Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 12; H. 1; S. 12 - 8 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
04.01.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h
−1
) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt
3
, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h
−1
) and stability (TON up to 200 000) at loadings as low as 5-200 ppm. |
|---|---|
| AbstractList | Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h
−1
) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt
3
, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h −1 ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt 3 , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h −1 ) and stability (TON up to 200 000) at loadings as low as 5-200 ppm. Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h−1) and stability (TON up to 200 000) at loadings as low as 5-200 ppm. Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a highly efficient manganese pincer pre-catalyst displaying high TOF values (up to 41 000 h−1) and stability (TON up to 200 000) at loadings as low as 5-200 ppm. Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h ) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt , dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation. |
| ArticleNumber | 12 |
| Author | Müller, Christian Chernyshov, Ivan Yu van Schendel, Robin K. A. Filonenko, Georgy A. Pidko, Evgeny A. Yang, Wenjun Weber, Manuela |
| Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0000-0002-4410-6398 surname: Yang fullname: Yang, Wenjun organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology – sequence: 2 givenname: Ivan Yu surname: Chernyshov fullname: Chernyshov, Ivan Yu organization: TheoMAT Group, ChemBio cluster, ITMO University – sequence: 3 givenname: Robin K. A. surname: van Schendel fullname: van Schendel, Robin K. A. organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology – sequence: 4 givenname: Manuela surname: Weber fullname: Weber, Manuela organization: Institute of Chemistry and Biochemistry, Freie Universität Berlin – sequence: 5 givenname: Christian surname: Müller fullname: Müller, Christian organization: Institute of Chemistry and Biochemistry, Freie Universität Berlin – sequence: 6 givenname: Georgy A. orcidid: 0000-0001-8025-9968 surname: Filonenko fullname: Filonenko, Georgy A. email: G.A.Filonenko@tudelft.nl organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology – sequence: 7 givenname: Evgeny A. orcidid: 0000-0001-9242-9901 surname: Pidko fullname: Pidko, Evgeny A. email: E.A.Pidko@tudelft.nl organization: Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33397888$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uktv1DAQjlARfdA_wAFF4tIeAn4lsS9IVcVjpSIkBGfLj8muV4m92Alq_j3eTSltD_XFo_H3fTOe-U6LIx88FMUbjN5jRPmHxDBr2goRVBGEG16RF8UJQQxXuCX06EF8XJyntEX5UIE5Y6-KY0qpaDnnJ8XmR9BTGkvlbQld54wDP5ab2cawBq9GF3wZutKoqIOf-9KEYRcmb1NOjaqfE9hSz-XgbnNggw-x_OYvVpflznkD8YDv4RbS6-Jlp_oE53f3WfHr86ef11-rm-9fVtdXN5WpGRqrVpkWNapmTY0UM50ghgDVQoMyCHNKsLak6biyuhbckA4s1xgsoEZzJjQ9K1aLrg1qK3fRDSrOMignD4kQ11LF0ZkeJMljAOBEI57riUZwhQA3StXICAUoa31ctHaTHsCaPJqo-keij1-828h1-CPblpOa1Fng4k4ght8TpFEOLhnoe-UhTEkS1tZUNIi0GfruCXQbpujzqPYoJjjBiGTU24cd3bfyb6EZQBaAiSGlCN09BCO5N45cjCOzceTBOHKvyp-QjBsPu8-_cv3zVLpQU67j1xD_t_0M6y8t1dgo |
| CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157246 crossref_primary_10_1186_s13034_023_00698_5 crossref_primary_10_1002_anie_202307987 crossref_primary_10_1016_j_indcrop_2022_114938 crossref_primary_10_1016_j_scitotenv_2022_153576 crossref_primary_10_1016_j_mcat_2022_112531 crossref_primary_10_1016_j_energy_2022_125415 crossref_primary_10_1002_adsc_202400267 crossref_primary_10_1002_chem_202201098 crossref_primary_10_1002_adfm_202308317 crossref_primary_10_1002_advs_202402978 crossref_primary_10_1002_cctc_202300004 crossref_primary_10_1088_1361_6439_ac4c96 crossref_primary_10_1039_D5CC03450G crossref_primary_10_1002_ejic_202300411 crossref_primary_10_1016_j_mencom_2024_10_020 crossref_primary_10_1136_rmdopen_2022_002617 crossref_primary_10_1016_j_jcat_2023_115248 crossref_primary_10_1088_0256_307X_38_8_080301 crossref_primary_10_1039_D4QM00479E crossref_primary_10_1007_s00449_024_03106_0 crossref_primary_10_1002_adfm_202215021 crossref_primary_10_3390_catal11111371 crossref_primary_10_1080_15592324_2022_2064647 crossref_primary_10_1002_aisy_202100263 crossref_primary_10_1021_acs_organomet_5c00244 crossref_primary_10_1002_adma_202305384 crossref_primary_10_1039_D4NJ05028B crossref_primary_10_1002_cctc_202200819 crossref_primary_10_1002_adfm_202411081 crossref_primary_10_1002_admt_202501142 crossref_primary_10_1002_mame_202200493 crossref_primary_10_1016_j_cattod_2022_07_018 crossref_primary_10_1039_D2SC05274A crossref_primary_10_1007_s00604_024_06617_5 crossref_primary_10_1016_j_jcat_2023_115252 crossref_primary_10_1039_D5EE00441A crossref_primary_10_1016_j_jcat_2024_115334 crossref_primary_10_1016_j_ympev_2024_108095 crossref_primary_10_1016_j_apmt_2023_101773 crossref_primary_10_1002_ange_202301042 crossref_primary_10_1016_j_jpowsour_2021_230437 crossref_primary_10_1016_j_jallcom_2023_171088 crossref_primary_10_1002_admt_202300404 crossref_primary_10_1002_ajoc_202200425 crossref_primary_10_1002_chem_202304201 crossref_primary_10_1002_chem_202301174 crossref_primary_10_1002_cctc_202500528 crossref_primary_10_1002_ejic_202100884 crossref_primary_10_1016_j_jallcom_2024_173699 crossref_primary_10_1016_j_jcat_2023_01_006 crossref_primary_10_1016_j_jcat_2025_116436 crossref_primary_10_1055_a_1657_2634 crossref_primary_10_1002_bmm2_12076 crossref_primary_10_1002_app_52620 crossref_primary_10_1002_adsu_202300381 crossref_primary_10_1002_anie_202301042 crossref_primary_10_1002_ejoc_202200313 crossref_primary_10_1016_j_renene_2024_121496 crossref_primary_10_1002_smll_202301638 crossref_primary_10_1088_1748_9326_ac5c10 crossref_primary_10_1002_adom_202301164 crossref_primary_10_3390_catal13071093 crossref_primary_10_1002_smll_202306402 crossref_primary_10_1063_5_0212073 crossref_primary_10_1016_j_poly_2021_115204 crossref_primary_10_1002_smll_202311388 crossref_primary_10_1080_1744666X_2024_2359019 crossref_primary_10_1016_j_fuel_2025_135559 crossref_primary_10_1002_aenm_202401530 crossref_primary_10_1007_s11426_022_1576_5 crossref_primary_10_1016_j_scs_2024_105451 crossref_primary_10_1088_1367_2630_ad5d83 crossref_primary_10_1039_D5QO00284B crossref_primary_10_1002_advs_202403771 crossref_primary_10_1088_1361_6633_adecb1 crossref_primary_10_1016_j_jorganchem_2024_123071 crossref_primary_10_1002_smll_202200439 crossref_primary_10_1021_jacs_5c00362 crossref_primary_10_1016_j_jaecs_2025_100334 crossref_primary_10_1039_D4SC05909C crossref_primary_10_1002_ange_202307987 crossref_primary_10_1136_jnnp_2022_328908 crossref_primary_10_1016_j_cej_2023_144591 crossref_primary_10_1002_advs_202302123 crossref_primary_10_1002_aenm_202300257 crossref_primary_10_1002_smll_202504104 crossref_primary_10_1002_ajoc_202300553 crossref_primary_10_1016_j_jclepro_2021_129735 crossref_primary_10_1002_adfm_202424965 crossref_primary_10_1021_jacs_4c16130 crossref_primary_10_1021_jacs_2c00548 crossref_primary_10_1039_D1SE01254A crossref_primary_10_1002_cctc_202400901 crossref_primary_10_1021_jacs_4c13266 crossref_primary_10_1002_chem_202202774 crossref_primary_10_1002_adma_202312207 crossref_primary_10_1002_cctc_202300258 |
| Cites_doi | 10.1016/j.catcom.2017.03.007 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0 10.1039/C7SC00138J 10.1002/anie.201607233 10.1021/acs.orglett.8b03132 10.1021/acs.accounts.5b00027 10.1002/anie.201814751 10.1039/C7CS00334J 10.1002/ejoc.201600018 10.1021/om030297k 10.1021/cr950026m 10.1021/acscatal.8b03899 10.1021/acs.organomet.9b00502 10.1002/9783527814237.ch5 10.1021/om0110989 10.1021/acs.organomet.8b00020 10.1002/anie.201808676 10.1021/jacs.9b05024 10.1016/S0277-5387(03)00407-8 10.1021/acscatal.8b00153 10.1021/acscatal.8b02530 10.1002/anie.201700681 10.1016/B978-0-12-605355-5.50016-1 10.1021/acs.orglett.9b01056 10.1002/anie.201701365 10.1002/anie.201901169 10.1002/tcr.201100019 10.1021/acscatal.8b02902 10.1021/om030581b 10.1002/anie.200704654 10.1002/adsc.201701115 10.1002/chem.201500937 10.1002/chem.201604991 10.1021/jacs.6b03709 10.1021/acscatal.9b03963 10.1039/C9FD00037B 10.1002/anie.201709180 10.1002/anie.201606218 10.1016/j.ccr.2015.06.015 10.1016/j.ccr.2020.213241 10.1002/anie.201709010 10.1002/cctc.201801860 10.1021/om0000818 10.1002/anie.201806289 10.1055/s-0036-1590818 10.1021/om010924a 10.1016/S0022-328X(00)00060-7 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-020-20168-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic Access via ProQuest (Open Access) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 8 |
| ExternalDocumentID | oai_doaj_org_article_2333ee82b085469698a0e16aa50c9ae0 PMC7782525 33397888 10_1038_s41467_020_20168_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 725686 funderid: https://doi.org/10.13039/100010663 – fundername: ; grantid: 725686 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-7ac706a54650a4cf92c2e3b9beac018321bd26f8adb598c2fed8b1ede06b849b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665625900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 04:35:20 EST 2025 Tue Nov 04 01:59:26 EST 2025 Thu Oct 02 10:45:49 EDT 2025 Sat Nov 29 14:49:16 EST 2025 Wed Feb 19 02:23:43 EST 2025 Tue Nov 18 22:28:00 EST 2025 Sat Nov 29 06:29:05 EST 2025 Fri Feb 21 02:39:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-7ac706a54650a4cf92c2e3b9beac018321bd26f8adb598c2fed8b1ede06b849b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9242-9901 0000-0002-4410-6398 0000-0001-8025-9968 |
| OpenAccessLink | https://doaj.org/article/2333ee82b085469698a0e16aa50c9ae0 |
| PMID | 33397888 |
| PQID | 2474982102 |
| PQPubID | 546298 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2333ee82b085469698a0e16aa50c9ae0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7782525 proquest_miscellaneous_2475396027 proquest_journals_2474982102 pubmed_primary_33397888 crossref_primary_10_1038_s41467_020_20168_2 crossref_citationtrail_10_1038_s41467_020_20168_2 springer_journals_10_1038_s41467_020_20168_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-04 |
| PublicationDateYYYYMMDD | 2021-01-04 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Vries, J. G. d. The Handbook of Homogeneous Hydrogenation (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007). AraiNOhkumaTDesign of molecular catalysts for achievement of high turnover number in homogeneous hydrogenationChem. Rec.2012122842891:CAS:528:DC%2BC3MXhs1SqurfE2216225710.1002/tcr.201100019 KallmeierFKempeRManganese complexes for (De) hydrogenation catalysis: a comparison to cobalt and iron catalystsAngew. Chem. Int. Ed.20185746601:CAS:528:DC%2BC2sXhvFensbjM10.1002/anie.201709010 PapaVEfficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complexChem. Sci.20178357635851:CAS:528:DC%2BC2sXjvVygtLc%3D30155202609271610.1039/C7SC00138J Clarke, M. L. & Widegren, M. B. in Homogeneous Hydrogenation with Non‐Precious Catalysts (ed. Teichert, J. F.). 111–140 (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2020). ElangovanSHydrogenation of esters to alcohols catalyzed by defined manganese pincer complexesAngew. Chem. Int. Ed.201649153641536810.1002/anie.2016072331:CAS:528:DC%2BC28Xhs1SlsrjJ LiHRhenium and manganese complexes bearing amino-bis(phosphinite) ligands: synthesis, characterization, and catalytic activity in hydrogenation of ketonesOrganomet201837127112791:CAS:528:DC%2BC1cXmvVKiu7Y%3D10.1021/acs.organomet.8b00020 KaithalAHölscherMLeitnerWCatalytic hydrogenation of cyclic carbonates using manganese complexesAngew. Chem. Int. Ed.20185713449134531:CAS:528:DC%2BC1cXhslWjtbnO10.1002/anie.201808676 GrützmacherHCooperating ligands in catalysisAngew. Chem. Int. Ed.2008471814181810.1002/anie.2007046541:CAS:528:DC%2BD1cXjtFWhsbs%3D ZellTMilsteinDHydrogenation and Dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatizationAcc. Chem. Res.201548197919941:CAS:528:DC%2BC2MXhtVakurnN2607967810.1021/acs.accounts.5b00027 KallmeierFIrrgangTDietelTKempeRHighly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation stateAngew. Chem. Int. Ed.20165511806118091:CAS:528:DC%2BC28XhsVChtLjE10.1002/anie.201606218 WerkmeisterSNeumannJJungeKBellerMPincer‐type complexes for catalytic (De) hydrogenation and transfer (De) hydrogenation reactions: recent progressChem. Eur. J.20152112226122501:CAS:528:DC%2BC2MXhtFOrtbvI2617937510.1002/chem.201500937 ValyaevDALavigneGLuganNManganese organometallic compounds in homogeneous catalysis: past, present, and prospectsCoord. Chem. Rev.20163081912351:CAS:528:DC%2BC2MXhtFyltbjF10.1016/j.ccr.2015.06.015 ZouY-QHighly selective, efficient deoxygenative hydrogenation of amides catalyzed by a manganese pincer complex via metal–ligand cooperationACS Catal.20188801480191:CAS:528:DC%2BC1cXhsVSrsLfK31080688650357910.1021/acscatal.8b02902 LingFHighly enantioselective synthesis of chiral benzhydrols via manganese catalyzed asymmetric hydrogenation of unsymmetrical benzophenones using an imidazole-based chiral PNN tridentate ligandOrg. Lett.201921393739411:CAS:528:DC%2BC1MXhtVChurzE3114138410.1021/acs.orglett.9b01056 WeberSStögerBVeirosLFKirchnerKRethinking basic concepts: hydrogenation of alkenes catalyzed by bench-stable alkyl Mn (I) complexesACS Catal.20199971597201:CAS:528:DC%2BC1MXhvVent7zF10.1021/acscatal.9b03963 ElangovanSSelective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexesJ. Am. Chem. Soc.2016138880988141:CAS:528:DC%2BC28XosFSgu7w%3D2721985310.1021/jacs.6b03709 GlatzMStögerBHimmelbauerDVeirosLFKirchnerKChemoselective hydrogenation of aldehydes under mild, base-free conditions: manganese outperforms rheniumACS Catal.20188400940161:CAS:528:DC%2BC1cXmvVart7w%3D29755828593990110.1021/acscatal.8b00153 Espinosa‐JalapaNAManganese‐catalyzed hydrogenation of esters to alcoholsChem. Eur. J.201723593459382779606010.1002/chem.2016049911:CAS:528:DC%2BC28XhvVGiurfL BraunsteinPNaudFHemilability of hybrid ligands and the coordination chemistry of oxazoline‐based systemsAngew. Chem. Int. Ed.2001406806991:CAS:528:DC%2BD3MXhs12qtr0%3D10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0 ZhangLLutidine‐based chiral pincer manganese catalysts for enantioselective hydrogenation of ketonesAngew. Chem. Int. Ed.201958497349771:CAS:528:DC%2BC1MXks12jsLo%3D10.1002/anie.201814751 WeberSStögerBKirchnerKHydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn (I) complexOrg. Lett.201820721272151:CAS:528:DC%2BC1cXitFWis7zN3039888310.1021/acs.orglett.8b03132 BuhaibehRPhosphine‐NHC manganese hydrogenation catalyst exhibiting a non‐classical metal‐ligand cooperative H2 activation modeAngew. Chem. Int. Ed.201958672767311:CAS:528:DC%2BC1MXmvVCnsL0%3D10.1002/anie.201901169 MüllerCVosDJutziPResults and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compoundsJ. Organomet. Chem.200060012714310.1016/S0022-328X(00)00060-7 Krut’koDPBorzovMVVekslerENChurakovAVMachKCrystal structures and solution dynamics of monocyclopentadienyl titanium (IV) complexes bearing pendant ether and phosphanyl type functionalitiesPolyhedron2003222885289410.1016/S0277-5387(03)00407-81:CAS:528:DC%2BD3sXntVOqt7o%3D ChandraPGhoshTChoudharyNMohammadAMobinSMRecent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalystsCoord. Chem. Rev.202041121324110.1016/j.ccr.2020.2132411:CAS:528:DC%2BB3cXktlGitrg%3D WeiCAluminum complexes bearing bidentate amido–phosphine ligands for ring-opening polymerization of ε-caprolactone: steric effect on coordination chemistry and reactivityOrganometallics201938381638231:CAS:528:DC%2BC1MXhslenur%2FK10.1021/acs.organomet.9b00502 FoerstnerJKakoschkeAWartchowRButenschönHReactions of cyclopropenone derivatives with a cyclopentadienylcobalt (I) chelate: formation of a cobaltacyclobutenone and a transformation of 2, 2-dimethoxycyclopropenone to methyl acrylate at cobaltOrganometallics200019210821131:CAS:528:DC%2BD3cXislCitLw%3D10.1021/om0000818 PuttenRVNon‐pincer‐type manganese complexes as efficient catalysts for the hydrogenation of estersAngew. Chem., Int. Ed.2017567531753410.1002/anie.2017013651:CAS:528:DC%2BC2sXmsFans74%3D ChakrabortySManganese‐catalyzed N‐formylation of amines by methanol liberating H2: a catalytic and mechanistic studyAngew. Chem. Int. Ed.201756422942331:CAS:528:DC%2BC2sXksVOrsLg%3D10.1002/anie.201700681 FilonenkoGAvan PuttenRHensenEJPidkoEACatalytic (de) hydrogenation promoted by non-precious metals–Co, Fe and Mn: recent advances in an emerging fieldChem. Soc. Rev.201847145914831:CAS:528:DC%2BC1cXotFeitQ%3D%3D2933438810.1039/C7CS00334J EliassonSHHJensenVRBenefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenesFaraday Discuss.20192202312482019FaDi..220..231H10.1039/C9FD00037B FreitagFIrrgangTKempeRMechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalystJ. Am. Chem. Soc.201914111677116851:CAS:528:DC%2BC1MXht1yns7bF3125159610.1021/jacs.9b05024 PuttenREfficient and practical transfer hydrogenation of ketones catalyzed by a simple bidentate Mn−NHC complexChemCatChem20191115 KumarADirect synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalystAngew. Chem. Int. Ed.20175614992149961:CAS:528:DC%2BC2sXhs1yjtL3J10.1002/anie.201709180 KumarAJanesTEspinosa‐JalapaNAMilsteinDManganese catalyzed hydrogenation of organic carbonates to methanol and alcoholsAngew. Chem. Int. Ed.20185712076120801:CAS:528:DC%2BC1cXhsVKrtr7O10.1002/anie.201806289 Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses: Paul Rylander (Academic, New York, 1979). BeckerENovel [2+2+1] cyclotrimerization of alkynes mediated by bidentate cyclopentadienyl-phosphine ruthenium complexesOrganometallics200322316431701:CAS:528:DC%2BD3sXkvVaitL0%3D10.1021/om030297k SniderBBManganese (III)-based oxidative free-radical cyclizationsChem. Rev.1996963393641:CAS:528:DyaK28XjsVKluw%3D%3D1184875610.1021/cr950026m YongLHoferEWartchowRButenschönHOxidative addition of hydrosilanes, hydrogermane, and hydrostannane to cyclopentadienylcobalt (I) bearing a pendant phosphane ligand: cyclopentadienylhydridocobalt (III) chelate complexes with silyl, germyl, and stannyl ligandsOrganometallics200322546354671:CAS:528:DC%2BD3sXovFyhs70%3D10.1021/om030581b MajiBBarmanMKRecent developments of manganese complexes for catalytic hydrogenation and dehydrogenation reactionsSynthesis201749337733931:CAS:528:DC%2BC2sXhtFygtrzK10.1055/s-0036-1590818 CarneyJRDillonBRThomasSPRecent advances of manganese catalysis for organic synthesisEur. J. Org. Chem.20162016391239291:CAS:528:DC%2BC28XhtV2msrzL10.1002/ejoc.201600018 MüllerCLachicotteRJJonesWDCatalytic C−C bond activation in biphenylene and cyclotrimerization of alkynes: increased reactivity of P, N-versus P, P-substituted nickel complexesOrganometallics2002211975198110.1021/om01109891:CAS:528:DC%2BD38XisFalsLY%3D WeiDHydrogenation of carbonyl derivatives catalysed by manganese complexes bearing bidentate pyridinyl‐phosphine ligandsAdv. Synth. Catal.20183606766811:CAS:528:DC%2BC2sXhvFyjtL7F10.1002/adsc.201701115 YuX-JHemilabile N-heterocyclic carbene (NHC)-nitrogen-phosphine mediated Ru (II)-catalyzed N-alkylation of aromatic amine with alcohol efficientlyCatal. Commun.20179554571:CAS:528:DC%2BC2sXkslOht7o%3D10.1016/j.catcom.2017.03.007 GarduñoJAGarcíaJJNon-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary aminesACS Catal.2018939240110.1021/acscatal.8b038991:CAS:528:DC%2BC1cXisVSgsL3I MüllerCLachicotteRJJonesWDChelating P, N versus P, P ligands: differing reactivity of donor-stabilized Pt (η2-PhC⋮ CPh) complexes toward diphenylacetyleneOrganometallics2002211118112310.1021/om010924a1:CAS:528:DC%2BD38XhtFalu78%3D FertigRManganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensationACS Catal.20188852585301:CAS:528:DC%2BC1cXhsVOjsL%2FJ10.1021/acscatal.8b02530 N Arai (20168_CR3) 2012; 12 C Müller (20168_CR40) 2002; 21 H Li (20168_CR20) 2018; 37 20168_CR7 S Elangovan (20168_CR15) 2016; 49 20168_CR1 L Zhang (20168_CR30) 2019; 58 C Müller (20168_CR39) 2002; 21 20168_CR2 F Ling (20168_CR27) 2019; 21 SHH Eliasson (20168_CR37) 2019; 220 F Kallmeier (20168_CR28) 2016; 55 DA Valyaev (20168_CR11) 2016; 308 S Weber (20168_CR22) 2019; 9 F Freitag (20168_CR16) 2019; 141 F Kallmeier (20168_CR9) 2018; 57 R Buhaibeh (20168_CR34) 2019; 58 BB Snider (20168_CR13) 1996; 96 RV Putten (20168_CR31) 2017; 56 L Zhang (20168_CR26) 2019; 58 J Foerstner (20168_CR38) 2000; 19 T Zell (20168_CR6) 2015; 48 P Braunstein (20168_CR42) 2001; 40 S Chakraborty (20168_CR48) 2017; 56 C Müller (20168_CR44) 2000; 600 A Kaithal (20168_CR18) 2018; 57 Y-Q Zou (20168_CR24) 2018; 8 DP Krut’ko (20168_CR45) 2003; 22 P Chandra (20168_CR8) 2020; 411 H Grützmacher (20168_CR43) 2008; 47 L Yong (20168_CR46) 2003; 22 R Fertig (20168_CR25) 2018; 8 S Werkmeister (20168_CR5) 2015; 21 M Glatz (20168_CR17) 2018; 8 NA Espinosa‐Jalapa (20168_CR29) 2017; 23 A Kumar (20168_CR49) 2017; 56 X-J Yu (20168_CR47) 2017; 95 R Putten (20168_CR35) 2019; 11 V Papa (20168_CR21) 2017; 8 JR Carney (20168_CR12) 2016; 2016 S Weber (20168_CR32) 2018; 20 S Elangovan (20168_CR14) 2016; 138 E Becker (20168_CR36) 2003; 22 GA Filonenko (20168_CR4) 2018; 47 A Kumar (20168_CR19) 2018; 57 D Wei (20168_CR23) 2018; 360 C Wei (20168_CR41) 2019; 38 JA Garduño (20168_CR33) 2018; 9 B Maji (20168_CR10) 2017; 49 |
| References_xml | – reference: FilonenkoGAvan PuttenRHensenEJPidkoEACatalytic (de) hydrogenation promoted by non-precious metals–Co, Fe and Mn: recent advances in an emerging fieldChem. Soc. Rev.201847145914831:CAS:528:DC%2BC1cXotFeitQ%3D%3D2933438810.1039/C7CS00334J – reference: PapaVEfficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complexChem. Sci.20178357635851:CAS:528:DC%2BC2sXjvVygtLc%3D30155202609271610.1039/C7SC00138J – reference: BuhaibehRPhosphine‐NHC manganese hydrogenation catalyst exhibiting a non‐classical metal‐ligand cooperative H2 activation modeAngew. Chem. Int. Ed.201958672767311:CAS:528:DC%2BC1MXmvVCnsL0%3D10.1002/anie.201901169 – reference: Clarke, M. L. & Widegren, M. B. in Homogeneous Hydrogenation with Non‐Precious Catalysts (ed. Teichert, J. F.). 111–140 (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2020). – reference: WeberSStögerBKirchnerKHydrogenation of nitriles and ketones catalyzed by an air-stable bisphosphine Mn (I) complexOrg. Lett.201820721272151:CAS:528:DC%2BC1cXitFWis7zN3039888310.1021/acs.orglett.8b03132 – reference: KallmeierFKempeRManganese complexes for (De) hydrogenation catalysis: a comparison to cobalt and iron catalystsAngew. Chem. Int. Ed.20185746601:CAS:528:DC%2BC2sXhvFensbjM10.1002/anie.201709010 – reference: EliassonSHHJensenVRBenefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenesFaraday Discuss.20192202312482019FaDi..220..231H10.1039/C9FD00037B – reference: Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses: Paul Rylander (Academic, New York, 1979). – reference: PuttenREfficient and practical transfer hydrogenation of ketones catalyzed by a simple bidentate Mn−NHC complexChemCatChem20191115 – reference: ZouY-QHighly selective, efficient deoxygenative hydrogenation of amides catalyzed by a manganese pincer complex via metal–ligand cooperationACS Catal.20188801480191:CAS:528:DC%2BC1cXhsVSrsLfK31080688650357910.1021/acscatal.8b02902 – reference: MajiBBarmanMKRecent developments of manganese complexes for catalytic hydrogenation and dehydrogenation reactionsSynthesis201749337733931:CAS:528:DC%2BC2sXhtFygtrzK10.1055/s-0036-1590818 – reference: ElangovanSSelective catalytic hydrogenations of nitriles, ketones, and aldehydes by well-defined manganese pincer complexesJ. Am. Chem. Soc.2016138880988141:CAS:528:DC%2BC28XosFSgu7w%3D2721985310.1021/jacs.6b03709 – reference: KallmeierFIrrgangTDietelTKempeRHighly active and selective manganese C=O bond hydrogenation catalysts: the importance of the multidentate ligand, the ancillary ligands, and the oxidation stateAngew. Chem. Int. Ed.20165511806118091:CAS:528:DC%2BC28XhsVChtLjE10.1002/anie.201606218 – reference: ValyaevDALavigneGLuganNManganese organometallic compounds in homogeneous catalysis: past, present, and prospectsCoord. Chem. Rev.20163081912351:CAS:528:DC%2BC2MXhtFyltbjF10.1016/j.ccr.2015.06.015 – reference: WerkmeisterSNeumannJJungeKBellerMPincer‐type complexes for catalytic (De) hydrogenation and transfer (De) hydrogenation reactions: recent progressChem. Eur. J.20152112226122501:CAS:528:DC%2BC2MXhtFOrtbvI2617937510.1002/chem.201500937 – reference: ZhangLLutidine‐based chiral pincer manganese catalysts for enantioselective hydrogenation of ketonesAngew. Chem. Int. Ed.201958497349771:CAS:528:DC%2BC1MXks12jsLo%3D10.1002/anie.201814751 – reference: PuttenRVNon‐pincer‐type manganese complexes as efficient catalysts for the hydrogenation of estersAngew. Chem., Int. Ed.2017567531753410.1002/anie.2017013651:CAS:528:DC%2BC2sXmsFans74%3D – reference: YongLHoferEWartchowRButenschönHOxidative addition of hydrosilanes, hydrogermane, and hydrostannane to cyclopentadienylcobalt (I) bearing a pendant phosphane ligand: cyclopentadienylhydridocobalt (III) chelate complexes with silyl, germyl, and stannyl ligandsOrganometallics200322546354671:CAS:528:DC%2BD3sXovFyhs70%3D10.1021/om030581b – reference: KaithalAHölscherMLeitnerWCatalytic hydrogenation of cyclic carbonates using manganese complexesAngew. Chem. Int. Ed.20185713449134531:CAS:528:DC%2BC1cXhslWjtbnO10.1002/anie.201808676 – reference: ChakrabortySManganese‐catalyzed N‐formylation of amines by methanol liberating H2: a catalytic and mechanistic studyAngew. Chem. Int. Ed.201756422942331:CAS:528:DC%2BC2sXksVOrsLg%3D10.1002/anie.201700681 – reference: WeberSStögerBVeirosLFKirchnerKRethinking basic concepts: hydrogenation of alkenes catalyzed by bench-stable alkyl Mn (I) complexesACS Catal.20199971597201:CAS:528:DC%2BC1MXhvVent7zF10.1021/acscatal.9b03963 – reference: FoerstnerJKakoschkeAWartchowRButenschönHReactions of cyclopropenone derivatives with a cyclopentadienylcobalt (I) chelate: formation of a cobaltacyclobutenone and a transformation of 2, 2-dimethoxycyclopropenone to methyl acrylate at cobaltOrganometallics200019210821131:CAS:528:DC%2BD3cXislCitLw%3D10.1021/om0000818 – reference: GrützmacherHCooperating ligands in catalysisAngew. Chem. Int. Ed.2008471814181810.1002/anie.2007046541:CAS:528:DC%2BD1cXjtFWhsbs%3D – reference: ElangovanSHydrogenation of esters to alcohols catalyzed by defined manganese pincer complexesAngew. Chem. Int. Ed.201649153641536810.1002/anie.2016072331:CAS:528:DC%2BC28Xhs1SlsrjJ – reference: GarduñoJAGarcíaJJNon-pincer Mn (I) organometallics for the selective catalytic hydrogenation of nitriles to primary aminesACS Catal.2018939240110.1021/acscatal.8b038991:CAS:528:DC%2BC1cXisVSgsL3I – reference: Vries, J. G. d. The Handbook of Homogeneous Hydrogenation (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007). – reference: FertigRManganese-catalyzed and base-switchable synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensationACS Catal.20188852585301:CAS:528:DC%2BC1cXhsVOjsL%2FJ10.1021/acscatal.8b02530 – reference: BraunsteinPNaudFHemilability of hybrid ligands and the coordination chemistry of oxazoline‐based systemsAngew. Chem. Int. Ed.2001406806991:CAS:528:DC%2BD3MXhs12qtr0%3D10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0 – reference: ChandraPGhoshTChoudharyNMohammadAMobinSMRecent advancement in oxidation or acceptorless dehydrogenation of alcohols to valorised products using manganese based catalystsCoord. Chem. Rev.202041121324110.1016/j.ccr.2020.2132411:CAS:528:DC%2BB3cXktlGitrg%3D – reference: KumarAJanesTEspinosa‐JalapaNAMilsteinDManganese catalyzed hydrogenation of organic carbonates to methanol and alcoholsAngew. Chem. Int. Ed.20185712076120801:CAS:528:DC%2BC1cXhsVKrtr7O10.1002/anie.201806289 – reference: ZellTMilsteinDHydrogenation and Dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatizationAcc. Chem. Res.201548197919941:CAS:528:DC%2BC2MXhtVakurnN2607967810.1021/acs.accounts.5b00027 – reference: SniderBBManganese (III)-based oxidative free-radical cyclizationsChem. Rev.1996963393641:CAS:528:DyaK28XjsVKluw%3D%3D1184875610.1021/cr950026m – reference: YuX-JHemilabile N-heterocyclic carbene (NHC)-nitrogen-phosphine mediated Ru (II)-catalyzed N-alkylation of aromatic amine with alcohol efficientlyCatal. Commun.20179554571:CAS:528:DC%2BC2sXkslOht7o%3D10.1016/j.catcom.2017.03.007 – reference: WeiCAluminum complexes bearing bidentate amido–phosphine ligands for ring-opening polymerization of ε-caprolactone: steric effect on coordination chemistry and reactivityOrganometallics201938381638231:CAS:528:DC%2BC1MXhslenur%2FK10.1021/acs.organomet.9b00502 – reference: WeiDHydrogenation of carbonyl derivatives catalysed by manganese complexes bearing bidentate pyridinyl‐phosphine ligandsAdv. Synth. Catal.20183606766811:CAS:528:DC%2BC2sXhvFyjtL7F10.1002/adsc.201701115 – reference: LingFHighly enantioselective synthesis of chiral benzhydrols via manganese catalyzed asymmetric hydrogenation of unsymmetrical benzophenones using an imidazole-based chiral PNN tridentate ligandOrg. Lett.201921393739411:CAS:528:DC%2BC1MXhtVChurzE3114138410.1021/acs.orglett.9b01056 – reference: GlatzMStögerBHimmelbauerDVeirosLFKirchnerKChemoselective hydrogenation of aldehydes under mild, base-free conditions: manganese outperforms rheniumACS Catal.20188400940161:CAS:528:DC%2BC1cXmvVart7w%3D29755828593990110.1021/acscatal.8b00153 – reference: MüllerCLachicotteRJJonesWDCatalytic C−C bond activation in biphenylene and cyclotrimerization of alkynes: increased reactivity of P, N-versus P, P-substituted nickel complexesOrganometallics2002211975198110.1021/om01109891:CAS:528:DC%2BD38XisFalsLY%3D – reference: KumarADirect synthesis of amides by dehydrogenative coupling of amines with either alcohols or esters: manganese pincer complex as catalystAngew. Chem. Int. Ed.20175614992149961:CAS:528:DC%2BC2sXhs1yjtL3J10.1002/anie.201709180 – reference: CarneyJRDillonBRThomasSPRecent advances of manganese catalysis for organic synthesisEur. J. Org. Chem.20162016391239291:CAS:528:DC%2BC28XhtV2msrzL10.1002/ejoc.201600018 – reference: LiHRhenium and manganese complexes bearing amino-bis(phosphinite) ligands: synthesis, characterization, and catalytic activity in hydrogenation of ketonesOrganomet201837127112791:CAS:528:DC%2BC1cXmvVKiu7Y%3D10.1021/acs.organomet.8b00020 – reference: BeckerENovel [2+2+1] cyclotrimerization of alkynes mediated by bidentate cyclopentadienyl-phosphine ruthenium complexesOrganometallics200322316431701:CAS:528:DC%2BD3sXkvVaitL0%3D10.1021/om030297k – reference: FreitagFIrrgangTKempeRMechanistic studies of hydride transfer to imines from a highly active and chemoselective manganate catalystJ. Am. Chem. Soc.201914111677116851:CAS:528:DC%2BC1MXht1yns7bF3125159610.1021/jacs.9b05024 – reference: Espinosa‐JalapaNAManganese‐catalyzed hydrogenation of esters to alcoholsChem. Eur. J.201723593459382779606010.1002/chem.2016049911:CAS:528:DC%2BC28XhvVGiurfL – reference: AraiNOhkumaTDesign of molecular catalysts for achievement of high turnover number in homogeneous hydrogenationChem. Rec.2012122842891:CAS:528:DC%2BC3MXhs1SqurfE2216225710.1002/tcr.201100019 – reference: MüllerCVosDJutziPResults and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compoundsJ. Organomet. Chem.200060012714310.1016/S0022-328X(00)00060-7 – reference: Krut’koDPBorzovMVVekslerENChurakovAVMachKCrystal structures and solution dynamics of monocyclopentadienyl titanium (IV) complexes bearing pendant ether and phosphanyl type functionalitiesPolyhedron2003222885289410.1016/S0277-5387(03)00407-81:CAS:528:DC%2BD3sXntVOqt7o%3D – reference: MüllerCLachicotteRJJonesWDChelating P, N versus P, P ligands: differing reactivity of donor-stabilized Pt (η2-PhC⋮ CPh) complexes toward diphenylacetyleneOrganometallics2002211118112310.1021/om010924a1:CAS:528:DC%2BD38XhtFalu78%3D – volume: 95 start-page: 54 year: 2017 ident: 20168_CR47 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.03.007 – ident: 20168_CR2 – volume: 40 start-page: 680 year: 2001 ident: 20168_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010216)40:4<680::AID-ANIE6800>3.0.CO;2-0 – volume: 8 start-page: 3576 year: 2017 ident: 20168_CR21 publication-title: Chem. Sci. doi: 10.1039/C7SC00138J – volume: 49 start-page: 15364 year: 2016 ident: 20168_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201607233 – volume: 20 start-page: 7212 year: 2018 ident: 20168_CR32 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b03132 – volume: 48 start-page: 1979 year: 2015 ident: 20168_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00027 – volume: 58 start-page: 4973 year: 2019 ident: 20168_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814751 – volume: 47 start-page: 1459 year: 2018 ident: 20168_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00334J – volume: 2016 start-page: 3912 year: 2016 ident: 20168_CR12 publication-title: Eur. J. Org. Chem. doi: 10.1002/ejoc.201600018 – volume: 22 start-page: 3164 year: 2003 ident: 20168_CR36 publication-title: Organometallics doi: 10.1021/om030297k – volume: 96 start-page: 339 year: 1996 ident: 20168_CR13 publication-title: Chem. Rev. doi: 10.1021/cr950026m – volume: 9 start-page: 392 year: 2018 ident: 20168_CR33 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03899 – volume: 38 start-page: 3816 year: 2019 ident: 20168_CR41 publication-title: Organometallics doi: 10.1021/acs.organomet.9b00502 – ident: 20168_CR7 doi: 10.1002/9783527814237.ch5 – volume: 21 start-page: 1975 year: 2002 ident: 20168_CR39 publication-title: Organometallics doi: 10.1021/om0110989 – volume: 37 start-page: 1271 year: 2018 ident: 20168_CR20 publication-title: Organomet doi: 10.1021/acs.organomet.8b00020 – volume: 57 start-page: 13449 year: 2018 ident: 20168_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201808676 – volume: 141 start-page: 11677 year: 2019 ident: 20168_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05024 – volume: 22 start-page: 2885 year: 2003 ident: 20168_CR45 publication-title: Polyhedron doi: 10.1016/S0277-5387(03)00407-8 – volume: 8 start-page: 4009 year: 2018 ident: 20168_CR17 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00153 – volume: 58 start-page: 4973 year: 2019 ident: 20168_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814751 – volume: 8 start-page: 8525 year: 2018 ident: 20168_CR25 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02530 – volume: 56 start-page: 4229 year: 2017 ident: 20168_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700681 – ident: 20168_CR1 doi: 10.1016/B978-0-12-605355-5.50016-1 – volume: 21 start-page: 3937 year: 2019 ident: 20168_CR27 publication-title: Org. Lett. doi: 10.1021/acs.orglett.9b01056 – volume: 56 start-page: 7531 year: 2017 ident: 20168_CR31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701365 – volume: 58 start-page: 6727 year: 2019 ident: 20168_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901169 – volume: 12 start-page: 284 year: 2012 ident: 20168_CR3 publication-title: Chem. Rec. doi: 10.1002/tcr.201100019 – volume: 8 start-page: 8014 year: 2018 ident: 20168_CR24 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02902 – volume: 22 start-page: 5463 year: 2003 ident: 20168_CR46 publication-title: Organometallics doi: 10.1021/om030581b – volume: 47 start-page: 1814 year: 2008 ident: 20168_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704654 – volume: 360 start-page: 676 year: 2018 ident: 20168_CR23 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201701115 – volume: 21 start-page: 12226 year: 2015 ident: 20168_CR5 publication-title: Chem. Eur. J. doi: 10.1002/chem.201500937 – volume: 23 start-page: 5934 year: 2017 ident: 20168_CR29 publication-title: Chem. Eur. J. doi: 10.1002/chem.201604991 – volume: 138 start-page: 8809 year: 2016 ident: 20168_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03709 – volume: 9 start-page: 9715 year: 2019 ident: 20168_CR22 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03963 – volume: 220 start-page: 231 year: 2019 ident: 20168_CR37 publication-title: Faraday Discuss. doi: 10.1039/C9FD00037B – volume: 56 start-page: 14992 year: 2017 ident: 20168_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709180 – volume: 55 start-page: 11806 year: 2016 ident: 20168_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606218 – volume: 308 start-page: 191 year: 2016 ident: 20168_CR11 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.06.015 – volume: 411 start-page: 213 year: 2020 ident: 20168_CR8 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213241 – volume: 57 start-page: 46 year: 2018 ident: 20168_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709010 – volume: 11 start-page: 1 year: 2019 ident: 20168_CR35 publication-title: ChemCatChem doi: 10.1002/cctc.201801860 – volume: 19 start-page: 2108 year: 2000 ident: 20168_CR38 publication-title: Organometallics doi: 10.1021/om0000818 – volume: 57 start-page: 12076 year: 2018 ident: 20168_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806289 – volume: 49 start-page: 3377 year: 2017 ident: 20168_CR10 publication-title: Synthesis doi: 10.1055/s-0036-1590818 – volume: 21 start-page: 1118 year: 2002 ident: 20168_CR40 publication-title: Organometallics doi: 10.1021/om010924a – volume: 600 start-page: 127 year: 2000 ident: 20168_CR44 publication-title: J. Organomet. Chem. doi: 10.1016/S0022-328X(00)00060-7 |
| SSID | ssj0000391844 |
| Score | 2.5995579 |
| Snippet | Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While... Manganese-based hydrogenation catalysts are sensitive to high temperatures and may degrade under industrially relevant conditions. Here, the authors report a... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12 |
| SubjectTerms | 119/118 140/131 639/638/77/885 639/638/77/888 639/638/911/406/939 Aldehydes Carbonyl compounds Carbonyls Catalysis Catalysts Coordination compounds Esters Formate esters High temperature Humanities and Social Sciences Hydrogen storage Hydrogenation Imines Ketones Manganese multidisciplinary Noble metals Science Science (multidisciplinary) Stability |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQkJE4gCCqYzuJfUKAqOBAVSGQerP8mHRXKklJdlH33-Nxslstj164RYmTjDPj8bzyDSHPhawsNE7nAFWTS8F8bpta5tEZ0TxIiZmv1GyiPjhQR0f6cAq4DVNZ5VonJkUdOo8x8j0ua6kVOihvTn_k2DUKs6tTC43L5AqiJIhUune4ibEg-rmScvpXhgm1N8ikGdBnijtfFYVkaz9KsP1_szX_LJn8LW-atqP9m_87kVvkxmSI0rej5Nwml6C9Q66NrSlXd8nsS-eWw4LaNlBIMBORJDpbhb6LIpfYSbuGets7rG2nWJqOHZoGmgJCqwECdSv6fX4WD0LXdj393L749JIiHAT0afwJnMFwj3zb__D1_cd86sqQ-2jdLfLa-ppVFpuoMyt9o7nnIJx2UYUzVBCFC7xqlA2u1MrzBoJyBQRglVNSO3Gf7LRdCw8JLQrnRTSAtOdMeildFR8O0QRqgIGVkJFizRvjJ8hy7JxxYlLqXCgz8tNEfprET8Mz8mpzz-kI2HHh6HfI8s1IBNtOJ7r-2Exr13AhBIDiLpqnkdhKK8ugqKwtmdcWWEZ215w2kwYYzDmbM_JsczmuXUzI2Ba6ZRpTiuhC8jojD0b52lAS36kxPJGRekvytkjdvtLOZwkfvI5WX8nLjLxey-g5Wf_-FI8unsVjcp1jOQ9Gn-Qu2Vn0S3hCrvqfi_nQP03r7hdh-zVj priority: 102 providerName: ProQuest |
| Title | Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes |
| URI | https://link.springer.com/article/10.1038/s41467-020-20168-2 https://www.ncbi.nlm.nih.gov/pubmed/33397888 https://www.proquest.com/docview/2474982102 https://www.proquest.com/docview/2475396027 https://pubmed.ncbi.nlm.nih.gov/PMC7782525 https://doaj.org/article/2333ee82b085469698a0e16aa50c9ae0 |
| Volume | 12 |
| WOSCitedRecordID | wos000665625900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1di9QwMOip4Iv4eVbPJYIPipZrk7RJHj25w3u4pRwKqy8lSafswtlKuyu3_95J2l1v_XzxJZRm2g7zkcxkpjOEvOAiN1BbHQPkdSx44mJTSxGjM6JZJYSPfIVmE3I6VbOZLq60-vI5YUN54IFwh4xzDqCYRdsAXblcK5NAmhuTJU4bCN46Wj1XnKmwBnONrosY_5JJuDrsRVgTvLeEe16O4rGzE4WC_b-zMn9NlvwpYho2opO75M5oQdK3A-b3yDVo7pNbQ0_J9QMyP2_tql9S01QUQn0IfCOdr6uuRVkJfKBtTZ3prE9Kpz6n3LdW6mk4yVn3UFG7pl8Wl3hRtU3b0bPm5ekr6us4QBfgL-AS-ofk48nxh3fv47GdQuzQLFvG0jiZ5MZ3P0-McLVmjgG32uLam3jNTm3F8lqZymZaOVZDpWwKFSS5VUJb_ojsNW0DjwlNU-s4Wi7asUQ4IWyOLwe0XWpIwAiISLohbenGWuO-5cVFGWLeXJUDO0pkRxnYUbKIvN4-83WotPFX6CPPsS2kr5IdbqDslKPslP-SnYgcbPhdjqrbl0xIoZX3hCPyfDuNSucjKaaBdhVgMo6-H5MR2R_EY4sJflP7c4WIyB3B2UF1d6ZZzENhb4nmWsayiLzZiNgPtP5Miif_gxRPyW3ms3X84ZI4IHvLbgXPyE33bbnouwm5LmcyjGpCbhwdT4vzSVC4ic-VLXAsss84U5yeFZ--AxXqLbM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3oVAASOBBIKoieNN7ANCvKqu2q4qVKTejO1M2JVKUpJd6P4pfiO2k2y1PHrrgVuUOIntfDOeGU_mA3iSsFRhoUWImBYhSyITqiJjoXVGBM0ZcztfnmwiG4344aHYX4Gf_b8wLq2y14leUeeVcTHyTcoyJrhzUF4ffwsda5TbXe0pNFpY7OD8h3XZmlfD9_b7PqV068PBu-2wYxUIjbVOpmGmTBalypGAR4qZQlBDMdFCWxUUOYDHOqdpwVWuB4IbWmDOdYw5RqnmTOjEPvcCXLRmBOU-VXB_EdNx1dY5Y92_OVHCNxvmNZHz0exKm1pQLq1_nibgb7btnymav-3T-uVv69r_NnHX4WpnaJM3rWTcgBUsb8LllnpzfgvGHys9a6ZElTlBX0bDTgEZz_O6siLl4UqqghhVa5e7T1zqvWOgaogPeM0bzImek6-TE3uQV2VVk73y2fA5ceUusPbtj_AEm9vw6VyGuQ6rZVXiXSBxrE1iDTxhaMQMYzq1D0dr4hUYoWIYQNxjQZquJLtjBjmSPjUg4bLFj7T4kR4_kgbwYnHPcVuQ5MzWbx3EFi1dMXF_oqq_yE43SZokCSKn2prftrOp4CrCOFVqEBmhMApgo0eW7DRcI09hFcDjxWWrm9yGkyqxmvk2g8S6yDQL4E6L50VP7DuFC78EkC0hfamry1fKydjXP8-sVTuggwBe9jJx2q1_T8W9s0fxCNa2D_Z25e5wtHMfrlCXuuQibWwDVqf1DB_AJfN9Omnqh17mCXw-b1n5BfwYlLI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASOBBIJoE8eb2AeEgFKxKqxWiEq9GduZsCuVpCS70P1r_DpsJ9lqefTWA7cocRLb-WY8M57MB_AoYanCQosQMS1ClkQmVEXGQuuMCJoz5na-PNlENh7z_X0x2YCf_b8wLq2y14leUeeVcTHyAWUZE9w5KIOiS4uYbO-8PPwWOgYpt9Pa02m0ENnF5Q_rvjUvRtv2Wz-mdOftpzfvwo5hIDTWUpmHmTJZlCpHCB4pZgpBDcVEC23VUeTAHuucpgVXuR4KbmiBOdcx5hilmjOhE_vcM3A2c0XLfdrgZBXfcZXXOWPdfzpRwgcN81rJ-Wt21U0tQNfWQk8Z8Dc79890zd_2bP1SuHP5f57EK3CpM8DJq1ZirsIGltfgfEvJubwO04-VXjRzosqcoC-vYaeDTJd5XVlR8zAmVUGMqrXL6ScuJd8xUzXEB8KWDeZEL8nX2ZE9yKuyqsmH8snoKXFlMLD27Q_wCJsbsHcqw7wJm2VV4m0gcaxNYg0_YWjEDGM6tQ9Ha_oVGKFiGEDc40KarlS7Yww5kD5lIOGyxZK0WJIeS5IG8Gx1z2FbqOTE1q8d3FYtXZFxf6Kqv8hOZ0maJAkip9qa5bazqeAqwjhVahgZoTAKYKtHmew0XyOPIRbAw9Vlq7PcRpQqsVr4NsPEus40C-BWi-1VT-w7hQvLBJCtoX6tq-tXytnU10XPrLU7pMMAnvfycdytf0_FnZNH8QAuWBGR70fj3btwkbqMJheAY1uwOa8XeA_Ome_zWVPf9-JP4PNpi8ovjGudbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+efficient+hydrogenation+of+carbonyl+compounds+catalysed+by+mixed+donor+Mn%28I%29+pincer+complexes&rft.jtitle=Nature+communications&rft.au=Wenjun+Yang&rft.au=Ivan+Yu.+Chernyshov&rft.au=Robin+K.+A.+van+Schendel&rft.au=Manuela+Weber&rft.date=2021-01-04&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-020-20168-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2333ee82b085469698a0e16aa50c9ae0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |