular smooth muscle cells in atherosclerotic lesionsAutophagy2007363641:CAS:528:DC%2BD2sXhtVeqsLfO1717280010.4161/auto.3427
– reference: YuGWangLGHanYHeQYclusterProfiler: an R package for comparing biological themes among gene clustersOMICS2012162842871:CAS:528:DC%2BC38XmsFarsLw%3D22455463333937910.1089/omi.2011.0118
– reference: TabasILichtmanAHMonocyte-macrophages and T cells in atherosclerosisImmunity2017476216341:CAS:528:DC%2BC2sXhs1OhtrvO29045897574729710.1016/j.immuni.2017.09.008
– reference: BasatemurGLJørgensenHFClarkeMCHBennettMRMallatZVascular smooth muscle cells in atherosclerosisNat. Rev. Cardiol.2019167277443124339110.1038/s41569-019-0227-9
– reference: YangLPM(2.5) promoted lipid accumulation in macrophage via inhibiting JAK2/STAT3 signaling pathways and aggravating the inflammatory reactionEcotoxicol. Environ. Saf.20212261128721:CAS:528:DC%2BB3MXitF2hsbbE3462453610.1016/j.ecoenv.2021.112872
– reference: MooreKJTabasIMacrophages in the pathogenesis of atherosclerosisCell20111453413551:CAS:528:DC%2BC3MXlsFSiu7c%3D21529710311106510.1016/j.cell.2011.04.005
– reference: RaoMResolving the intertwining of inflammation and fibrosis in human heart failure at single-cell levelBasic Res. Cardiol.20211163460165410.1007/s00395-021-00897-1
– reference: HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1
– reference: KoelwynGJCorrEMErbayEMooreKJRegulation of macrophage immunometabolism in atherosclerosisNat. Immunol.2018195265371:CAS:528:DC%2BC1cXpvVCjsL4%3D29777212631467410.1038/s41590-018-0113-3
– reference: Fernandez, D. M. & Giannarelli, C. Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat. Rev. Cardiol.19, 43–58 (2022).
– reference: DutzmannJDanielJMBauersachsJHilfiker-KleinerDSeddingDGEmerging translational approaches to target STAT3 signalling and its impact on vascular diseaseCardiovasc. Res.20151063653741:CAS:528:DC%2BC28Xhsl2ms7%2FL25784694443166310.1093/cvr/cvv103
– reference: WillemsenLde WintherMPMacrophage subsets in atherosclerosis as defined by single-cell technologiesJ. Pathol.202025070571432003464721720110.1002/path.5392
– reference: ChenTMacrophage-derived myeloid differentiation protein 2 plays an essential role in ox-LDL-induced inflammation and atherosclerosisEBioMedicine20205310270632151799706316710.1016/j.ebiom.2020.102706
– reference: Zappia, L. Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. GigaScience7, giy083 (2018).
– reference: LiuMGomezDSmooth muscle cell phenotypic diversityArterioscler. Thromb. Vasc. Biol.201939171517231:CAS:528:DC%2BC1MXhs1als7%2FE31340668698634710.1161/ATVBAHA.119.312131
– reference: StoletovKVascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafishCirc. Res.20091049529601:CAS:528:DC%2BD1MXksVCltb4%3D19265037283425010.1161/CIRCRESAHA.108.189803
– reference: YuBChenQLe BrasAZhangLXuQVascular stem/progenitor cell migration and differentiation in atherosclerosisAntioxid. Redox Signal.2018292192351:CAS:528:DC%2BC1cXhtFamu7%2FF2853742410.1089/ars.2017.7171
– reference: ChappellJExtensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis modelsCirc. Res.2016119131313231:CAS:528:DC%2BC28XitVegsbjJ27682618514907310.1161/CIRCRESAHA.116.309799
– reference: Yvan-CharvetLATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferationScience2010328168916931:CAS:528:DC%2BC3cXnvVektbo%3D20488992303259110.1126/science.1189731
– reference: MantovaniAGarlandaCLocatiMMacrophage diversity and polarization in atherosclerosis: a question of balanceArterioscler. Thromb.Vasc. Biol.200929141914231:CAS:528:DC%2BD1MXhtFWhur%2FL1969640710.1161/ATVBAHA.108.180497
– reference: Muñoz-EspínDSerranoMCellular senescence: from physiology to pathologyNat. Rev. Mol. Cell Biol.2014154824962495421010.1038/nrm3823
– volume: 592
  start-page: 524
  year: 2021
  ident: 4255_CR2
  publication-title: Nature
  doi: 10.1038/s41586-021-03392-8
– volume: 251
  start-page: 445
  year: 2016
  ident: 4255_CR50
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2016.06.012
– volume: 72
  start-page: 221
  year: 2002
  ident: 4255_CR24
  publication-title: Exp. Mol. Pathol.
  doi: 10.1006/exmp.2002.2424
– volume: 12
  start-page: 453
  year: 2015
  ident: 4255_CR77
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3337
– volume: 39
  start-page: 1715
  year: 2019
  ident: 4255_CR4
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.119.312131
– volume: 76
  start-page: 1660
  year: 2020
  ident: 4255_CR57
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.08.011
– volume: 29
  start-page: 1363
  year: 2019
  ident: 4255_CR74
  publication-title: Genome Res.
  doi: 10.1101/gr.240663.118
– volume: 72
  start-page: 2181
  year: 2018
  ident: 4255_CR55
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.08.2147
– volume: 35
  start-page: 535
  year: 2015
  ident: 4255_CR6
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.114.304029
– volume: 20
  year: 2019
  ident: 4255_CR68
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1874-1
– volume: 17
  start-page: 159
  year: 2020
  ident: 4255_CR76
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0667-5
– volume: 27
  start-page: 1248
  year: 2007
  ident: 4255_CR45
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.107.141069
– volume: 145
  start-page: 341
  year: 2011
  ident: 4255_CR58
  publication-title: Cell
  doi: 10.1016/j.cell.2011.04.005
– volume: 16
  start-page: 727
  year: 2019
  ident: 4255_CR5
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-019-0227-9
– volume: 16
  start-page: 284
  year: 2012
  ident: 4255_CR72
  publication-title: OMICS
  doi: 10.1089/omi.2011.0118
– volume: 47
  start-page: 621
  year: 2017
  ident: 4255_CR8
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.09.008
– volume: 16
  start-page: 1073
  year: 2008
  ident: 4255_CR63
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.76
– volume: 122
  start-page: 1661
  year: 2018
  ident: 4255_CR12
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.312509
– ident: 4255_CR65
  doi: 10.1038/s42003-022-04056-7
– volume: 377
  start-page: 1119
  year: 2017
  ident: 4255_CR56
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1707914
– volume: 39
  start-page: 876
  year: 2019
  ident: 4255_CR51
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.119.312434
– ident: 4255_CR62
  doi: 10.1111/bph.15631
– ident: 4255_CR25
  doi: 10.1126/science.aah4573
– volume: 17
  start-page: 216
  year: 2020
  ident: 4255_CR10
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-019-0265-3
– volume: 118
  start-page: 692
  year: 2016
  ident: 4255_CR16
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.306361
– volume: 21
  start-page: 628
  year: 2015
  ident: 4255_CR52
  publication-title: Nat. Med.
  doi: 10.1038/nm.3866
– volume: 69
  start-page: 2527
  year: 2012
  ident: 4255_CR41
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-0935-3
– volume: 41
  start-page: 2693
  year: 2021
  ident: 4255_CR64
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.121.316600
– volume: 112
  start-page: 1570
  year: 2008
  ident: 4255_CR26
  publication-title: Blood
  doi: 10.1182/blood-2008-02-078071
– volume: 116
  start-page: 312
  year: 2015
  ident: 4255_CR14
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.301312
– volume: 116
  year: 2021
  ident: 4255_CR71
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-021-00897-1
– ident: 4255_CR1
  doi: 10.1038/s41569-021-00589-2
– volume: 19
  start-page: 526
  year: 2018
  ident: 4255_CR54
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0113-3
– volume: 106
  start-page: 365
  year: 2015
  ident: 4255_CR43
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvv103
– volume: 15
  start-page: 482
  year: 2014
  ident: 4255_CR34
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3823
– volume: 142
  start-page: 2045
  year: 2020
  ident: 4255_CR53
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.046672
– volume: 2
  start-page: 309
  year: 2002
  ident: 4255_CR23
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri798
– volume: 57
  start-page: 24
  year: 2012
  ident: 4255_CR13
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2012.02.011
– volume: 9
  year: 2018
  ident: 4255_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04447-7
– volume: 14
  start-page: 444
  year: 2017
  ident: 4255_CR30
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2017.97
– volume: 9
  start-page: 6424
  year: 2019
  ident: 4255_CR42
  publication-title: Theranostics
  doi: 10.7150/thno.35528
– volume: 102
  start-page: 1483
  year: 2008
  ident: 4255_CR18
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.167965
– volume: 29
  start-page: 1419
  year: 2009
  ident: 4255_CR22
  publication-title: Arterioscler. Thromb.Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.180497
– volume: 142
  start-page: 2060
  year: 2020
  ident: 4255_CR49
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.048378
– volume: 178
  start-page: 686
  year: 2019
  ident: 4255_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.054
– volume: 40
  start-page: 2482
  year: 2019
  ident: 4255_CR60
  publication-title: Eur. heart J.
  doi: 10.1093/eurheartj/ehz008
– volume: 127
  start-page: 1437
  year: 2020
  ident: 4255_CR20
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.316770
– volume: 20
  start-page: 163
  year: 2019
  ident: 4255_CR70
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0276-y
– ident: 4255_CR47
  doi: 10.1172/jci.insight.95890
– volume: 88
  start-page: 895
  year: 2001
  ident: 4255_CR33
  publication-title: Circ. Res.
  doi: 10.1161/hh0901.090305
– volume: 328
  start-page: 1689
  year: 2010
  ident: 4255_CR27
  publication-title: Science
  doi: 10.1126/science.1189731
– volume: 38
  start-page: 343
  year: 2006
  ident: 4255_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/ng1721
– volume: 53
  start-page: 102706
  year: 2020
  ident: 4255_CR79
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102706
– volume: 25
  start-page: 1576
  year: 2019
  ident: 4255_CR9
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0590-4
– volume: 17
  start-page: 159
  year: 2016
  ident: 4255_CR38
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3343
– volume: 122
  start-page: 1675
  year: 2018
  ident: 4255_CR37
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.312513
– volume: 127
  start-page: 402
  year: 2020
  ident: 4255_CR11
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.316903
– volume: 115
  start-page: 662
  year: 2014
  ident: 4255_CR7
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.304634
– volume: 27
  start-page: 115
  year: 2021
  ident: 4255_CR61
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2020.06.005
– volume: 24
  start-page: 1418
  year: 2018
  ident: 4255_CR59
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0124-5
– volume: 104
  start-page: 952
  year: 2009
  ident: 4255_CR21
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.189803
– ident: 4255_CR3
  doi: 10.1093/cvr/cvab046
– volume: 21
  year: 2020
  ident: 4255_CR75
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1949-z
– volume: 29
  start-page: 219
  year: 2018
  ident: 4255_CR28
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7171
– volume: 11
  start-page: 599415
  year: 2020
  ident: 4255_CR32
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.599415
– volume: 38
  start-page: 311
  year: 2013
  ident: 4255_CR66
  publication-title: J. Biosci.
  doi: 10.1007/s12038-013-9310-2
– volume: 75
  start-page: 487
  year: 1995
  ident: 4255_CR19
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1995.75.3.487
– volume: 13
  start-page: 744
  year: 2020
  ident: 4255_CR46
  publication-title: J. Cardiovasc. Transl. Res.
  doi: 10.1007/s12265-020-09961-y
– ident: 4255_CR69
  doi: 10.1093/gigascience/giy083
– volume: 96
  start-page: 675
  year: 2005
  ident: 4255_CR29
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000160543.84254.f1
– volume: 250
  start-page: 705
  year: 2020
  ident: 4255_CR39
  publication-title: J. Pathol.
  doi: 10.1002/path.5392
– volume: 226
  start-page: 112872
  year: 2021
  ident: 4255_CR44
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112872
– volume: 22
  start-page: 1093
  year: 2002
  ident: 4255_CR78
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000022407.91111.E4
– volume: 14
  start-page: 309
  year: 2017
  ident: 4255_CR73
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4150
– volume: 100
  start-page: 13531
  year: 2003
  ident: 4255_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1735526100
– volume: 123
  start-page: 1127
  year: 2018
  ident: 4255_CR35
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.312804
– volume: 36
  start-page: 411
  year: 2018
  ident: 4255_CR67
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 3
  start-page: 63
  year: 2007
  ident: 4255_CR40
  publication-title: Autophagy
  doi: 10.4161/auto.3427
– volume: 119
  start-page: 1313
  year: 2016
  ident: 4255_CR48
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.116.309799
SSID ssj0001999634
Score 2.4094474
Snippet Vascular smooth muscle cells (VSMCs) play a central role in atherosclerosis progression, but the functional changes in VSMCs and the associated cellular...
Characterisation of macrophages from human carotid artery plaques and in vitro assays reveal that macrophages regulate vascular smooth muscle cell function...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1316
SubjectTerms 13
13/1
13/89
14
14/32
38
38/91
64
64/60
692/4019/592/2727
692/4019/592/75
82
96
96/63
Apoptosis
Arteriosclerosis
Atherosclerosis
Biology
Biomedical and Life Sciences
Carotid arteries
Carotid artery
Humans
IL-1β
Leukocyte Count
Life Sciences
Macrophages
Muscle, Smooth, Vascular
Myocytes, Smooth Muscle
Phenotypes
Plaques
Smooth muscle
Stat3 protein
STAT3 Transcription Factor
Transcription factors
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEB_kUPBF_G_1lAi-adltm7STx1M8FPQQXOHeQpKm3ILXPba7B4ffyg_iZ3Im6a63_n2RQh-aFMLMJPObZPIbgGfBFzgNVuWucZjLzmPubFnkzByiPQXZdmpjsYnm6AiPj_WHS6W-OCcs0QMnwU20rLFD8mO-rWUxtZbiKFu1HttWq1I6Xn0J9VwKpuLuCuP4So63ZKYVTgYZ07A4eZ3tVOXljieKhP2_Q5m_Jkv-dGIaHdHhTbgxIkhxkEZ-C66E_jZcSzUlL-7Al_eWq3Kd0DoxiGWqNB_EJuFUDKcL0o04XQ_0s-Bte8GujdUj0pVFETHhgtvpPR9ETOFK9B1iLOsj3r7Li29fJx9nB7NKcA6I5Wvtd-HT4evZqzf5WGEh94TUVjl6W9WFRdV4ZYs2oHZdV_Lhi-5I7DVi0cmmbr2XqtWyqrVDVNQVCQd2Ulf3YK9f9OEBiKatLNaOHb6ToVPOWU3wyjfT0FkVmgyKjbSNH-nHuQrGZxOPwSs0SUOGNGSihkyZwfPtP2eJfOOvvV-yErc9mTg7fiBzMqM5mX-ZUwb7GxMw42weDEXuFMgrejJ4um2mechasn1YrGMfAnsMgTO4nyxmOxI-6q3rEjNodmxpZ6i7Lf38JHJ966ZgBrcMXmys7sew_iyKh_9DFI_gesnTJebu7MPearkOj-GqP1_Nh-WTON--A15NLoE
  priority: 102
  providerName: Directory of Open Access Journals
Title Macrophages regulate vascular smooth muscle cell function during atherosclerosis progression through IL-1β/STAT3 signaling
URI https://link.springer.com/article/10.1038/s42003-022-04255-2
https://www.ncbi.nlm.nih.gov/pubmed/36456628
https://www.proquest.com/docview/2743835353
https://www.proquest.com/docview/2746390005
https://pubmed.ncbi.nlm.nih.gov/PMC9715630
https://doaj.org/article/9468f8782cd6410aa027a3dc8dd9524b
Volume 5
WOSCitedRecordID wos000893214900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M7P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: PIMPY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2399-3642
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001999634
  issn: 2399-3642
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xFiRe-A8LjMpIvEHUJnFi-wltaBOTaFVBkcpT5DjOVok1W9MiIb4VH4TPxJ3jtip_9oIS-aF2JLt3tn--O98P4KU1kRxYnYaFKGTIKyPDQsdRSJlDlMFDth5oRzYhRiM5naqxN7g1PqxyvSa6hbqsDdnI-3h6wsNUis-by6uQWKPIu-opNPagS5nKeAe6R8ej8YetlYXwfML9bZlBIvsNd-FYFMRO-pqG8c6O5BL3_w1t_hk0-Zvn1G1IJ3f_dyj34I6Houyw1Z37cMPOH8Ctlpzy20P4PtRE73WOC07DFi1lvWXryFXWXNQoZHaxavBjRvZ_RnskyZm1dx-ZA5c11WM5a5iLBWvzgDDPD8RO34fRzx_9j5PDScIomETT_fhH8OnkePL2XeipGkKDkG8ZSqOTLNIyFSbVUWmlKqoqJi-OqjKJr4wqLrLSGJ6WiieZKqRMsalEQFlxlTyGzrye231goky0zApCDgW3VVoUWiFOM2JgK51aEUC0FldufB5zotP4kjt_eiLzVsQ5ijh3Is7jAF5tvrlss3hc2_qItGDTkjJwux_qxVnuJ3SuOI5LIr4yZcajgdZ4vtdJaWRZqjTmRQAHa-Hnfllo8q3kA3ixqcYJTVLSc1uvXBtEjYSlA3jSqtymJ-QzzrJYBiB2lHGnq7s189m5SxquRESp4AJ4vVbbbbf-_Vc8vX4Uz-B2TDPJhfccQGe5WNnncNN8Xc6aRQ_2xFT2_JTsOWsHlsN4TKXAsjs-HY4__wKt9EOc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3tBAASPBCaJNHCdxDgiVR9VVt6tKLFJvxnGcdqV2Uza7oIr_xIEfwm9ixkl2tTx66wFllcPakezkm8k38Xg-gGfWhDKwOvbzNJe-KI30c81DnyqHZAaDbB1oJzaRDofy4CDbX4Pv3V4YSqvsfKJz1EVl6Bt5D6MnDKZiPF6ffvZJNYpWVzsJjQYWu_bsK4Zs9av-O3y-zznffj96u-O3qgK-QXYy86XRURJqGacm1mFhZZaXJacFh6xMJP5kWIo0KYwRcZGJKMlyKWPsKpH7lIKKL6HLv4Q0gkuXKri__KZD0UMk2r05QSR7tXDJX5QyT9YR-3zl_edkAv7Gbf9M0fxtnda9_rZv_G837iZcb4k222os4xas2cltuNJIb57dgW97msTLjtCd1mxqD0nFzLIuL5fVJxVCmJ3Ma7yY0eoGIwZAKGbNzk7mqHNF7Xge18xlujVVTlirfsT6Az_8-aP3YbQ1ihilymja_X8XPl7IzO_B-qSa2A1gaRFpmeTEi3JhyzjPdYYs1KSBLXVsUw_CDh7KtFXaSSzkWLlsgUiqBlIKIaUcpBT34MXimtOmRsm5vd8Q6hY9qb64-6OaHqrWXalM4LwkskdTJCIMtA54qqPCyKLIYi5yDzY7sKnW6dVqiTQPni6a0V3RU9ITW81dH-TEFCl4cL-B-GIktCKeJFx6kK6Af2Woqy2T8ZEriZ6lIRW68-BlZybLYf37Vjw4fxZP4OrOaG-gBv3h7kO4xsmKXSLTJqzPpnP7CC6bL7NxPX3s3ACDTxdtPr8A7XmXyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macrophages+regulate+vascular+smooth+muscle+cell+function+during+atherosclerosis+progression+through+IL-1%CE%B2%2FSTAT3+signaling&rft.jtitle=Communications+biology&rft.au=Xue%2C+Yuzhou&rft.au=Luo%2C+Minghao&rft.au=Hu%2C+Xiankang&rft.au=Li%2C+Xiang&rft.date=2022-12-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-022-04255-2&rft.externalDocID=10_1038_s42003_022_04255_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon