Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis
In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in ra...
Uložené v:
| Vydané v: | Pharmaceuticals (Basel, Switzerland) Ročník 17; číslo 1; s. 22 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
22.12.2023
MDPI |
| Predmet: | |
| ISSN: | 1424-8247, 1424-8247 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery. |
|---|---|
| AbstractList | In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery. In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery.In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery. |
| Audience | Academic |
| Author | Mariam, Zamara Niazi, Sarfaraz K. |
| AuthorAffiliation | 1 College of Pharmacy, University of Illinois, Chicago, IL 60012, USA 2 Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK |
| AuthorAffiliation_xml | – name: 2 Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK – name: 1 College of Pharmacy, University of Illinois, Chicago, IL 60012, USA |
| Author_xml | – sequence: 1 givenname: Sarfaraz K. orcidid: 0000-0002-0513-0336 surname: Niazi fullname: Niazi, Sarfaraz K. – sequence: 2 givenname: Zamara orcidid: 0000-0002-4563-9559 surname: Mariam fullname: Mariam, Zamara |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38256856$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v3CAQhq0qVfPRXvoDKku9VJWcggEz7iWyNmkaKVJ7aM8I24PDyjZbsFfaf182m02yUcQBGN554B3mNDka3YhJ8pGSc8ZK8m11RyWhhOT5m-SE8pxnkHN59Gx9nJyGsCRESMrpu-SYQS4KEMVJcrVww2qe0GeVbbFNL_3cpZcYbDemetzvbWjcGv3me1qlv70LK2wmu8a0GnW_CTa8T94a3Qf88DCfJX9_XP1Z_Mxuf13fLKrbrBGcTBmUjGBZslpyFAC51NroAlDUmgBr0HAGQGptBHKJotClKQusBWsJtLlu2Vlys-O2Ti_VyttB-41y2qr7gPOd0n6yTY9K1LSsS4bAKXBEUxuatxKNEaYwwCGyLnas1VwP2DY4Tl73B9DDk9Heqc6tFSVAS0FZJHx5IHj3b8YwqSEWCvtej-jmoPKSSihkDiJKP7-QLt3sY_XuVSCBMUmeVJ2ODuxoXLy42UJVJYHE2hSwffj5K6o4WhxsE1vD2Bg_SPj03OmjxX0XRAHZCZr4t8GjUY2d9GTd1rjto2O1bTT11Ggx5euLlD31FfF__dXQWQ |
| CitedBy_id | crossref_primary_10_1016_j_jep_2024_118349 crossref_primary_10_1016_j_bcab_2025_103556 crossref_primary_10_1016_j_ejmech_2025_117917 crossref_primary_10_1080_1062936X_2024_2415593 crossref_primary_10_1080_17568919_2025_2559570 crossref_primary_10_1080_17568919_2025_2533061 crossref_primary_10_3390_cimb47080658 crossref_primary_10_1007_s00210_024_03095_7 crossref_primary_10_1002_slct_202500093 crossref_primary_10_1186_s13065_024_01152_z crossref_primary_10_1371_journal_pone_0319415 crossref_primary_10_1016_j_stress_2025_100951 crossref_primary_10_1007_s12247_024_09865_3 crossref_primary_10_1039_D5PM00089K crossref_primary_10_1016_j_sajb_2025_01_048 crossref_primary_10_2174_0113892010298545241108062449 crossref_primary_10_3390_brainsci15080865 crossref_primary_10_1016_j_compbiomed_2024_109487 crossref_primary_10_1016_j_pmpp_2025_102823 crossref_primary_10_1097_MD_0000000000038496 crossref_primary_10_1002_cbdv_202500560 crossref_primary_10_1002_prp2_70131 crossref_primary_10_1016_j_jics_2025_101764 crossref_primary_10_3390_app14177837 crossref_primary_10_1021_acsomega_5c03278 crossref_primary_10_38124_ijisrt_25may2204 crossref_primary_10_1002_slct_202402683 crossref_primary_10_2174_0115701638326869250207060616 crossref_primary_10_1016_j_steroids_2025_109601 crossref_primary_10_1016_j_heliyon_2024_e40265 crossref_primary_10_1016_j_ejmech_2024_116925 crossref_primary_10_3390_ph18030419 crossref_primary_10_7759_cureus_63646 crossref_primary_10_2174_0127724328311400240823062829 crossref_primary_10_1039_D4RA05073H crossref_primary_10_1007_s43450_025_00629_9 crossref_primary_10_1007_s44372_025_00165_9 crossref_primary_10_3390_biom15070998 crossref_primary_10_7554_eLife_106339 crossref_primary_10_1080_16583655_2025_2541441 crossref_primary_10_3390_medicina60060892 crossref_primary_10_1016_j_molstruc_2024_140228 crossref_primary_10_1007_s12291_025_01348_7 crossref_primary_10_3390_cells14130976 crossref_primary_10_3390_cryst15060507 crossref_primary_10_3390_antiox14030272 crossref_primary_10_1016_j_ibneur_2025_02_002 crossref_primary_10_1007_s13721_025_00543_z crossref_primary_10_2174_0118715249300784240430110628 crossref_primary_10_3390_ph18070981 crossref_primary_10_1016_j_jia_2025_08_019 crossref_primary_10_1002_slct_202503129 crossref_primary_10_3389_fphar_2024_1377916 crossref_primary_10_1080_07391102_2024_2443130 crossref_primary_10_3390_ijms26157651 crossref_primary_10_3390_ijms25052683 crossref_primary_10_1038_s41598_024_82823_8 crossref_primary_10_1080_05704928_2024_2327519 crossref_primary_10_1016_j_ijbiomac_2025_146634 crossref_primary_10_1080_17460441_2024_2331734 crossref_primary_10_1002_slct_202403671 crossref_primary_10_3390_ph18091271 crossref_primary_10_1002_slct_202403715 crossref_primary_10_1007_s10989_025_10728_9 crossref_primary_10_1186_s13321_025_00978_6 crossref_primary_10_1016_j_microc_2025_113736 crossref_primary_10_1016_j_cmpb_2025_108687 crossref_primary_10_1016_j_compbiolchem_2025_108530 crossref_primary_10_1016_j_molstruc_2025_141733 crossref_primary_10_1093_bioinformatics_btaf298 crossref_primary_10_7717_peerj_17292 crossref_primary_10_1134_S1068162024607225 crossref_primary_10_1007_s12013_024_01478_4 crossref_primary_10_1007_s12247_024_09887_x crossref_primary_10_3389_fchem_2025_1585882 crossref_primary_10_1016_j_compbiomed_2024_108992 crossref_primary_10_1016_j_compbiomed_2025_111067 crossref_primary_10_1016_j_nxnano_2025_100235 crossref_primary_10_3390_cancers16223884 crossref_primary_10_3390_ijms251910779 crossref_primary_10_3390_ijms26188873 crossref_primary_10_1016_j_sajb_2024_04_045 crossref_primary_10_1111_bph_70012 crossref_primary_10_3389_fphar_2025_1569765 crossref_primary_10_1109_ACCESS_2024_3376408 crossref_primary_10_1016_j_fbio_2025_107113 crossref_primary_10_3390_pathogens14010020 crossref_primary_10_3390_ijms26146668 crossref_primary_10_3390_diseases12050101 crossref_primary_10_1080_1062936X_2024_2443844 crossref_primary_10_22159_ijap_2025v17i3_52719 crossref_primary_10_1142_S2737416524410035 crossref_primary_10_3390_ph17101292 crossref_primary_10_1002_slct_202501163 crossref_primary_10_3390_ph18010047 crossref_primary_10_1007_s11426_025_2709_7 crossref_primary_10_1016_j_molstruc_2024_139268 crossref_primary_10_1021_acs_jpca_5c01484 crossref_primary_10_1016_j_bbrc_2025_152239 crossref_primary_10_1002_jmr_3104 crossref_primary_10_1007_s11064_024_04281_y crossref_primary_10_1016_j_aichem_2025_100084 crossref_primary_10_1007_s12668_025_01884_9 crossref_primary_10_1007_s12013_025_01896_y crossref_primary_10_1016_j_jmgm_2025_109049 crossref_primary_10_1016_j_molliq_2025_127965 crossref_primary_10_3390_jpbi2030011 crossref_primary_10_1016_j_compbiolchem_2025_108663 crossref_primary_10_1016_j_molstruc_2024_138981 crossref_primary_10_3390_app14041472 crossref_primary_10_3390_ph18040598 crossref_primary_10_1007_s43450_025_00639_7 crossref_primary_10_1016_j_compbiomed_2025_110911 crossref_primary_10_1039_D5RA00657K crossref_primary_10_1016_j_compbiolchem_2025_108427 crossref_primary_10_11648_j_sjc_20251304_12 crossref_primary_10_64659_jomi_209942 crossref_primary_10_1002_cbdv_202500662 |
| Cites_doi | 10.1126/sciadv.aat2731 10.1016/j.cell.2013.03.002 10.1002/jcc.21256 10.1038/nrd3368 10.1039/B918763B 10.20944/preprints202306.0803.v1 10.1186/s13059-017-1215-1 10.1017/CBO9781139047609 10.1021/acscentsci.7b00572 10.1107/S2052252517009241 10.1023/A:1011115820450 10.1126/science.1096361 10.2471/BLT.09.074393 10.1038/nrd2400 10.1093/bioinformatics/btz976 10.1021/acs.jctc.3c00814 10.1073/pnas.1914677117 10.1038/nrd4581 10.1016/j.ijbiomac.2023.123784 10.1021/jm050362n 10.1186/s13321-020-0408-x 10.1038/s41586-019-1138-y 10.1016/S0169-409X(96)00423-1 10.1039/D3AY01644G 10.1016/j.ymeth.2014.09.009 10.1177/108705719900400206 10.3390/biologics3020005 10.1056/NEJMp1500523 10.7554/eLife.16800 10.2174/157340911795677602 10.1056/NEJMoa2100708 10.1016/j.drudis.2017.08.010 10.1111/bcp.15930 10.1038/nrg.2018.4 10.1136/bmj.g3387 10.1038/s41573-019-0024-5 10.1038/clpt.2011.321 10.1002/jcc.21334 10.1038/nrg.2016.12 10.1038/nrd1129 10.1038/ejhg.2014.197 10.1111/j.1476-5381.2010.01127.x 10.1056/NEJMp1114866 10.1177/11795972231214387 10.15252/msb.20156400 10.2196/50027 10.1111/j.1471-4159.2011.07476.x 10.1016/S1093-3263(02)00164-X 10.1016/j.heliyon.2023.e17575 10.1038/nrg2344 10.1021/jm0306430 10.1126/science.abj8754 10.1124/jpet.122.001551 10.1517/17460441.2011.554394 10.1163/9789004217188 10.1016/S0169-409X(02)00003-0 10.1007/s10822-012-9577-7 10.1007/978-1-4939-9752-7_12 10.1038/4551054a 10.1146/annurev-biophys-042910-155245 10.1038/s41586-021-03819-2 10.1038/nrg2918 10.3389/fenvs.2015.00080 10.1124/pr.55.3.4 10.1021/acs.jcim.8b00234 10.1038/s41587-020-0418-2 10.1007/978-1-4939-8955-3_5 10.1098/rsif.2017.0387 10.1038/nrd2664 10.1016/0010-4655(95)00042-E 10.1002/jcc.24764 10.1021/acs.molpharmaceut.6b00248 10.1016/j.drudis.2018.01.039 10.1021/ci060149f 10.1038/533452a 10.1093/nar/gkh468 10.1021/acs.jcim.5b00559 10.1016/j.coph.2016.07.003 10.1038/nrd.2017.232 10.1021/ci400429g 10.1038/s41598-021-82410-1 10.1007/978-1-59745-177-2_19 10.1016/j.drudis.2012.05.016 10.1371/journal.pmed.1001953 10.3390/ijms20184331 10.1038/nchem.1149 10.1038/s41573-019-0050-3 10.3389/fchem.2018.00057 10.3390/molecules28093906 10.1016/j.clinthera.2015.12.001 10.1371/journal.pcbi.1005659 10.18632/oncotarget.14073 10.1021/ct9000685 10.1038/nrd1549 10.1177/1177932219899051 10.1038/nature03197 10.1021/acsomega.2c02822 10.1007/978-3-319-57959-7 10.1038/nature06526 10.1056/NEJMoa1312889 10.21037/atm-2022-50 10.1038/nrd.2016.32 10.1056/NEJMp1006304 10.1038/nrd3078 10.1101/2022.07.21.500999 10.1007/s11548-017-1663-9 10.1021/acs.jcim.7b00564 10.1007/978-1-0716-1787-8_5 10.1111/gbb.12705 10.1145/3287560.3287596 10.1016/j.amsu.2022.104125 10.1016/j.nic.2020.06.003 10.1038/nature13302 10.1007/s11606-013-2536-8 10.1093/nar/gkt978 10.1038/nrd941 10.1021/cc0000388 10.1590/1414-431x20165644 10.1038/sdata.2016.18 10.1021/acsomega.3c02082 10.1016/j.drudis.2013.12.004 10.1038/nrd1799 10.1016/j.pbiomolbio.2023.08.002 10.1021/cr040426m 10.1038/s41698-017-0029-7 10.1016/S1359-6446(00)00015-5 10.1038/gim.2013.122 10.1002/minf.201500038 10.1002/jcc.20290 10.1038/s41591-018-0300-7 10.1038/s41596-021-00628-9 10.1038/s41563-019-0338-z 10.1038/347631a0 10.1080/17460441.2019.1586880 10.1146/annurev.biophys.27.1.249 10.1021/acs.chemrev.8b00803 10.1007/s10822-013-9644-8 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.3390/ph17010022 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep Research Library Research Library (Corporate) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology Biology |
| EISSN | 1424-8247 |
| ExternalDocumentID | oai_doaj_org_article_5b19b93e84184eefbf12d7eff5f6f848 PMC10819513 A780880688 38256856 10_3390_ph17010022 |
| Genre | Journal Article Review |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | --- 2WC 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS ADBBV AEAQA AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR ITC KQ8 M2O M48 MK0 MODMG M~E OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-8930e993b74e58827aafa68e5ba083cef43880baf5e47e56a9f96eb53d08d2ad3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 142 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001151352500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8247 |
| IngestDate | Tue Oct 14 18:35:31 EDT 2025 Tue Nov 04 02:06:07 EST 2025 Thu Sep 04 18:58:52 EDT 2025 Mon Nov 10 03:00:32 EST 2025 Sat Nov 29 14:15:49 EST 2025 Sat Nov 29 10:48:41 EST 2025 Thu Jan 02 22:31:42 EST 2025 Tue Nov 18 21:18:37 EST 2025 Sat Nov 29 07:19:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Computer-Aided Drug Design (CADD) molecular docking drug discovery molecular modeling target identification Chemoinformatics Machine Learning and Artificial Intelligence (AI) |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-8930e993b74e58827aafa68e5ba083cef43880baf5e47e56a9f96eb53d08d2ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4563-9559 0000-0002-0513-0336 |
| OpenAccessLink | https://doaj.org/article/5b19b93e84184eefbf12d7eff5f6f848 |
| PMID | 38256856 |
| PQID | 2918783370 |
| PQPubID | 2032350 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5b19b93e84184eefbf12d7eff5f6f848 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10819513 proquest_miscellaneous_2917867285 proquest_journals_2918783370 gale_infotracmisc_A780880688 gale_infotracacademiconefile_A780880688 pubmed_primary_38256856 crossref_citationtrail_10_3390_ph17010022 crossref_primary_10_3390_ph17010022 |
| PublicationCentury | 2000 |
| PublicationDate | 20231222 |
| PublicationDateYYYYMMDD | 2023-12-22 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231222 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Pharmaceuticals (Basel, Switzerland) |
| PublicationTitleAlternate | Pharmaceuticals (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_94 Chen (ref_56) 2018; 23 Tindall (ref_134) 2023; 387 Gayathiri (ref_90) 2023; 185 Sastry (ref_91) 2013; 27 Warr (ref_114) 2012; 26 Shoichet (ref_68) 2004; 432 ref_13 Hamburg (ref_157) 2010; 363 ref_131 Nelson (ref_159) 2016; 17 Anastas (ref_109) 2010; 39 Oprea (ref_137) 2001; 3 ref_133 Sullivan (ref_151) 2021; 20 Rahwan (ref_128) 2019; 568 Fu (ref_9) 2023; 8 Ekins (ref_47) 2007; 8 Warren (ref_58) 2006; 49 (ref_33) 2019; 2053 Garraway (ref_161) 2013; 153 Williams (ref_88) 2012; 17 Eichler (ref_123) 2008; 7 Shabani (ref_150) 2022; 36 (ref_96) 2007; 6 Feng (ref_169) 2018; 13 Blundell (ref_72) 2017; 4 Walters (ref_79) 2020; 38 James (ref_144) 2022; 2390 Ghosh (ref_99) 2012; 120 ref_25 Bhardwaj (ref_112) 2011; 91 ref_120 ref_21 McCarthy (ref_158) 2008; 9 ref_20 Case (ref_132) 2005; 26 Sahoo (ref_37) 2022; 84 Baker (ref_121) 2016; 533 Teague (ref_65) 2003; 2 Boran (ref_135) 2010; 13 Vilar (ref_52) 2016; 8 Morris (ref_27) 2008; 443 Jumper (ref_15) 2021; 596 Preuer (ref_168) 2018; 58 Wlodawer (ref_95) 1998; 27 Mons (ref_116) 2017; 37 Fujimoto (ref_60) 2022; 7 Adcock (ref_26) 2006; 106 Niazi (ref_22) 2023; 3 Hughes (ref_124) 2011; 162 Karplus (ref_129) 1990; 347 Kanza (ref_108) 2019; 14 Xia (ref_138) 2023; 19 Goh (ref_51) 2017; 38 Martinez (ref_5) 2006; 11 Tannenbaum (ref_122) 2015; 54 Paul (ref_130) 2010; 9 Kirchmair (ref_136) 2015; 14 Topol (ref_80) 2019; 25 Schaduangrat (ref_10) 2020; 12 Zhang (ref_49) 2019; 5 Rani (ref_102) 2022; 80 Kapoor (ref_8) 2018; 15 Thompson (ref_11) 2004; 12 Luo (ref_40) 2016; 35 Schneider (ref_74) 2018; 17 Monge (ref_155) 2011; 16 Yang (ref_16) 2020; 117 Vamathevan (ref_75) 2019; 18 ref_81 Woelfle (ref_110) 2011; 3 Harvey (ref_24) 2009; 5 Collins (ref_107) 2015; 372 ref_143 Lyon (ref_146) 2019; 431 ref_84 Karatzas (ref_35) 2020; 36 Schneider (ref_48) 2005; 4 Johnson (ref_1) 1995; 12 Lusher (ref_141) 2011; 19 Karczewski (ref_147) 2018; 19 Mascalzoni (ref_93) 2014; 23 Deeks (ref_105) 2018; 4 ref_50 Pirard (ref_139) 2011; 6 Kim (ref_85) 2014; 509 Hulsen (ref_125) 2022; 10 Aliper (ref_53) 2016; 13 McKiernan (ref_115) 2016; 5 Friesner (ref_30) 2004; 47 Mintun (ref_100) 2021; 384 ref_59 Patel (ref_2) 2003; 46 (ref_43) 2002; 45 Ewing (ref_31) 2001; 15 Kim (ref_18) 2004; 32 Raj (ref_41) 2011; 6 ref_162 Lipinski (ref_12) 1997; 23 Good (ref_142) 2000; 5 Wang (ref_166) 2019; 1903 Wei (ref_165) 2018; 4 ref_167 Lu (ref_7) 2018b; 6 Morris (ref_29) 2009; 30 Wilkinson (ref_126) 2016; 3 Walker (ref_4) 1997; 15 Zhang (ref_44) 2013; 53 Fidom (ref_45) 2015; 71 Schneider (ref_164) 2016; 19 Zhang (ref_83) 2017; 1 Bajorath (ref_67) 2012; 1 Walters (ref_62) 2002; 54 Torrance (ref_119) 2019; 10 Jorgensen (ref_57) 2004; 303 Zhang (ref_77) 2017; 22 Chen (ref_154) 2016; 38 Willett (ref_34) 2006; 3 Zhang (ref_70) 1999; 4 ref_117 ref_118 ref_36 Wang (ref_153) 2014; 42 ref_111 Pisani (ref_156) 2010; 88 Deininger (ref_97) 2003; 55 Shultz (ref_149) 2019; 24 Mirnezami (ref_160) 2012; 366 Wells (ref_145) 2007; 450 ref_39 ref_38 Mayr (ref_55) 2016; 3 Meng (ref_92) 2011; 7 Pound (ref_71) 2014; 348 Doody (ref_101) 2014; 370 Venkatachalam (ref_32) 2003; 21 Gierend (ref_148) 2023; 7 Cao (ref_104) 2019; 119 Gulbahce (ref_87) 2011; 12 Wishart (ref_86) 2016; 15 ref_103 Nigsch (ref_42) 2006; 46 ref_106 Guedes (ref_61) 2021; 11 Trott (ref_28) 2010; 31 Kadurin (ref_54) 2017; 8 Berendsen (ref_23) 1995; 91 Kitchen (ref_63) 2004; 3 Green (ref_3) 2010; 110 Du (ref_17) 2021; 16 Phillips (ref_163) 2014; 16 Le (ref_78) 2020; 30 Harper (ref_98) 2014; 54 Dror (ref_64) 2012; 41 Macarron (ref_69) 2011; 10 Qureshi (ref_76) 2023; 9 Cournia (ref_89) 2017; 57 (ref_127) 2023; 15 Ekins (ref_140) 2019; 18 Baek (ref_19) 2021; 373 Leach (ref_14) 2007; 47 Sterling (ref_73) 2015; 55 Ranard (ref_113) 2014; 29 Goldman (ref_152) 2012; 91 Ching (ref_66) 2018; 15 ref_6 Munk (ref_46) 2016; 30 Nicholson (ref_82) 2008; 455 |
| References_xml | – volume: 4 start-page: eaat2731 year: 2018 ident: ref_105 article-title: Sampling molecular conformations and dynamics in a multi-user virtual reality framework publication-title: Sci. Adv. doi: 10.1126/sciadv.aat2731 – volume: 153 start-page: 17 year: 2013 ident: ref_161 article-title: Lessons from the cancer genome publication-title: Cell doi: 10.1016/j.cell.2013.03.002 – volume: 30 start-page: 2785 year: 2009 ident: ref_29 article-title: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility publication-title: J. Comput. Chem. doi: 10.1002/jcc.21256 – volume: 10 start-page: 188 year: 2011 ident: ref_69 article-title: Impact of high-throughput screening in biomedical research publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3368 – volume: 39 start-page: 301 year: 2010 ident: ref_109 article-title: Green chemistry: Principles and practice publication-title: Chem. Soc. Rev. doi: 10.1039/B918763B – ident: ref_39 doi: 10.20944/preprints202306.0803.v1 – ident: ref_81 doi: 10.1186/s13059-017-1215-1 – volume: 91 start-page: 479 year: 2011 ident: ref_112 article-title: Open source drug discovery—A new paradigm of collaborative research in tuberculosis drug development publication-title: Tuberculosis – ident: ref_117 doi: 10.1017/CBO9781139047609 – volume: 8 start-page: 17 year: 2007 ident: ref_47 article-title: In silico pharmacokinetics: ADME in drug discovery publication-title: Drug Discov. World – volume: 4 start-page: 268 year: 2018 ident: ref_165 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 – volume: 4 start-page: 308 year: 2017 ident: ref_72 article-title: Protein crystallography and drug discovery: Recollections of knowledge exchange between academia and industry publication-title: IUCrJ doi: 10.1107/S2052252517009241 – volume: 15 start-page: 411 year: 2001 ident: ref_31 article-title: DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/A:1011115820450 – volume: 46 start-page: 2543 year: 2003 ident: ref_2 article-title: Modeling drug-receptor interactions: Advances and challenges publication-title: J. Med. Chem. – volume: 303 start-page: 1813 year: 2004 ident: ref_57 article-title: The many roles of computation in drug discovery publication-title: Science doi: 10.1126/science.1096361 – volume: 88 start-page: 462 year: 2010 ident: ref_156 article-title: Sharing health data: Good intentions are not enough publication-title: Bull. World Health Organ. doi: 10.2471/BLT.09.074393 – volume: 6 start-page: 967 year: 2007 ident: ref_96 article-title: The war against influenza: Discovery and development of sialidase inhibitors publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2400 – volume: 110 start-page: 5678 year: 2010 ident: ref_3 article-title: Structural biology and computational chemistry: A symbiotic relationship publication-title: Chem. Rev. – volume: 15 start-page: 345 year: 2018 ident: ref_8 article-title: From empirical to rational drug discovery: The importance of CADD publication-title: Drug Des. Rev. – volume: 5 start-page: 1 year: 2019 ident: ref_49 article-title: AI and its role in drug discovery publication-title: J. Drug Discov. Des. – volume: 36 start-page: 2602 year: 2020 ident: ref_35 article-title: ChemBioServer 2.0: An advanced web server for filtering, clustering and networking of chemical compounds facilitating both drug discovery and repurposing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz976 – volume: 12 start-page: 3101 year: 2004 ident: ref_11 article-title: Techniques in Computer-Aided Drug Design publication-title: Bioorganic Med. Chem. – volume: 54 start-page: 317 year: 2014 ident: ref_98 article-title: Recent advances in the discovery of small molecule inhibitors of hepatitis C virus publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 19 start-page: 7478 year: 2023 ident: ref_138 article-title: Integrated Molecular Modeling and Machine Learning for Drug Design publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00814 – volume: 117 start-page: 1496 year: 2020 ident: ref_16 article-title: Improved protein structure prediction using predicted interresidue orientations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1914677117 – volume: 14 start-page: 387 year: 2015 ident: ref_136 article-title: Predicting drug metabolism: Experiment and/or computation? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4581 – ident: ref_103 doi: 10.1016/j.ijbiomac.2023.123784 – ident: ref_13 – volume: 13 start-page: 297 year: 2010 ident: ref_135 article-title: Systems approaches to polypharmacology and drug discovery publication-title: Curr. Opin. Drug Discov. Dev. – volume: 49 start-page: 5912 year: 2006 ident: ref_58 article-title: A critical assessment of docking programs and scoring functions publication-title: J. Med. Chem. doi: 10.1021/jm050362n – ident: ref_59 – volume: 12 start-page: 9 year: 2020 ident: ref_10 article-title: Towards reproducible computational drug discovery publication-title: J. Cheminform. doi: 10.1186/s13321-020-0408-x – volume: 568 start-page: 477 year: 2019 ident: ref_128 article-title: Machine behaviour publication-title: Nature doi: 10.1038/s41586-019-1138-y – volume: 23 start-page: 3 year: 1997 ident: ref_12 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(96)00423-1 – volume: 15 start-page: 6631 year: 2023 ident: ref_127 article-title: Green chemical analysis: Main principles and current efforts towards greener analytical methodologies publication-title: Anal. Methods doi: 10.1039/D3AY01644G – volume: 71 start-page: 104 year: 2015 ident: ref_45 article-title: A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors publication-title: Methods doi: 10.1016/j.ymeth.2014.09.009 – volume: 4 start-page: 67 year: 1999 ident: ref_70 article-title: A simple statistical parameter for use in evaluation and validation of high throughput screening assays publication-title: J. Biomol. Screen. doi: 10.1177/108705719900400206 – volume: 3 start-page: 72 year: 2023 ident: ref_22 article-title: Reinventing Therapeutic Proteins: Mining a treasure of new therapies publication-title: Biologics doi: 10.3390/biologics3020005 – volume: 372 start-page: 793 year: 2015 ident: ref_107 article-title: A new initiative on precision medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1500523 – volume: 5 start-page: e16800 year: 2016 ident: ref_115 article-title: How open science helps researchers succeed publication-title: eLife doi: 10.7554/eLife.16800 – volume: 7 start-page: 146 year: 2011 ident: ref_92 article-title: Molecular docking: A powerful approach for structure-based drug discovery publication-title: Curr. Comput. Aided Drug Des. doi: 10.2174/157340911795677602 – volume: 384 start-page: 1691 year: 2021 ident: ref_100 article-title: Donanemab in early Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2100708 – volume: 22 start-page: 1680 year: 2017 ident: ref_77 article-title: From machine learning to deep learning: Progress in machine intelligence for rational drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.08.010 – ident: ref_106 doi: 10.1111/bcp.15930 – volume: 19 start-page: 299 year: 2018 ident: ref_147 article-title: Integrative omics for health and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2018.4 – volume: 348 start-page: g3387 year: 2014 ident: ref_71 article-title: Is animal research sufficiently evidence-based to be a cornerstone of biomedical research? publication-title: BMJ doi: 10.1136/bmj.g3387 – volume: 18 start-page: 463 year: 2019 ident: ref_75 article-title: Applications of machine learning in drug discovery and development publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0024-5 – volume: 91 start-page: 418 year: 2012 ident: ref_152 article-title: The innovative medicines initiative: A European response to the innovation challenge publication-title: Clin. Pharmacol. Ther. doi: 10.1038/clpt.2011.321 – volume: 31 start-page: 455 year: 2010 ident: ref_28 article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 17 start-page: 197 year: 2016 ident: ref_159 article-title: The genetics of drug efficacy: Opportunities and challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.12 – volume: 2 start-page: 527 year: 2003 ident: ref_65 article-title: Implications of protein flexibility for drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1129 – volume: 23 start-page: 721 year: 2014 ident: ref_93 article-title: International Charter of principles for sharing bio-specimens and data publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2014.197 – volume: 162 start-page: 1239 year: 2011 ident: ref_124 article-title: Principles of early drug discovery publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.01127.x – volume: 366 start-page: 489 year: 2012 ident: ref_160 article-title: Preparing for precision medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1114866 – ident: ref_131 doi: 10.1177/11795972231214387 – ident: ref_133 doi: 10.15252/msb.20156400 – volume: 24 start-page: 468 year: 2019 ident: ref_149 article-title: Considerations for designing and prioritizing computational drug discovery publication-title: SLAS Discov. – volume: 7 start-page: e50027 year: 2023 ident: ref_148 article-title: Traceable Research Data Sharing in a German Medical Data Integration Center With FAIR (Findability, Accessibility, Interoperability, and Reusability)-Geared Provenance Implementation: Proof-of-Concept Study publication-title: JMIR Form Res. doi: 10.2196/50027 – volume: 120 start-page: 71 year: 2012 ident: ref_99 article-title: Developing β-secretase inhibitors for treatment of Alzheimer’s disease publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07476.x – volume: 21 start-page: 289 year: 2003 ident: ref_32 article-title: LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites publication-title: J. Mol. Graph. Model. doi: 10.1016/S1093-3263(02)00164-X – volume: 9 start-page: e17575 year: 2023 ident: ref_76 article-title: AI in drug discovery and its clinical relevance publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17575 – ident: ref_6 – volume: 9 start-page: 356 year: 2008 ident: ref_158 article-title: Genome-wide association studies for complex traits: Consensus, uncertainty and challenges publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2344 – ident: ref_50 – volume: 36 start-page: 117 year: 2022 ident: ref_150 article-title: Key Factors to Improve Pharmaceutical Industry’s R&D Productivity: A Case Study of Iranian Pharmaceutical Holding publication-title: Med. J. Islam Repub. Iran. – volume: 47 start-page: 1739 year: 2004 ident: ref_30 article-title: Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy publication-title: J. Med. Chem. doi: 10.1021/jm0306430 – volume: 373 start-page: 871 year: 2021 ident: ref_19 article-title: Accurate prediction of protein structures and interactions using a three-track neural network publication-title: Science doi: 10.1126/science.abj8754 – volume: 387 start-page: 92 year: 2023 ident: ref_134 article-title: Quantitative Systems Pharmacology and Machine Learning: A Match Made in Heaven or Hell? publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.122.001551 – volume: 6 start-page: 225 year: 2011 ident: ref_139 article-title: The quest for novel chemical matter and the contribution of computer-aided de novo design publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2011.554394 – ident: ref_111 doi: 10.1163/9789004217188 – volume: 54 start-page: 255 year: 2002 ident: ref_62 article-title: Prediction of ‘drug-likeness’ publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00003-0 – volume: 26 start-page: 801 year: 2012 ident: ref_114 article-title: Scientific workflow systems: Pipeline Pilot and KNIME publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-012-9577-7 – volume: 2053 start-page: 189 year: 2019 ident: ref_33 article-title: Docking with SwissDock publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9752-7_12 – volume: 455 start-page: 1054 year: 2008 ident: ref_82 article-title: Systems biology: Metabonomics publication-title: Nature doi: 10.1038/4551054a – volume: 6 start-page: 1811 year: 2011 ident: ref_41 article-title: 3d QSAR studies in conjunction with k-nearest neighbor molecular field analysis (k-NN-MFA) on a series of substituted 2-phenyl-benzimidazole derivatives as an anti allergic agents publication-title: Dig. J. Nanomater. Biostructures – volume: 45 start-page: 5 year: 2002 ident: ref_43 article-title: Pharmacophore perception, development, and use in drug design publication-title: J. Med. Chem. – volume: 41 start-page: 429 year: 2012 ident: ref_64 article-title: Biomolecular simulation: A computational microscope for molecular biology publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-042910-155245 – volume: 596 start-page: 583 year: 2021 ident: ref_15 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 12 start-page: 56 year: 2011 ident: ref_87 article-title: Network medicine: A network-based approach to human disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2918 – volume: 3 start-page: 80 year: 2016 ident: ref_55 article-title: DeepTox: Toxicity prediction using deep learning publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2015.00080 – volume: 55 start-page: 401 year: 2003 ident: ref_97 article-title: Specific targeted therapy of chronic myelogenous leukemia with imatinib publication-title: Pharmacol. Rev. doi: 10.1124/pr.55.3.4 – volume: 58 start-page: 1736 year: 2018 ident: ref_168 article-title: Fréchet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00234 – volume: 38 start-page: 143 year: 2020 ident: ref_79 article-title: Assessing the impact of generative AI on medicinal chemistry publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0418-2 – volume: 1903 start-page: 73 year: 2019 ident: ref_166 article-title: Transcriptomic Data Mining and Repurposing for Computational Drug Discovery publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-8955-3_5 – volume: 15 start-page: 20170387 year: 2018 ident: ref_66 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0387 – volume: 7 start-page: 818 year: 2008 ident: ref_123 article-title: Balancing early market access to new drugs with the need for benefit/risk data: A mounting dilemma publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2664 – volume: 91 start-page: 43 year: 1995 ident: ref_23 article-title: GROMACS: A message-passing parallel molecular dynamics implementation publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00042-E – volume: 38 start-page: 1291 year: 2017 ident: ref_51 article-title: Deep learning for computational chemistry publication-title: J. Comput. Chem. doi: 10.1002/jcc.24764 – volume: 13 start-page: 2524 year: 2016 ident: ref_53 article-title: Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00248 – volume: 23 start-page: 1241 year: 2018 ident: ref_56 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.039 – volume: 46 start-page: 2412 year: 2006 ident: ref_42 article-title: Melting point prediction employing k-nearest neighbor algorithms and genetic parameter optimization publication-title: J. Chem. Inf. Model. doi: 10.1021/ci060149f – volume: 533 start-page: 452 year: 2016 ident: ref_121 article-title: 1500 scientists lift the lid on reproducibility publication-title: Nat. News doi: 10.1038/533452a – volume: 11 start-page: 149 year: 2006 ident: ref_5 article-title: Computational strategies in drug design publication-title: Drug Discov. Today – volume: 32 start-page: W526 year: 2004 ident: ref_18 article-title: Protein structure prediction and analysis using the Robetta server publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh468 – volume: 55 start-page: 2324 year: 2015 ident: ref_73 article-title: ZINC 15—Ligand discovery for everyone publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00559 – volume: 30 start-page: 51 year: 2016 ident: ref_46 article-title: Integrating structural and mutagenesis data to elucidate GPCR ligand binding publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2016.07.003 – volume: 12 start-page: 5 year: 1995 ident: ref_1 article-title: Historical perspectives in drug discovery: The advent of computational tools publication-title: J. Drug Discov. – volume: 17 start-page: 97 year: 2018 ident: ref_74 article-title: Automating drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.232 – volume: 53 start-page: 3163 year: 2013 ident: ref_44 article-title: An integrated virtual screening approach for VEGFR-2 inhibitors publication-title: J. Chem. Inf. Model. doi: 10.1021/ci400429g – volume: 11 start-page: 3198 year: 2021 ident: ref_61 article-title: New machine learning and physics-based scoring functions for drug discovery publication-title: Sci. Rep. doi: 10.1038/s41598-021-82410-1 – volume: 443 start-page: 365 year: 2008 ident: ref_27 article-title: Molecular docking publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-177-2_19 – volume: 17 start-page: 1188 year: 2012 ident: ref_88 article-title: Open PHACTS: Semantic interoperability for drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2012.05.016 – ident: ref_162 doi: 10.1371/journal.pmed.1001953 – ident: ref_36 doi: 10.3390/ijms20184331 – volume: 3 start-page: 745 year: 2011 ident: ref_110 article-title: Open science is a research accelerator publication-title: Nat. Chem. doi: 10.1038/nchem.1149 – volume: 19 start-page: 353 year: 2016 ident: ref_164 article-title: Rethinking drug design in the artificial intelligence era publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0050-3 – volume: 6 start-page: 57 year: 2018b ident: ref_7 article-title: Computer-Aided drug design in epigenetics publication-title: Front. Chem. doi: 10.3389/fchem.2018.00057 – ident: ref_94 doi: 10.3390/molecules28093906 – volume: 38 start-page: 688 year: 2016 ident: ref_154 article-title: IBM Watson: How cognitive computing can be applied to big data challenges in life sciences research publication-title: Clin. Ther. doi: 10.1016/j.clinthera.2015.12.001 – ident: ref_25 doi: 10.1371/journal.pcbi.1005659 – volume: 8 start-page: 10883 year: 2017 ident: ref_54 article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology publication-title: Oncotarget doi: 10.18632/oncotarget.14073 – volume: 5 start-page: 1632 year: 2009 ident: ref_24 article-title: ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale publication-title: J. Chem. Theory Comput. doi: 10.1021/ct9000685 – volume: 3 start-page: 935 year: 2004 ident: ref_63 article-title: Docking and scoring in virtual screening for drug discovery: Methods and applications publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1549 – ident: ref_84 doi: 10.1177/1177932219899051 – volume: 432 start-page: 862 year: 2004 ident: ref_68 article-title: Virtual screening of chemical libraries publication-title: Nature doi: 10.1038/nature03197 – volume: 7 start-page: 19030 year: 2022 ident: ref_60 article-title: Machine-Learning- and Knowledge-Based scoring functions incorporating ligand and protein fingerprints publication-title: ACS Omega doi: 10.1021/acsomega.2c02822 – ident: ref_118 doi: 10.1007/978-3-319-57959-7 – ident: ref_38 – volume: 450 start-page: 1001 year: 2007 ident: ref_145 article-title: Reaching for high-hanging fruit in drug discovery at protein–protein interfaces publication-title: Nature doi: 10.1038/nature06526 – volume: 370 start-page: 311 year: 2014 ident: ref_101 article-title: Phase 3 trials of Solanezumab for Mild-to-Moderate Alzheimer’s Disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1312889 – volume: 10 start-page: 1284 year: 2022 ident: ref_125 article-title: Literature analysis of artificial intelligence in biomedicine publication-title: Ann. Transl. Med. doi: 10.21037/atm-2022-50 – volume: 431 start-page: 4118 year: 2019 ident: ref_146 article-title: AI ethics in predictive modeling and precision medicine publication-title: J. Mol. Biol. – ident: ref_20 – volume: 15 start-page: 473 year: 2016 ident: ref_86 article-title: Emerging applications of metabolomics in drug discovery and precision medicine publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.32 – volume: 54 start-page: 120 year: 2015 ident: ref_122 article-title: Russell and Burch′s 3Rs then and now: The need for clarity in definition and purpose publication-title: J. Am. Assoc. Lab. Anim. Sci. – volume: 363 start-page: 301 year: 2010 ident: ref_157 article-title: The path to personalized medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp1006304 – volume: 9 start-page: 203 year: 2010 ident: ref_130 article-title: How to improve R&D productivity: The pharmaceutical industry′s grand challenge publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3078 – ident: ref_21 doi: 10.1101/2022.07.21.500999 – volume: 13 start-page: 179 year: 2018 ident: ref_169 article-title: Breast cancer cell nuclei classification in histopathology images using deep neural networks publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1663-9 – volume: 57 start-page: 2911 year: 2017 ident: ref_89 article-title: Relative binding free energy calculations in drug discovery: Recent advances and practical considerations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00564 – volume: 37 start-page: 49 year: 2017 ident: ref_116 article-title: Cloudy, increasingly FAIR: Revisiting the FAIR Data guiding principles for the European Open Science Cloud publication-title: Inf. Serv. Use – volume: 2390 start-page: 125 year: 2022 ident: ref_144 article-title: Deep Learning and Computational Chemistry publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-1787-8_5 – volume: 20 start-page: e12705 year: 2021 ident: ref_151 article-title: New frontiers in translational research: Touchscreens, open science, and the mouse translational research accelerator platform publication-title: Genes Brain Behav. doi: 10.1111/gbb.12705 – ident: ref_120 doi: 10.1145/3287560.3287596 – volume: 8 start-page: 12 year: 2016 ident: ref_52 article-title: Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge publication-title: J. Cheminformatics – volume: 80 start-page: 104125 year: 2022 ident: ref_102 article-title: Modern drug discovery applications for the identification of novel candidates for COVID-19 infections publication-title: Ann. Med. Surg. doi: 10.1016/j.amsu.2022.104125 – volume: 30 start-page: 417 year: 2020 ident: ref_78 article-title: Overview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2020.06.003 – volume: 509 start-page: 575 year: 2014 ident: ref_85 article-title: A draft map of the human proteome publication-title: Nature doi: 10.1038/nature13302 – volume: 29 start-page: 187 year: 2014 ident: ref_113 article-title: Crowdsourcing—Harnessing the masses to advance health and medicine, a systematic review publication-title: J. Gen. Intern. Med. doi: 10.1007/s11606-013-2536-8 – volume: 42 start-page: D1075 year: 2014 ident: ref_153 article-title: PubChem BioAssay: 2014 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt978 – volume: 84 start-page: 1334 year: 2022 ident: ref_37 article-title: Review on the use of Molecular Docking as the First Line Tool in Drug Discovery and Development publication-title: Indian J. Pharm. Sci. – volume: 1 start-page: 882 year: 2012 ident: ref_67 article-title: Integration of virtual and high-throughput screening publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd941 – volume: 3 start-page: 157 year: 2001 ident: ref_137 article-title: Chemography: The art of navigating in chemical space publication-title: J. Comb. Chem. doi: 10.1021/cc0000388 – volume: 3 start-page: 229 year: 2006 ident: ref_34 article-title: Virtual screening using molecular docking publication-title: Drug Discov. Today Technol. – ident: ref_143 doi: 10.1590/1414-431x20165644 – volume: 3 start-page: 160018 year: 2016 ident: ref_126 article-title: The FAIR Guiding Principles for scientific data management and stewardship publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 8 start-page: 28277 year: 2023 ident: ref_9 article-title: Molecular drug simulation and experimental validation of the CD36 receptor competitively binding to Long-Chain fatty acids by 7-Ketocholesteryl-9-carboxynonanoate publication-title: ACS Omega doi: 10.1021/acsomega.3c02082 – volume: 10 start-page: 130 year: 2019 ident: ref_119 article-title: Patents and the Regress of Useful Arts publication-title: Columbia Sci. Technol. Law Rev. – ident: ref_167 – volume: 19 start-page: 859 year: 2011 ident: ref_141 article-title: Data-driven medicinal chemistry in the era of big data publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2013.12.004 – volume: 4 start-page: 649 year: 2005 ident: ref_48 article-title: Computer-based de novo design of drug-like molecules publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1799 – volume: 47 start-page: 5 year: 2007 ident: ref_14 article-title: Molecular modeling: Principles and applications publication-title: J. Chem. Inf. Model. – volume: 185 start-page: 17 year: 2023 ident: ref_90 article-title: Computational approaches for modeling and structural design of biological systems: A comprehensive review publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2023.08.002 – volume: 106 start-page: 1589 year: 2006 ident: ref_26 article-title: Molecular dynamics: Survey of methods for simulating the activity of proteins publication-title: Chem. Rev. doi: 10.1021/cr040426m – volume: 1 start-page: 25 year: 2017 ident: ref_83 article-title: Network-based machine learning and graph theory algorithms for precision oncology publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-017-0029-7 – volume: 5 start-page: 61 year: 2000 ident: ref_142 article-title: High-throughput and virtual screening: Core lead discovery technologies move towards integration publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(00)00015-5 – volume: 16 start-page: 251 year: 2014 ident: ref_163 article-title: The economic value of personalized medicine tests: What we know and what we need to know publication-title: Genet. Med. doi: 10.1038/gim.2013.122 – volume: 16 start-page: 1106 year: 2011 ident: ref_155 article-title: University–industry collaboration in drug discovery and developments: A matter of synergies publication-title: Drug Discov. Today – volume: 35 start-page: 36 year: 2016 ident: ref_40 article-title: Comparative Analysis of QSAR-based vs. Chemical Similarity Based Predictors of GPCRs Binding Affinity publication-title: Mol. Inform. doi: 10.1002/minf.201500038 – volume: 26 start-page: 1668 year: 2005 ident: ref_132 article-title: The Amber biomolecular simulation programs publication-title: J. Comput. Chem. doi: 10.1002/jcc.20290 – volume: 25 start-page: 44 year: 2019 ident: ref_80 article-title: High-performance medicine: The convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 16 start-page: 5634 year: 2021 ident: ref_17 article-title: The trRosetta server for fast and accurate protein structure prediction publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00628-9 – volume: 18 start-page: 435 year: 2019 ident: ref_140 article-title: Exploiting machine learning for end-to-end drug discovery and development publication-title: Nat. Mater. doi: 10.1038/s41563-019-0338-z – volume: 347 start-page: 631 year: 1990 ident: ref_129 article-title: Molecular dynamics simulations in biology publication-title: Nature doi: 10.1038/347631a0 – volume: 15 start-page: 232 year: 1997 ident: ref_4 article-title: Zanamivir: The making of a drug publication-title: Nat. Biotechnol. – volume: 14 start-page: 433 year: 2019 ident: ref_108 article-title: A new wave of innovation in Semantic web tools for drug discovery publication-title: Expert Opin. Drug Discov. doi: 10.1080/17460441.2019.1586880 – volume: 27 start-page: 249 year: 1998 ident: ref_95 article-title: Inhibitors of HIV-1 protease: A major success of structure-assisted drug design publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.27.1.249 – volume: 119 start-page: 10856 year: 2019 ident: ref_104 article-title: Quantum chemistry in the age of quantum computing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00803 – volume: 27 start-page: 221 year: 2013 ident: ref_91 article-title: Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-013-9644-8 |
| SSID | ssj0057141 |
| Score | 2.6507695 |
| SecondaryResourceType | review_article |
| Snippet | In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology.... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 22 |
| SubjectTerms | Algorithms Artificial intelligence Biology Chemoinformatics Computer simulation Computer-Aided Drug Design (CADD) Drug discovery Hydrogen bonds Kinases Ligands Machine learning Machine Learning and Artificial Intelligence (AI) Metabolism molecular docking molecular modeling Pharmaceutical industry Pharmacokinetics Proteins R&D Research & development Review |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZaxRBEG50o-CLRzwyGqVFiQgZdufo6RpfZDUJChrmIUp8GvqoThZkdrOHsP_erjl2Myg--TjbtdBNVX_99UzVV4y9pjuGMyjCJHMYpirLQlBOh9JYTONYG1uXR3__Ik9P4fw8L9ry6EWbVtlhYg3Ujdoz5W17EB7aqaE35sM4j0BCksjR-9lVSD2k6Ftr21DjJtsh4S0YsJ3i89fiR4fMQkZp1EiUJv6qP5xdkhg5nWK9Q6nW7v8Toa8dUf30yWvn0cm9_7uS--xuy0v5uAmkB-wGVrvsdtOpcr3LDopG4np9yM-2FVuLQ37Ai6349fohO-7aRITjiUXLj-arC35Up4lwVXXPk4Wh1NH1Oz7mxXzalXvyTiLlEft2cnz28VPYtmoIjad8y9CznhF6qqNlisKTdqmUUxmg0MpzPIMuJdEZrZzAVKLIVO7yDLVI7AhsrGzymA2qaYV7jHtI0COEzCm0PowsgEE90hAZiFDEELC3na9K0-qYUzuNn6W_z5Bfy61fA_ZqYztr1Dv-avWBXL6xIMXt-ofp_KJsN3ApdJTrPEFI_Z0Y0WkXxVaic8JlDlI_rTcUMCXhgp-OUW15g18UKWyVYwke0KnFT8D2e5Z-P5v-cBc2ZYsni3IbJQF7uRmmf1KOXIXTVW0jIZMxiIA9aSJ0s6QEPLUFkQUMerHbW3N_pJpc1mrjEZFGESVP_z2vZ-xO7PkfZfrE8T4bLOcrfM5umV_LyWL-ot2JvwGnqUZN priority: 102 providerName: ProQuest |
| Title | Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38256856 https://www.proquest.com/docview/2918783370 https://www.proquest.com/docview/2917867285 https://pubmed.ncbi.nlm.nih.gov/PMC10819513 https://doaj.org/article/5b19b93e84184eefbf12d7eff5f6f848 |
| Volume | 17 |
| WOSCitedRecordID | wos001151352500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057141 issn: 1424-8247 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057141 issn: 1424-8247 databaseCode: M~E dateStart: 20040101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057141 issn: 1424-8247 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057141 issn: 1424-8247 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1424-8247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057141 issn: 1424-8247 databaseCode: M2O dateStart: 20040101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEC509eBFfBtdhxZlRdiwk076EW-z7iwK7hhklfEU-lHtDkhmmYcw_97uPGYmKHjxEkh3BdLVVd1fQdVXAK9DjOEMsjjlDuNMcR5L5XQsjMWMUm1sXR797ZOYTOR0mhd7rb5CTlhDD9wo7oTpJNd5ijLzsQii0y6hVqBzzHEns7rM16OeLphqzmAmkixpyEhTH9SfXF8F2vFwX_Wun5ql_8-zeO8y6idK7t085_fgbgsZyaj51ftwA6sHcFQ0nNObY3K5K6FaHpMjUuzYqDcPYdz1bYhHM4uWnC3WP8hZnbdBVNW9z5Ym5HJu3pERKRbzrv6SdJwlj-Dr-fjy_Ye47Z0QG4_BVrGHIUP02EOLDJlH0UIpp7hEppUHXQZdFlhgtHIMM4GMq9zlHDVL7VBaqmz6GA6qeYVPgXgf1UOU3Cm0fl-tlAb1UMvEyAQZlRG87VRampZYPPS3-Fn6ACOov9ypP4JXW9nrhk7jr1KnYWe2EoECux7whlG2hlH-yzAieBP2tQyO6n_HqLbewC8qUF6VIyH9CRt67kRw2JP0Dmb6051llK2DL0uaJ1LINBXDCF5up8OXIWmtwvm6lhGSCypZBE8aQ9ouKfWROZeMRyB7JtZbc3-mml3V9N9JQHEsSZ_9Dy09hzvUw7aQoEPpIRysFmt8AbfNr9VsuRjATTGVA7h1Op4UXwa1i_nnBf3sx4qPF8X33wxTLnU |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguPMorUMAIKEJq1MSJYwcJoYVt1VW3VQ4LKqcQO-N2JZRd9gHaP8VvxM5jtxGIWw8cE08iO_nm4WTmG4CXdo-hFTI3iDS6YRZFrsi0dLnKMaRUqrwsj_484Ccn4vQ0TjbgV1MLY9MqG5tYGup8rOw38j0a-4KLIODe-8l313aNsn9XmxYaFSyOcPnTbNlm7_o9835fUXqwP_x46NZdBVxlopO5axy0h8YrSx4iM_ElzzKdRQKZzEw4olCHlh9FZpphyJFFWazjCCULck_kNMsDc98rsBkasIsObCb94-RLY_sZ90O_IkENgtjbm5xbunPrJ1tur-wO8KcPuOAE2wmaFzzewa3_7Vndhpt1bE26lTLcgQ0stuBa1W1zuQU7SUXTvdwlw3XV2WyX7JBkTeC9vAv7TasLtzvKMSe96eKM9MpUF5IVzfFopmz66_It6ZJkOm5KVklD83IPPl3KYu9DpxgX-BCIMWvSQxHpDHOjCrkQCqUnha-Ej4wKB940aEhVzcVuW4J8S82ezCInXSPHgRcr2UnFQPJXqQ8WVCsJyxpenhhPz9LaCKVM-rGMAxSh2dcjaql9mnPUmulIi9BM67WFZGptm5mOyuoSDbMoyxKWdrkwTsm2KXJguyVpbJJqDzfATGubOEvXqHTg-WrYXmnz_AocL0oZLiJOBXPgQaUDqyUFwoTngkUOiJZ2tNbcHilG5yVjum8DX-YHj_49r2dw_XB4PEgH_ZOjx3CDmnjWZi5Rug2d-XSBT-Cq-jEfzaZPa70n8PWy1ec3vvuY7w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuPMorUMAIKEJqtHk5dpAQWtiuWLWsciionILtjNuVUHbZB2j_Gr8OO4_dRiBuPXBMPInsZGa-cTLzDcBzu8fQCqkbxhrdSMSxy4WWLlM5RkEgVV6WR38-YqMRPzlJ0i341dTC2LTKxieWjjqfKPuNvBskPmc8DJnX1XVaRNofvJ1-d20HKfuntWmnUanIIa5-mu3b_M2wb971iyAYHBy__-DWHQZcZSKVhWvA2kOD0JJFSE2syYTQIuZIpTChiUIdWa4UKTTFiCGNRaKTGCUNc4_ngchDc99LsG1C8ijqwHY6_Jh-aXCAMj_yK0LUMEy87vTMUp9bzGxBYNkp4E88OAeI7WTNc-g3uPE_P7ebcL2OuUmvMpJbsIXFDlypunCudmAvrei7V_vkeFONNt8neyTdEHuvbsNB0wLD7Y1zzEl_tjwl_TIFhoiiOR7PlU2LXb0mPZLOJk0pK2noX-7ApwtZ7F3oFJMC7wMx7k56yGMtMDcmknOuUHqS-4r7SAPuwKtGMzJVc7TbViHfMrNXs1qUbbTIgWdr2WnFTPJXqXdWwdYSlk28PDGZnWa1c8qo9BOZhMgjs99H1FL7Qc5Qa6pjzSMzrZdWPTPr88x0lKhLN8yiLHtY1mPcgJVtX-TAbkvS-CrVHm6UNKt95TzbaKgDT9fD9kqb_1fgZFnKMB6zgFMH7lX2sF5SyE3YzmnsAG9ZSmvN7ZFifFYyqfs2IKZ--ODf83oCV43NZEfD0eFDuBaYMNcmNAXBLnQWsyU-gsvqx2I8nz2uXQCBrxdtPb8Btx2hsA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-Aided+Drug+Design+and+Drug+Discovery%3A+A+Prospective+Analysis&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Niazi%2C+Sarfaraz+K&rft.au=Mariam%2C+Zamara&rft.date=2023-12-22&rft.pub=MDPI+AG&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=17&rft.issue=1&rft_id=info:doi/10.3390%2Fph17010022&rft.externalDocID=A780880688 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon |