Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes

Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; pp. 12 - 8
Main Authors: Yang, Wenjun, Chernyshov, Ivan Yu, van Schendel, Robin K. A., Weber, Manuela, Müller, Christian, Filonenko, Georgy A., Pidko, Evgeny A.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 04.01.2021
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h −1 ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt 3 , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h −1 ) and stability (TON up to 200 000) at loadings as low as 5-200 ppm.
AbstractList Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h −1 ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt 3 , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h −1 ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt 3 , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h −1 ) and stability (TON up to 200 000) at loadings as low as 5-200 ppm.
Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h−1) and stability (TON up to 200 000) at loadings as low as 5-200 ppm.
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h−1) and stability (TON up to 200 000) at loadings as low as 5-200 ppm.
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
ArticleNumber 12
Author Müller, Christian
Chernyshov, Ivan Yu
van Schendel, Robin K. A.
Filonenko, Georgy A.
Pidko, Evgeny A.
Yang, Wenjun
Weber, Manuela
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0002-4410-6398
  surname: Yang
  fullname: Yang, Wenjun
  organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology
– sequence: 2
  givenname: Ivan Yu
  surname: Chernyshov
  fullname: Chernyshov, Ivan Yu
  organization: TheoMAT Group, ChemBio cluster, ITMO University
– sequence: 3
  givenname: Robin K. A.
  surname: van Schendel
  fullname: van Schendel, Robin K. A.
  organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology
– sequence: 4
  givenname: Manuela
  surname: Weber
  fullname: Weber, Manuela
  organization: Institute of Chemistry and Biochemistry, Freie Universität Berlin
– sequence: 5
  givenname: Christian
  surname: Müller
  fullname: Müller, Christian
  organization: Institute of Chemistry and Biochemistry, Freie Universität Berlin
– sequence: 6
  givenname: Georgy A.
  orcidid: 0000-0001-8025-9968
  surname: Filonenko
  fullname: Filonenko, Georgy A.
  email: G.A.Filonenko@tudelft.nl
  organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology
– sequence: 7
  givenname: Evgeny A.
  orcidid: 0000-0001-9242-9901
  surname: Pidko
  fullname: Pidko, Evgeny A.
  email: E.A.Pidko@tudelft.nl
  organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33397888$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktv1DAQjlARfdA_wAFF4tIeAn4lsS9IVcVjpSIkBGfLj8muV4m92Alq_j3eTSltD_XFo_H3fTOe-U6LIx88FMUbjN5jRPmHxDBr2goRVBGEG16RF8UJQQxXuCX06EF8XJyntEX5UIE5Y6-KY0qpaDnnJ8XmR9BTGkvlbQld54wDP5ab2cawBq9GF3wZutKoqIOf-9KEYRcmb1NOjaqfE9hSz-XgbnNggw-x_OYvVpflznkD8YDv4RbS6-Jlp_oE53f3WfHr86ef11-rm-9fVtdXN5WpGRqrVpkWNapmTY0UM50ghgDVQoMyCHNKsLak6biyuhbckA4s1xgsoEZzJjQ9K1aLrg1qK3fRDSrOMignD4kQ11LF0ZkeJMljAOBEI57riUZwhQA3StXICAUoa31ctHaTHsCaPJqo-keij1-828h1-CPblpOa1Fng4k4ght8TpFEOLhnoe-UhTEkS1tZUNIi0GfruCXQbpujzqPYoJjjBiGTU24cd3bfyb6EZQBaAiSGlCN09BCO5N45cjCOzceTBOHKvyp-QjBsPu8-_cv3zVLpQU67j1xD_t_0M6y8t1dgo
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157246
crossref_primary_10_1186_s13034_023_00698_5
crossref_primary_10_1002_anie_202307987
crossref_primary_10_1016_j_indcrop_2022_114938
crossref_primary_10_1016_j_scitotenv_2022_153576
crossref_primary_10_1016_j_mcat_2022_112531
crossref_primary_10_1016_j_energy_2022_125415
crossref_primary_10_1002_adsc_202400267
crossref_primary_10_1002_chem_202201098
crossref_primary_10_1002_adfm_202308317
crossref_primary_10_1002_advs_202402978
crossref_primary_10_1002_cctc_202300004
crossref_primary_10_1088_1361_6439_ac4c96
crossref_primary_10_1039_D5CC03450G
crossref_primary_10_1002_ejic_202300411
crossref_primary_10_1016_j_mencom_2024_10_020
crossref_primary_10_1136_rmdopen_2022_002617
crossref_primary_10_1016_j_jcat_2023_115248
crossref_primary_10_1088_0256_307X_38_8_080301
crossref_primary_10_1039_D4QM00479E
crossref_primary_10_1007_s00449_024_03106_0
crossref_primary_10_1002_adfm_202215021
crossref_primary_10_3390_catal11111371
crossref_primary_10_1080_15592324_2022_2064647
crossref_primary_10_1002_aisy_202100263
crossref_primary_10_1021_acs_organomet_5c00244
crossref_primary_10_1002_adma_202305384
crossref_primary_10_1039_D4NJ05028B
crossref_primary_10_1002_cctc_202200819
crossref_primary_10_1002_adfm_202411081
crossref_primary_10_1002_admt_202501142
crossref_primary_10_1002_mame_202200493
crossref_primary_10_1016_j_cattod_2022_07_018
crossref_primary_10_1039_D2SC05274A
crossref_primary_10_1007_s00604_024_06617_5
crossref_primary_10_1016_j_jcat_2023_115252
crossref_primary_10_1039_D5EE00441A
crossref_primary_10_1016_j_jcat_2024_115334
crossref_primary_10_1016_j_ympev_2024_108095
crossref_primary_10_1016_j_apmt_2023_101773
crossref_primary_10_1002_ange_202301042
crossref_primary_10_1016_j_jpowsour_2021_230437
crossref_primary_10_1016_j_jallcom_2023_171088
crossref_primary_10_1002_admt_202300404
crossref_primary_10_1002_ajoc_202200425
crossref_primary_10_1002_chem_202304201
crossref_primary_10_1002_chem_202301174
crossref_primary_10_1002_cctc_202500528
crossref_primary_10_1002_ejic_202100884
crossref_primary_10_1016_j_jallcom_2024_173699
crossref_primary_10_1016_j_jcat_2023_01_006
crossref_primary_10_1016_j_jcat_2025_116436
crossref_primary_10_1055_a_1657_2634
crossref_primary_10_1002_bmm2_12076
crossref_primary_10_1002_app_52620
crossref_primary_10_1002_adsu_202300381
crossref_primary_10_1002_anie_202301042
crossref_primary_10_1002_ejoc_202200313
crossref_primary_10_1016_j_renene_2024_121496
crossref_primary_10_1002_smll_202301638
crossref_primary_10_1088_1748_9326_ac5c10
crossref_primary_10_1002_adom_202301164
crossref_primary_10_3390_catal13071093
crossref_primary_10_1002_smll_202306402
crossref_primary_10_1063_5_0212073
crossref_primary_10_1016_j_poly_2021_115204
crossref_primary_10_1002_smll_202311388
crossref_primary_10_1080_1744666X_2024_2359019
crossref_primary_10_1016_j_fuel_2025_135559
crossref_primary_10_1002_aenm_202401530
crossref_primary_10_1007_s11426_022_1576_5
crossref_primary_10_1016_j_scs_2024_105451
crossref_primary_10_1088_1367_2630_ad5d83
crossref_primary_10_1039_D5QO00284B
crossref_primary_10_1002_advs_202403771
crossref_primary_10_1088_1361_6633_adecb1
crossref_primary_10_1016_j_jorganchem_2024_123071
crossref_primary_10_1002_smll_202200439
crossref_primary_10_1021_jacs_5c00362
crossref_primary_10_1016_j_jaecs_2025_100334
crossref_primary_10_1039_D4SC05909C
crossref_primary_10_1002_ange_202307987
crossref_primary_10_1136_jnnp_2022_328908
crossref_primary_10_1016_j_cej_2023_144591
crossref_primary_10_1002_advs_202302123
crossref_primary_10_1002_aenm_202300257
crossref_primary_10_1002_smll_202504104
crossref_primary_10_1002_ajoc_202300553
crossref_primary_10_1016_j_jclepro_2021_129735
crossref_primary_10_1002_adfm_202424965
crossref_primary_10_1021_jacs_4c16130
crossref_primary_10_1021_jacs_2c00548
crossref_primary_10_1039_D1SE01254A
crossref_primary_10_1002_cctc_202400901
crossref_primary_10_1021_jacs_4c13266
crossref_primary_10_1002_chem_202202774
crossref_primary_10_1002_adma_202312207
crossref_primary_10_1002_cctc_202300258
Cites_doi 10.1016/j.catcom.2017.03.007
10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0
10.1039/C7SC00138J
10.1002/anie.201607233
10.1021/acs.orglett.8b03132
10.1021/acs.accounts.5b00027
10.1002/anie.201814751
10.1039/C7CS00334J
10.1002/ejoc.201600018
10.1021/om030297k
10.1021/cr950026m
10.1021/acscatal.8b03899
10.1021/acs.organomet.9b00502
10.1002/9783527814237.ch5
10.1021/om0110989
10.1021/acs.organomet.8b00020
10.1002/anie.201808676
10.1021/jacs.9b05024
10.1016/S0277-5387(03)00407-8
10.1021/acscatal.8b00153
10.1021/acscatal.8b02530
10.1002/anie.201700681
10.1016/B978-0-12-605355-5.50016-1
10.1021/acs.orglett.9b01056
10.1002/anie.201701365
10.1002/anie.201901169
10.1002/tcr.201100019
10.1021/acscatal.8b02902
10.1021/om030581b
10.1002/anie.200704654
10.1002/adsc.201701115
10.1002/chem.201500937
10.1002/chem.201604991
10.1021/jacs.6b03709
10.1021/acscatal.9b03963
10.1039/C9FD00037B
10.1002/anie.201709180
10.1002/anie.201606218
10.1016/j.ccr.2015.06.015
10.1016/j.ccr.2020.213241
10.1002/anie.201709010
10.1002/cctc.201801860
10.1021/om0000818
10.1002/anie.201806289
10.1055/s-0036-1590818
10.1021/om010924a
10.1016/S0022-328X(00)00060-7
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-20168-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


PubMed
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_2333ee82b085469698a0e16aa50c9ae0
PMC7782525
33397888
10_1038_s41467_020_20168_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 725686
  funderid: https://doi.org/10.13039/100010663
– fundername: ;
  grantid: 725686
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-7ac706a54650a4cf92c2e3b9beac018321bd26f8adb598c2fed8b1ede06b849b3
IEDL.DBID M7P
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665625900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Mon Nov 10 04:35:20 EST 2025
Tue Nov 04 01:59:26 EST 2025
Thu Oct 02 10:45:49 EDT 2025
Sat Nov 29 14:49:16 EST 2025
Wed Feb 19 02:23:43 EST 2025
Tue Nov 18 22:28:00 EST 2025
Sat Nov 29 06:29:05 EST 2025
Fri Feb 21 02:39:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-7ac706a54650a4cf92c2e3b9beac018321bd26f8adb598c2fed8b1ede06b849b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9242-9901
0000-0002-4410-6398
0000-0001-8025-9968
OpenAccessLink https://www.proquest.com/docview/2474982102?pq-origsite=%requestingapplication%
PMID 33397888
PQID 2474982102
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2333ee82b085469698a0e16aa50c9ae0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7782525
proquest_miscellaneous_2475396027
proquest_journals_2474982102
pubmed_primary_33397888
crossref_primary_10_1038_s41467_020_20168_2
crossref_citationtrail_10_1038_s41467_020_20168_2
springer_journals_10_1038_s41467_020_20168_2
PublicationCentury 2000
PublicationDate 2021-01-04
PublicationDateYYYYMMDD 2021-01-04
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Vries, J. G. d. The Handbook of Homogeneous Hydrogenation (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007).
AraiNOhkumaTDesign of molecular catalysts for achievement of high turnover number in homogeneous hydrogenationChem. Rec.2012122842891:CAS:528:DC%2BC3MXhs1SqurfE2216225710.1002/tcr.201100019
KallmeierFKempeRManganese complexes for (De) hydrogenation catalysis: a comparison to cobalt and iron catalystsAngew. Chem. Int. Ed.20185746601:CAS:528:DC%2BC2sXhvFensbjM10.1002/anie.201709010
PapaVEfficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complexChem. Sci.20178357635851:CAS:528:DC%2BC2sXjvVygtLc%3D30155202609271610.1039/C7SC00138J
Clarke, M. L. & Widegren, M. B. in Homogeneous Hydrogenation with Non‐Precious Catalysts (ed. Teichert, J. F.). 111–140 (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2020).
ElangovanSHydrogenation of esters to alcohols catalyzed by defined manganese pincer complexesAngew. Chem. Int. Ed.201649153641536810.1002/anie.2016072331:CAS:528:DC%2BC28Xhs1SlsrjJ
LiHRhenium and manganese complexes bearing amino-bis(phosphinite) ligands: synthesis, characterization, and catalytic activity in hydrogenation of ketonesOrganomet201837127112791:CAS:528:DC%2BC1cXmvVKiu7Y%3D10.1021/acs.organomet.8b00020
KaithalAHölscherMLeitnerWCatalytic hydrogenation of cyclic carbonates using manganese complexesAngew. Chem. Int. Ed.20185713449134531:CAS:528:DC%2BC1cXhslWjtbnO10.1002/anie.201808676
GrützmacherHCooperating ligands in catalysisAngew. Chem. Int. Ed.2008471814181810.1002/anie.2007046541:CAS:528:DC%2BD1cXjtFWhsbs%3D
ZellTMilsteinDHydrogenation and Dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatizationAcc. Chem. Res.201548197919941:CAS:528:DC%2BC2MXhtVakurnN2607967810.1021/acs.accounts.5b00027
KallmeierFIrrgangTDietelTKempeRHighly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation stateAngew. Chem. Int. Ed.20165511806118091:CAS:528:DC%2BC28XhsVChtLjE10.1002/anie.201606218
WerkmeisterSNeumannJJungeKBellerMPincer‐type complexes for catalytic (De) hydrogenation and transfer (De) hydrogenation reactions: recent progressChem. Eur. J.20152112226122501:CAS:528:DC%2BC2MXhtFOrtbvI2617937510.1002/chem.201500937
ValyaevDALavigneGLuganNManganese organometallic compounds in homogeneous catalysis: past, present, and prospectsCoord. Chem. Rev.20163081912351:CAS:528:DC%2BC2MXhtFyltbjF10.1016/j.ccr.2015.06.015
ZouY-QHighly selective, efficient deoxygenative hydrogenation of amides catalyzed by a manganese pincer complex via metal–ligand cooperationACS Catal.20188801480191:CAS:528:DC%2BC1cXhsVSrsLfK31080688650357910.1021/acscatal.8b02902
LingFHighly enantioselective synthesis of chiral benzhydrols via manganese catalyzed asymmetric hydrogenation of unsymmetrical benzophenones using an imidazole-based chiral PNN tridentate ligandOrg. Lett.201921393739411:CAS:528:DC%2BC1MXhtVChurzE3114138410.1021/acs.orglett.9b01056
WeberSStögerBVeirosLFKirchnerKRethinking basic concepts: hydrogenation of alkenes catalyzed by bench-stable alkyl Mn (I) complexesACS Catal.20199971597201:CAS:528:DC%2BC1MXhvVent7zF10.1021/acscatal.9b03963
ElangovanSSelective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexesJ. Am. Chem. Soc.2016138880988141:CAS:528:DC%2BC28XosFSgu7w%3D2721985310.1021/jacs.6b03709
GlatzMStögerBHimmelbauerDVeirosLFKirchnerKChemoselective hydrogenation of aldehydes under mild, base-free conditions: manganese outperforms rheniumACS Catal.20188400940161:CAS:528:DC%2BC1cXmvVart7w%3D29755828593990110.1021/acscatal.8b00153
Espinosa‐JalapaNAManganese‐catalyzed hydrogenation of esters to alcoholsChem. Eur. J.201723593459382779606010.1002/chem.2016049911:CAS:528:DC%2BC28XhvVGiurfL
BraunsteinPNaudFHemilability of hybrid ligands and the coordination chemistry of oxazoline‐based systemsAngew. Chem. Int. Ed.2001406806991:CAS:528:DC%2BD3MXhs12qtr0%3D10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0
ZhangLLutidine‐based chiral pincer manganese catalysts for enantioselective hydrogenation of ketonesAngew. Chem. Int. Ed.201958497349771:CAS:528:DC%2BC1MXks12jsLo%3D10.1002/anie.201814751
WeberSStögerBKirchnerKHydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn (I) complexOrg. Lett.201820721272151:CAS:528:DC%2BC1cXitFWis7zN3039888310.1021/acs.orglett.8b03132
BuhaibehRPhosphine‐NHC manganese hydrogenation catalyst exhibiting a non‐classical metal‐ligand cooperative H2 activation modeAngew. Chem. Int. Ed.201958672767311:CAS:528:DC%2BC1MXmvVCnsL0%3D10.1002/anie.201901169
MüllerCVosDJutziPResults and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compoundsJ. Organomet. Chem.200060012714310.1016/S0022-328X(00)00060-7
Krut’koDPBorzovMVVekslerENChurakovAVMachKCrystal structures and solution dynamics of monocyclopentadienyl titanium (IV) complexes bearing pendant ether and phosphanyl type functionalitiesPolyhedron2003222885289410.1016/S0277-5387(03)00407-81:CAS:528:DC%2BD3sXntVOqt7o%3D
ChandraPGhoshTChoudharyNMohammadAMobinSMRecent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalystsCoord. Chem. Rev.202041121324110.1016/j.ccr.2020.2132411:CAS:528:DC%2BB3cXktlGitrg%3D
WeiCAluminum complexes bearing bidentate amido–phosphine ligands for ring-opening polymerization of ε-caprolactone: steric effect on coordination chemistry and reactivityOrganometallics201938381638231:CAS:528:DC%2BC1MXhslenur%2FK10.1021/acs.organomet.9b00502
FoerstnerJKakoschkeAWartchowRButenschönHReactions of cyclopropenone derivatives with a cyclopentadienylcobalt (I) chelate: formation of a cobaltacyclobutenone and a transformation of 2, 2-dimethoxycyclopropenone to methyl acrylate at cobaltOrganometallics200019210821131:CAS:528:DC%2BD3cXislCitLw%3D10.1021/om0000818
PuttenRVNon‐pincer‐type manganese complexes as efficient catalysts for the hydrogenation of estersAngew. Chem., Int. Ed.2017567531753410.1002/anie.2017013651:CAS:528:DC%2BC2sXmsFans74%3D
ChakrabortySManganese‐catalyzed N‐formylation of amines by methanol liberating H2: a catalytic and mechanistic studyAngew. Chem. Int. Ed.201756422942331:CAS:528:DC%2BC2sXksVOrsLg%3D10.1002/anie.201700681
FilonenkoGAvan PuttenRHensenEJPidkoEACatalytic (de) hydrogenation promoted by non-precious metals–Co, Fe and Mn: recent advances in an emerging fieldChem. Soc. Rev.201847145914831:CAS:528:DC%2BC1cXotFeitQ%3D%3D2933438810.1039/C7CS00334J
EliassonSHHJensenVRBenefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenesFaraday Discuss.20192202312482019FaDi..220..231H10.1039/C9FD00037B
FreitagFIrrgangTKempeRMechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalystJ. Am. Chem. Soc.201914111677116851:CAS:528:DC%2BC1MXht1yns7bF3125159610.1021/jacs.9b05024
PuttenREfficient and practical transfer hydrogenation of ketones catalyzed by a simple bidentate Mn−NHC complexChemCatChem20191115
KumarADirect synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalystAngew. Chem. Int. Ed.20175614992149961:CAS:528:DC%2BC2sXhs1yjtL3J10.1002/anie.201709180
KumarAJanesTEspinosa‐JalapaNAMilsteinDManganese catalyzed hydrogenation of organic carbonates to methanol and alcoholsAngew. Chem. Int. Ed.20185712076120801:CAS:528:DC%2BC1cXhsVKrtr7O10.1002/anie.201806289
Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses: Paul Rylander (Academic, New York, 1979).
BeckerENovel [2+2+1] cyclotrimerization of alkynes mediated by bidentate cyclopentadienyl-phosphine ruthenium complexesOrganometallics200322316431701:CAS:528:DC%2BD3sXkvVaitL0%3D10.1021/om030297k
SniderBBManganese (III)-based oxidative free-radical cyclizationsChem. Rev.1996963393641:CAS:528:DyaK28XjsVKluw%3D%3D1184875610.1021/cr950026m
YongLHoferEWartchowRButenschönHOxidative addition of hydrosilanes, hydrogermane, and hydrostannane to cyclopentadienylcobalt (I) bearing a pendant phosphane ligand: cyclopentadienylhydridocobalt (III) chelate complexes with silyl, germyl, and stannyl ligandsOrganometallics200322546354671:CAS:528:DC%2BD3sXovFyhs70%3D10.1021/om030581b
MajiBBarmanMKRecent developments of manganese complexes for catalytic hydrogenation and dehydrogenation reactionsSynthesis201749337733931:CAS:528:DC%2BC2sXhtFygtrzK10.1055/s-0036-1590818
CarneyJRDillonBRThomasSPRecent advances of manganese catalysis for organic synthesisEur. J. Org. Chem.20162016391239291:CAS:528:DC%2BC28XhtV2msrzL10.1002/ejoc.201600018
MüllerCLachicotteRJJonesWDCatalytic C−C bond activation in biphenylene and cyclotrimerization of alkynes: increased reactivity of P, N-versus P, P-substituted nickel complexesOrganometallics2002211975198110.1021/om01109891:CAS:528:DC%2BD38XisFalsLY%3D
WeiDHydrogenation of carbonyl derivatives catalysed by manganese complexes bearing bidentate pyridinyl‐phosphine ligandsAdv. Synth. Catal.20183606766811:CAS:528:DC%2BC2sXhvFyjtL7F10.1002/adsc.201701115
YuX-JHemilabile N-heterocyclic carbene (NHC)-nitrogen-phosphine mediated Ru (II)-catalyzed N-alkylation of aromatic amine with alcohol efficientlyCatal. Commun.20179554571:CAS:528:DC%2BC2sXkslOht7o%3D10.1016/j.catcom.2017.03.007
GarduñoJAGarcíaJJNon-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary aminesACS Catal.2018939240110.1021/acscatal.8b038991:CAS:528:DC%2BC1cXisVSgsL3I
MüllerCLachicotteRJJonesWDChelating P, N versus P, P ligands: differing reactivity of donor-stabilized Pt (η2-PhC⋮ CPh) complexes toward diphenylacetyleneOrganometallics2002211118112310.1021/om010924a1:CAS:528:DC%2BD38XhtFalu78%3D
FertigRManganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensationACS Catal.20188852585301:CAS:528:DC%2BC1cXhsVOjsL%2FJ10.1021/acscatal.8b02530
N Arai (20168_CR3) 2012; 12
C Müller (20168_CR40) 2002; 21
H Li (20168_CR20) 2018; 37
20168_CR7
S Elangovan (20168_CR15) 2016; 49
20168_CR1
L Zhang (20168_CR30) 2019; 58
C Müller (20168_CR39) 2002; 21
20168_CR2
F Ling (20168_CR27) 2019; 21
SHH Eliasson (20168_CR37) 2019; 220
F Kallmeier (20168_CR28) 2016; 55
DA Valyaev (20168_CR11) 2016; 308
S Weber (20168_CR22) 2019; 9
F Freitag (20168_CR16) 2019; 141
F Kallmeier (20168_CR9) 2018; 57
R Buhaibeh (20168_CR34) 2019; 58
BB Snider (20168_CR13) 1996; 96
RV Putten (20168_CR31) 2017; 56
L Zhang (20168_CR26) 2019; 58
J Foerstner (20168_CR38) 2000; 19
T Zell (20168_CR6) 2015; 48
P Braunstein (20168_CR42) 2001; 40
S Chakraborty (20168_CR48) 2017; 56
C Müller (20168_CR44) 2000; 600
A Kaithal (20168_CR18) 2018; 57
Y-Q Zou (20168_CR24) 2018; 8
DP Krut’ko (20168_CR45) 2003; 22
P Chandra (20168_CR8) 2020; 411
H Grützmacher (20168_CR43) 2008; 47
L Yong (20168_CR46) 2003; 22
R Fertig (20168_CR25) 2018; 8
S Werkmeister (20168_CR5) 2015; 21
M Glatz (20168_CR17) 2018; 8
NA Espinosa‐Jalapa (20168_CR29) 2017; 23
A Kumar (20168_CR49) 2017; 56
X-J Yu (20168_CR47) 2017; 95
R Putten (20168_CR35) 2019; 11
V Papa (20168_CR21) 2017; 8
JR Carney (20168_CR12) 2016; 2016
S Weber (20168_CR32) 2018; 20
S Elangovan (20168_CR14) 2016; 138
E Becker (20168_CR36) 2003; 22
GA Filonenko (20168_CR4) 2018; 47
A Kumar (20168_CR19) 2018; 57
D Wei (20168_CR23) 2018; 360
C Wei (20168_CR41) 2019; 38
JA Garduño (20168_CR33) 2018; 9
B Maji (20168_CR10) 2017; 49
References_xml – reference: FilonenkoGAvan PuttenRHensenEJPidkoEACatalytic (de) hydrogenation promoted by non-precious metals–Co, Fe and Mn: recent advances in an emerging fieldChem. Soc. Rev.201847145914831:CAS:528:DC%2BC1cXotFeitQ%3D%3D2933438810.1039/C7CS00334J
– reference: PapaVEfficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complexChem. Sci.20178357635851:CAS:528:DC%2BC2sXjvVygtLc%3D30155202609271610.1039/C7SC00138J
– reference: BuhaibehRPhosphine‐NHC manganese hydrogenation catalyst exhibiting a non‐classical metal‐ligand cooperative H2 activation modeAngew. Chem. Int. Ed.201958672767311:CAS:528:DC%2BC1MXmvVCnsL0%3D10.1002/anie.201901169
– reference: Clarke, M. L. & Widegren, M. B. in Homogeneous Hydrogenation with Non‐Precious Catalysts (ed. Teichert, J. F.). 111–140 (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2020).
– reference: WeberSStögerBKirchnerKHydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn (I) complexOrg. Lett.201820721272151:CAS:528:DC%2BC1cXitFWis7zN3039888310.1021/acs.orglett.8b03132
– reference: KallmeierFKempeRManganese complexes for (De) hydrogenation catalysis: a comparison to cobalt and iron catalystsAngew. Chem. Int. Ed.20185746601:CAS:528:DC%2BC2sXhvFensbjM10.1002/anie.201709010
– reference: EliassonSHHJensenVRBenefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenesFaraday Discuss.20192202312482019FaDi..220..231H10.1039/C9FD00037B
– reference: Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses: Paul Rylander (Academic, New York, 1979).
– reference: PuttenREfficient and practical transfer hydrogenation of ketones catalyzed by a simple bidentate Mn−NHC complexChemCatChem20191115
– reference: ZouY-QHighly selective, efficient deoxygenative hydrogenation of amides catalyzed by a manganese pincer complex via metal–ligand cooperationACS Catal.20188801480191:CAS:528:DC%2BC1cXhsVSrsLfK31080688650357910.1021/acscatal.8b02902
– reference: MajiBBarmanMKRecent developments of manganese complexes for catalytic hydrogenation and dehydrogenation reactionsSynthesis201749337733931:CAS:528:DC%2BC2sXhtFygtrzK10.1055/s-0036-1590818
– reference: ElangovanSSelective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexesJ. Am. Chem. Soc.2016138880988141:CAS:528:DC%2BC28XosFSgu7w%3D2721985310.1021/jacs.6b03709
– reference: KallmeierFIrrgangTDietelTKempeRHighly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation stateAngew. Chem. Int. Ed.20165511806118091:CAS:528:DC%2BC28XhsVChtLjE10.1002/anie.201606218
– reference: ValyaevDALavigneGLuganNManganese organometallic compounds in homogeneous catalysis: past, present, and prospectsCoord. Chem. Rev.20163081912351:CAS:528:DC%2BC2MXhtFyltbjF10.1016/j.ccr.2015.06.015
– reference: WerkmeisterSNeumannJJungeKBellerMPincer‐type complexes for catalytic (De) hydrogenation and transfer (De) hydrogenation reactions: recent progressChem. Eur. J.20152112226122501:CAS:528:DC%2BC2MXhtFOrtbvI2617937510.1002/chem.201500937
– reference: ZhangLLutidine‐based chiral pincer manganese catalysts for enantioselective hydrogenation of ketonesAngew. Chem. Int. Ed.201958497349771:CAS:528:DC%2BC1MXks12jsLo%3D10.1002/anie.201814751
– reference: PuttenRVNon‐pincer‐type manganese complexes as efficient catalysts for the hydrogenation of estersAngew. Chem., Int. Ed.2017567531753410.1002/anie.2017013651:CAS:528:DC%2BC2sXmsFans74%3D
– reference: YongLHoferEWartchowRButenschönHOxidative addition of hydrosilanes, hydrogermane, and hydrostannane to cyclopentadienylcobalt (I) bearing a pendant phosphane ligand: cyclopentadienylhydridocobalt (III) chelate complexes with silyl, germyl, and stannyl ligandsOrganometallics200322546354671:CAS:528:DC%2BD3sXovFyhs70%3D10.1021/om030581b
– reference: KaithalAHölscherMLeitnerWCatalytic hydrogenation of cyclic carbonates using manganese complexesAngew. Chem. Int. Ed.20185713449134531:CAS:528:DC%2BC1cXhslWjtbnO10.1002/anie.201808676
– reference: ChakrabortySManganese‐catalyzed N‐formylation of amines by methanol liberating H2: a catalytic and mechanistic studyAngew. Chem. Int. Ed.201756422942331:CAS:528:DC%2BC2sXksVOrsLg%3D10.1002/anie.201700681
– reference: WeberSStögerBVeirosLFKirchnerKRethinking basic concepts: hydrogenation of alkenes catalyzed by bench-stable alkyl Mn (I) complexesACS Catal.20199971597201:CAS:528:DC%2BC1MXhvVent7zF10.1021/acscatal.9b03963
– reference: FoerstnerJKakoschkeAWartchowRButenschönHReactions of cyclopropenone derivatives with a cyclopentadienylcobalt (I) chelate: formation of a cobaltacyclobutenone and a transformation of 2, 2-dimethoxycyclopropenone to methyl acrylate at cobaltOrganometallics200019210821131:CAS:528:DC%2BD3cXislCitLw%3D10.1021/om0000818
– reference: GrützmacherHCooperating ligands in catalysisAngew. Chem. Int. Ed.2008471814181810.1002/anie.2007046541:CAS:528:DC%2BD1cXjtFWhsbs%3D
– reference: ElangovanSHydrogenation of esters to alcohols catalyzed by defined manganese pincer complexesAngew. Chem. Int. Ed.201649153641536810.1002/anie.2016072331:CAS:528:DC%2BC28Xhs1SlsrjJ
– reference: GarduñoJAGarcíaJJNon-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary aminesACS Catal.2018939240110.1021/acscatal.8b038991:CAS:528:DC%2BC1cXisVSgsL3I
– reference: Vries, J. G. d. The Handbook of Homogeneous Hydrogenation (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007).
– reference: FertigRManganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensationACS Catal.20188852585301:CAS:528:DC%2BC1cXhsVOjsL%2FJ10.1021/acscatal.8b02530
– reference: BraunsteinPNaudFHemilability of hybrid ligands and the coordination chemistry of oxazoline‐based systemsAngew. Chem. Int. Ed.2001406806991:CAS:528:DC%2BD3MXhs12qtr0%3D10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0
– reference: ChandraPGhoshTChoudharyNMohammadAMobinSMRecent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalystsCoord. Chem. Rev.202041121324110.1016/j.ccr.2020.2132411:CAS:528:DC%2BB3cXktlGitrg%3D
– reference: KumarAJanesTEspinosa‐JalapaNAMilsteinDManganese catalyzed hydrogenation of organic carbonates to methanol and alcoholsAngew. Chem. Int. Ed.20185712076120801:CAS:528:DC%2BC1cXhsVKrtr7O10.1002/anie.201806289
– reference: ZellTMilsteinDHydrogenation and Dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatizationAcc. Chem. Res.201548197919941:CAS:528:DC%2BC2MXhtVakurnN2607967810.1021/acs.accounts.5b00027
– reference: SniderBBManganese (III)-based oxidative free-radical cyclizationsChem. Rev.1996963393641:CAS:528:DyaK28XjsVKluw%3D%3D1184875610.1021/cr950026m
– reference: YuX-JHemilabile N-heterocyclic carbene (NHC)-nitrogen-phosphine mediated Ru (II)-catalyzed N-alkylation of aromatic amine with alcohol efficientlyCatal. Commun.20179554571:CAS:528:DC%2BC2sXkslOht7o%3D10.1016/j.catcom.2017.03.007
– reference: WeiCAluminum complexes bearing bidentate amido–phosphine ligands for ring-opening polymerization of ε-caprolactone: steric effect on coordination chemistry and reactivityOrganometallics201938381638231:CAS:528:DC%2BC1MXhslenur%2FK10.1021/acs.organomet.9b00502
– reference: WeiDHydrogenation of carbonyl derivatives catalysed by manganese complexes bearing bidentate pyridinyl‐phosphine ligandsAdv. Synth. Catal.20183606766811:CAS:528:DC%2BC2sXhvFyjtL7F10.1002/adsc.201701115
– reference: LingFHighly enantioselective synthesis of chiral benzhydrols via manganese catalyzed asymmetric hydrogenation of unsymmetrical benzophenones using an imidazole-based chiral PNN tridentate ligandOrg. Lett.201921393739411:CAS:528:DC%2BC1MXhtVChurzE3114138410.1021/acs.orglett.9b01056
– reference: GlatzMStögerBHimmelbauerDVeirosLFKirchnerKChemoselective hydrogenation of aldehydes under mild, base-free conditions: manganese outperforms rheniumACS Catal.20188400940161:CAS:528:DC%2BC1cXmvVart7w%3D29755828593990110.1021/acscatal.8b00153
– reference: MüllerCLachicotteRJJonesWDCatalytic C−C bond activation in biphenylene and cyclotrimerization of alkynes: increased reactivity of P, N-versus P, P-substituted nickel complexesOrganometallics2002211975198110.1021/om01109891:CAS:528:DC%2BD38XisFalsLY%3D
– reference: KumarADirect synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalystAngew. Chem. Int. Ed.20175614992149961:CAS:528:DC%2BC2sXhs1yjtL3J10.1002/anie.201709180
– reference: CarneyJRDillonBRThomasSPRecent advances of manganese catalysis for organic synthesisEur. J. Org. Chem.20162016391239291:CAS:528:DC%2BC28XhtV2msrzL10.1002/ejoc.201600018
– reference: LiHRhenium and manganese complexes bearing amino-bis(phosphinite) ligands: synthesis, characterization, and catalytic activity in hydrogenation of ketonesOrganomet201837127112791:CAS:528:DC%2BC1cXmvVKiu7Y%3D10.1021/acs.organomet.8b00020
– reference: BeckerENovel [2+2+1] cyclotrimerization of alkynes mediated by bidentate cyclopentadienyl-phosphine ruthenium complexesOrganometallics200322316431701:CAS:528:DC%2BD3sXkvVaitL0%3D10.1021/om030297k
– reference: FreitagFIrrgangTKempeRMechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalystJ. Am. Chem. Soc.201914111677116851:CAS:528:DC%2BC1MXht1yns7bF3125159610.1021/jacs.9b05024
– reference: Espinosa‐JalapaNAManganese‐catalyzed hydrogenation of esters to alcoholsChem. Eur. J.201723593459382779606010.1002/chem.2016049911:CAS:528:DC%2BC28XhvVGiurfL
– reference: AraiNOhkumaTDesign of molecular catalysts for achievement of high turnover number in homogeneous hydrogenationChem. Rec.2012122842891:CAS:528:DC%2BC3MXhs1SqurfE2216225710.1002/tcr.201100019
– reference: MüllerCVosDJutziPResults and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compoundsJ. Organomet. Chem.200060012714310.1016/S0022-328X(00)00060-7
– reference: Krut’koDPBorzovMVVekslerENChurakovAVMachKCrystal structures and solution dynamics of monocyclopentadienyl titanium (IV) complexes bearing pendant ether and phosphanyl type functionalitiesPolyhedron2003222885289410.1016/S0277-5387(03)00407-81:CAS:528:DC%2BD3sXntVOqt7o%3D
– reference: MüllerCLachicotteRJJonesWDChelating P, N versus P, P ligands: differing reactivity of donor-stabilized Pt (η2-PhC⋮ CPh) complexes toward diphenylacetyleneOrganometallics2002211118112310.1021/om010924a1:CAS:528:DC%2BD38XhtFalu78%3D
– volume: 95
  start-page: 54
  year: 2017
  ident: 20168_CR47
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.03.007
– ident: 20168_CR2
– volume: 40
  start-page: 680
  year: 2001
  ident: 20168_CR42
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0
– volume: 8
  start-page: 3576
  year: 2017
  ident: 20168_CR21
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC00138J
– volume: 49
  start-page: 15364
  year: 2016
  ident: 20168_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201607233
– volume: 20
  start-page: 7212
  year: 2018
  ident: 20168_CR32
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03132
– volume: 48
  start-page: 1979
  year: 2015
  ident: 20168_CR6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00027
– volume: 58
  start-page: 4973
  year: 2019
  ident: 20168_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814751
– volume: 47
  start-page: 1459
  year: 2018
  ident: 20168_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00334J
– volume: 2016
  start-page: 3912
  year: 2016
  ident: 20168_CR12
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/ejoc.201600018
– volume: 22
  start-page: 3164
  year: 2003
  ident: 20168_CR36
  publication-title: Organometallics
  doi: 10.1021/om030297k
– volume: 96
  start-page: 339
  year: 1996
  ident: 20168_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/cr950026m
– volume: 9
  start-page: 392
  year: 2018
  ident: 20168_CR33
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03899
– volume: 38
  start-page: 3816
  year: 2019
  ident: 20168_CR41
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00502
– ident: 20168_CR7
  doi: 10.1002/9783527814237.ch5
– volume: 21
  start-page: 1975
  year: 2002
  ident: 20168_CR39
  publication-title: Organometallics
  doi: 10.1021/om0110989
– volume: 37
  start-page: 1271
  year: 2018
  ident: 20168_CR20
  publication-title: Organomet
  doi: 10.1021/acs.organomet.8b00020
– volume: 57
  start-page: 13449
  year: 2018
  ident: 20168_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201808676
– volume: 141
  start-page: 11677
  year: 2019
  ident: 20168_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05024
– volume: 22
  start-page: 2885
  year: 2003
  ident: 20168_CR45
  publication-title: Polyhedron
  doi: 10.1016/S0277-5387(03)00407-8
– volume: 8
  start-page: 4009
  year: 2018
  ident: 20168_CR17
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00153
– volume: 58
  start-page: 4973
  year: 2019
  ident: 20168_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814751
– volume: 8
  start-page: 8525
  year: 2018
  ident: 20168_CR25
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02530
– volume: 56
  start-page: 4229
  year: 2017
  ident: 20168_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700681
– ident: 20168_CR1
  doi: 10.1016/B978-0-12-605355-5.50016-1
– volume: 21
  start-page: 3937
  year: 2019
  ident: 20168_CR27
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.9b01056
– volume: 56
  start-page: 7531
  year: 2017
  ident: 20168_CR31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701365
– volume: 58
  start-page: 6727
  year: 2019
  ident: 20168_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901169
– volume: 12
  start-page: 284
  year: 2012
  ident: 20168_CR3
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201100019
– volume: 8
  start-page: 8014
  year: 2018
  ident: 20168_CR24
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02902
– volume: 22
  start-page: 5463
  year: 2003
  ident: 20168_CR46
  publication-title: Organometallics
  doi: 10.1021/om030581b
– volume: 47
  start-page: 1814
  year: 2008
  ident: 20168_CR43
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704654
– volume: 360
  start-page: 676
  year: 2018
  ident: 20168_CR23
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201701115
– volume: 21
  start-page: 12226
  year: 2015
  ident: 20168_CR5
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201500937
– volume: 23
  start-page: 5934
  year: 2017
  ident: 20168_CR29
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201604991
– volume: 138
  start-page: 8809
  year: 2016
  ident: 20168_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03709
– volume: 9
  start-page: 9715
  year: 2019
  ident: 20168_CR22
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03963
– volume: 220
  start-page: 231
  year: 2019
  ident: 20168_CR37
  publication-title: Faraday Discuss.
  doi: 10.1039/C9FD00037B
– volume: 56
  start-page: 14992
  year: 2017
  ident: 20168_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709180
– volume: 55
  start-page: 11806
  year: 2016
  ident: 20168_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606218
– volume: 308
  start-page: 191
  year: 2016
  ident: 20168_CR11
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.06.015
– volume: 411
  start-page: 213
  year: 2020
  ident: 20168_CR8
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213241
– volume: 57
  start-page: 46
  year: 2018
  ident: 20168_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709010
– volume: 11
  start-page: 1
  year: 2019
  ident: 20168_CR35
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801860
– volume: 19
  start-page: 2108
  year: 2000
  ident: 20168_CR38
  publication-title: Organometallics
  doi: 10.1021/om0000818
– volume: 57
  start-page: 12076
  year: 2018
  ident: 20168_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806289
– volume: 49
  start-page: 3377
  year: 2017
  ident: 20168_CR10
  publication-title: Synthesis
  doi: 10.1055/s-0036-1590818
– volume: 21
  start-page: 1118
  year: 2002
  ident: 20168_CR40
  publication-title: Organometallics
  doi: 10.1021/om010924a
– volume: 600
  start-page: 127
  year: 2000
  ident: 20168_CR44
  publication-title: J. Organomet. Chem.
  doi: 10.1016/S0022-328X(00)00060-7
SSID ssj0000391844
Score 2.5995579
Snippet Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While...
Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms 119/118
140/131
639/638/77/885
639/638/77/888
639/638/911/406/939
Aldehydes
Carbonyl compounds
Carbonyls
Catalysis
Catalysts
Coordination compounds
Esters
Formate esters
High temperature
Humanities and Social Sciences
Hydrogen storage
Hydrogenation
Imines
Ketones
Manganese
multidisciplinary
Noble metals
Science
Science (multidisciplinary)
Stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kUPBFzu_eh0TwQdFybdI0yaMnHgp6iKjcW8hX2YWzlXb3uP3vnaTd9dbPF99Km6bTmclkJpn8BuCJZ0L5WlR50XCbV6WJ1QAty2tjGm4KV7IEPP_lnTg9lWdn6sOVUl8xJ2yEBx4Zd0QZYyFIatE3wFCuVtIUocSueOGUCSlaR6_nSjCVbDBTGLpU0ymZgsmjoUo2IUZLOOfVqB5bM1EC7P-dl_lrsuRPO6ZpIjrZhVuTB0lejpTfhmuhvQM3xpqSq7sw-9jZ5bAgpvUkJHwI7JHMVr7vUFeSHEjXEGd6G5PSScwpj6WVBpJWclZD8MSuyNf5JV74ru168r59-vYZiTgOoU_tz8NlGO7B55PXn169yadyCrlDt2yRC-NEUZtY_bwwlWsUdTQwqyza3iKO7NJ6WjfSeMuVdLQJXtoy-FDUVlbKsvuw03ZteAhEWiG8Qd8oHqsNaAMcFVw5ybmwGHCbDMo1a7WbsMZjyYtznfa8mdSjODSKQydxaJrB880730akjb-2Po4S27SMKNnpBuqOnnRH_0t3MjhYy1tPQ3fQtBKVkjESzuDx5jEOuriTYtrQLVMb_PUaQ_oMHozqsaEEv6niukIGYktxtkjdftLOZwnYW6C7xinP4MVaxX6Q9WdW7P0PVuzDTRqzdeLiUnUAO4t-GQ7hurtYzIf-URpc3wGZsCW3
  priority: 102
  providerName: Directory of Open Access Journals
Title Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes
URI https://link.springer.com/article/10.1038/s41467-020-20168-2
https://www.ncbi.nlm.nih.gov/pubmed/33397888
https://www.proquest.com/docview/2474982102
https://www.proquest.com/docview/2475396027
https://pubmed.ncbi.nlm.nih.gov/PMC7782525
https://doaj.org/article/2333ee82b085469698a0e16aa50c9ae0
Volume 12
WOSCitedRecordID wos000665625900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjISBxBETWwntk-IolZUoquoArRwifwKu1JJSrKLuv8e25tNtTx64RJFsaOMM-PxeGb8DcBzQ5gwOaNxUmUqpqn01QAViXMpq0wmOiUBeP7zBzYe88lEFL3DrevTKtc6MShq02jvI9_HlFHB_QblzfmP2FeN8tHVvoTGFux4lAQSUveKwcfi0c85pf1ZmYTw_Y4GzeD3TG7ly52QbKxHAbb_b7bmnymTv8VNw3J0dPt_B3IHbvWGKHq7kpy7cM3W9-DGqjTl8j5MTxu16OZI1gbZADPhSELTpWkbJ3KBnaipkJat8rntyKem-wpNHQoOoWVnDVJL9H124W5MUzctOqlfHL9EHg7CtqH_mb2w3QP4dHT48d37uK_KEGtn3c1jJjVLcumLqCeS6kpgjS1RQjkVnngFkSqD84pLozLBNa6s4Sq1xia54lQosgvbdVPbR4C4YsxIZ2L507nWqRKNWSY0zzKm3L5dRpCueVPqHrLcV844K0PonPByxc_S8bMM_CxxBK-Gd85XgB1X9j7wLB96erDt8KBpv5X93C0xIcRajpUzT2kucsFlYlMnzVmihbRJBHtrTpe9BujKSzZH8GxodnPXB2RkbZtF6OOGnieYRfBwJV8DJe6bwrsnImAbkrdB6mZLPZsGfHDmrL4MZxG8XsvoJVn__hWPrx7FE7iJfTqP9z7RPdietwv7FK7rn_NZ145gi01YuPIR7BwcjovTUXBvjMKMdNci--paiuOT4ssvRXs7hw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJFAAkFUx3Fi-4AQr6qrbqsKtai34FfYlUpSkl3o_il-I7Y32Wp59NYDtyh2Etv5Zjwej-cDeGJSJkzOaIzLTMU0kZ4NUKVxLmWZSayTNCSe_zRkOzv84EDsrsDP_iyMD6vsdWJQ1KbW3ke-TiijgvsFyuujb7FnjfK7qz2FxhwWW3b2wy3Z2leD9-7_PiVk48Peu824YxWItbNOJjGTmuFcehJwLKkuBdHEpkoop4KwB3iiDMlLLo3KBNektIarxBqLc8WpUKl77zk478wIwkOo4O7Cp-OzrXNKu7M5OOXrLQ2ayK_R3EybO1AuzX-BJuBvtu2fIZq_7dOG6W_j6v82cNfgSmdoozdzybgOK7a6ARfn1JuzmzD6WKtpO0GyMsiGNBpuCNBoZpraiVSAK6pLpGWjfOw-8qH3noGqRcHhNWutQWqGvo6P3YWpq7pB29WzwXPk013YJtQ_tMe2vQX7Z9LN27Ba1ZW9C4grxox0JqQ_fWydqtSEZULzLGMK01xGkPRYKHSXkt0zgxwWITQg5cUcP4XDTxHwU5AIXiyeOZonJDm19lsPsUVNn0w83KibL0WnmwqSpqm1nChnftNc5IJLbBMnrRnWQlocwVqPrKLTcG1xAqsIHi-KnW7yG06ysvU01HFdzzFhEdyZ43nREvdN4d0vEbAlpC81dbmkGo9C_nPmrNqMZBG87GXipFn_Hop7p_fiEVza3NseFsPBztZ9uEx86JL3tNE1WJ00U_sALujvk3HbPAwyj-DzWcvKL631k8Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgX7pfAACOBBIKojuPE9gNCwKioNqoKMbQ341topZGMpIX1r_HrsJ2kU7nsbQ-8VY3b2u53jo-Pj78PgEcmpdzklMSoyFRMEunVAFUa51IWmUQ6SQPx_KddOh6z_X0-2QA_-7swvqyy94nBUZtK-xz5ABNKOPMblEHRlUVMtocvD7_FXkHKn7T2chotRHbs8ofbvjUvRtvuv36M8fDtxzfv4k5hINYuUpnHVGqKcukFwZEkuuBYY5sqrpw7Qh7siTI4L5g0KuNM48IaphJrLMoVI1yl7nvPgLPUk5aHssHJKr_jmdcZId09HZSyQUOCV_L7Nbfq5g6ga2thkAz4W5z7Z7nmb2e2YSkcXv6fJ_EKuNQF4PBVazFXwYYtr4HzrSTn8jqYfqjUoplDWRpoA72Gmw44XZq6cqYWYAyrAmpZK1_TD31JvlemamBIhC0ba6Bawq-zI_fCVGVVw_flk9FT6GkwbB3aH9gj29wAe6cyzJtgs6xKextApig10oWW_laydS5UY5pxzbKMKkRyGYGkx4XQHVW7Vww5EKFkIGWixZJwWBIBSwJH4NnqM4ctUcmJrV97uK1aepLx8EZVfxGdzxI4TVNrGVYuLCc5zzmTyCbOijOkubQoAls9ykTn-RpxDLEIPFw9dj7LH0TJ0laL0MYNPUeYRuBWi-1VT9xvcp-WiQBdQ_1aV9eflLNp4EWnLtrNcBaB5719HHfr31Nx5-RRPAAXnImI3dF45y64iH1Fk0_AkS2wOa8X9h44p7_PZ019P5g_BJ9P21R-ATz0nIM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+efficient+hydrogenation+of+carbonyl+compounds+catalysed+by+mixed+donor+Mn%28I%29+pincer+complexes&rft.jtitle=Nature+communications&rft.au=Yang%2C+Wenjun&rft.au=Chernyshov%2C+Ivan+Yu&rft.au=van+Schendel%2C+Robin+K+A&rft.au=Weber%2C+Manuela&rft.date=2021-01-04&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=12&rft_id=info:doi/10.1038%2Fs41467-020-20168-2&rft_id=info%3Apmid%2F33397888&rft.externalDocID=33397888
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon