Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data

The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 12; číslo 1; s. 5261 - 15
Hlavní autoři: Zhao, Yifan, Cai, Huiyu, Zhang, Zuobai, Tang, Jian, Li, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 06.09.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 6 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-25534-2