A high-performance computing toolset for relatedness and principal component analysis of SNP data

Genome-wide association studies are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed gdsfmt and SNPRelate (R packages for multi-core symmetric multiprocessing computer architectures) to accelerate two key computations on S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Ročník 28; číslo 24; s. 3326 - 3328
Hlavní autoři: Zheng, Xiuwen, Levine, David, Shen, Jess, Gogarten, Stephanie M., Laurie, Cathy, Weir, Bruce S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Oxford University Press 01.12.2012
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Genome-wide association studies are widely used to investigate the genetic basis of diseases and traits, but they pose many computational challenges. We developed gdsfmt and SNPRelate (R packages for multi-core symmetric multiprocessing computer architectures) to accelerate two key computations on SNP data: principal component analysis (PCA) and relatedness analysis using identity-by-descent measures. The kernels of our algorithms are written in C/C++ and highly optimized. Benchmarks show the uniprocessor implementations of PCA and identity-by-descent are ∼8–50 times faster than the implementations provided in the popular EIGENSTRAT (v3.0) and PLINK (v1.07) programs, respectively, and can be sped up to 30–300-fold by using eight cores. SNPRelate can analyse tens of thousands of samples with millions of SNPs. For example, our package was used to perform PCA on 55 324 subjects from the ‘Gene-Environment Association Studies’ consortium studies. Availability and implementation: gdsfmt and SNPRelate are available from R CRAN (http://cran.r-project.org), including a vignette. A tutorial can be found at https://www.genevastudy.org/Accomplishments/software. Contact:  zhengx@u.washington.edu
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Jeffrey Barrett
ISSN:1367-4803
1367-4811
1367-4811
1460-2059
DOI:10.1093/bioinformatics/bts606