Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the...
Uloženo v:
| Vydáno v: | Nature communications Ročník 12; číslo 1; s. 5261 - 15 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
06.09.2021
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10
6
cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions. |
|---|---|
| AbstractList | The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10
6
cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 6 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions. The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions. The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. |
| ArticleNumber | 5261 |
| Author | Zhang, Zuobai Zhao, Yifan Li, Yue Tang, Jian Cai, Huiyu |
| Author_xml | – sequence: 1 givenname: Yifan orcidid: 0000-0003-4829-1428 surname: Zhao fullname: Zhao, Yifan organization: School of Computer Science, McGill University, Harvard-MIT Health Sciences and Technology – sequence: 2 givenname: Huiyu orcidid: 0000-0001-8506-537X surname: Cai fullname: Cai, Huiyu organization: Department of Machine Intelligence, Peking University – sequence: 3 givenname: Zuobai surname: Zhang fullname: Zhang, Zuobai organization: School of Computer Science, Fudan University – sequence: 4 givenname: Jian surname: Tang fullname: Tang, Jian email: jian.tang@hec.ca organization: HEC Montreal – sequence: 5 givenname: Yue orcidid: 0000-0003-3844-4865 surname: Li fullname: Li, Yue email: yueli@cs.mcgill.ca organization: School of Computer Science, McGill University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34489404$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UsFu1TAQtFARbR_9AQ4oEhcuAduxE_uChCoolZ7EBc6W7WyCnxL7YTtI_XucpoW2h_pia3dmNLuec3TigweE3hD8geBGfEyMsLarMSU15bxhNX2BzihmpCYdbU4evE_RRUoHXE4jiWDsFTptGBOSYXaGzB509M6PlfMZ4jFC1maCysI0LZOOlfZ9NYKHKrnR67xEqGA20PeFk6ohhrl0_DhBvVKqHLVPNrpjDrOzVa-zfo1eDnpKcHF379DPr19-XH6r99-vri8_72vLGc5123PcWw1GypZLLagRZUQxSCmppoMhpdBxjo0UTY97Li0hHVgtmGk1G5pmh6433T7ogzpGN-t4o4J26rYQ4qh0zM5OoDopseQSDDWFarGEthOYMxAMSLFTtD5tWsfFzNBb8GWw6ZHo4453v9QY_ijBKGF4NfP-TiCG3wukrGaX1g1pD2FJivIOEyxl-bodevcEeghL9GVVBdVKJhrCSUG9fejon5X7rywAsQFsDClFGJR1WWcXVoNuUgSrNThqC44qwVG3wVG0UOkT6r36s6RmI6UC9iPE_7afYf0FRfLVpA |
| CitedBy_id | crossref_primary_10_1007_s11760_025_03859_5 crossref_primary_10_1093_bib_bbad293 crossref_primary_10_1016_j_crmeth_2023_100563 crossref_primary_10_1093_nar_gkac006 crossref_primary_10_1111_acel_14471 crossref_primary_10_1016_j_gpb_2022_11_011 crossref_primary_10_1038_s42003_024_06273_8 crossref_primary_10_1186_s13059_025_03722_3 crossref_primary_10_1038_s41592_022_01595_z crossref_primary_10_1093_bib_bbaf018 crossref_primary_10_1186_s13059_023_03034_4 crossref_primary_10_7554_eLife_98469 crossref_primary_10_1038_s42256_023_00684_8 crossref_primary_10_1093_bib_bbaf296 crossref_primary_10_1038_s41467_024_46089_y crossref_primary_10_26508_lsa_202402713 crossref_primary_10_1002_jmv_29355 crossref_primary_10_1186_s13059_023_02850_y crossref_primary_10_3390_ijms25042234 crossref_primary_10_1021_acsnano_4c16347 crossref_primary_10_1093_nargab_lqab104 crossref_primary_10_1038_s41467_022_30545_8 crossref_primary_10_1093_bib_bbae314 crossref_primary_10_1038_s41592_024_02380_w crossref_primary_10_7554_eLife_98469_3 crossref_primary_10_1101_gr_279141_124 crossref_primary_10_1371_journal_pcbi_1012742 crossref_primary_10_1093_gigascience_giad098 crossref_primary_10_1016_j_jid_2023_03_1679 crossref_primary_10_1177_00220345231205283 crossref_primary_10_1371_journal_pcbi_1011198 crossref_primary_10_1038_s41556_022_01072_x crossref_primary_10_1093_bib_bbae449 crossref_primary_10_59717_j_xinn_med_2024_100091 crossref_primary_10_1093_gigascience_giae108 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_1093_bib_bbac608 crossref_primary_10_1073_pnas_2306901121 |
| Cites_doi | 10.1038/s41592-018-0254-1 10.1007/BF01908075 10.1038/s41586-020-2157-4 10.1101/gad.17446611 10.1186/s12864-018-5370-x 10.1016/j.cell.2019.05.031 10.1093/bioinformatics/bth456 10.1016/j.ajhg.2018.03.026 10.1038/s41586-018-0590-4 10.1016/j.cels.2016.08.011 10.1093/nar/gks1042 10.1016/j.cell.2021.04.021 10.1093/bioinformatics/bty293 10.1016/j.cell.2016.07.054 10.1038/s41587-019-0113-3 10.1038/s41586-019-1195-2 10.1016/j.csda.2021.107190 10.1038/nbt.4091 10.1038/s41592-020-0905-x 10.1038/s41592-018-0229-2 10.1038/s41467-020-14976-9 10.1038/s41592-019-0494-8 10.1038/nbt.4096 10.1093/bioinformatics/btv301 10.7554/eLife.27041 10.1038/550451a 10.1016/j.cell.2019.05.006 10.1038/s12276-018-0071-8 10.1093/bioinformatics/btr260 10.1016/j.cell.2015.05.002 10.1093/nar/gkaa1113 10.1080/15216540601047767 10.1038/75556 10.1038/44565 10.1038/s41576-018-0088-9 10.1093/bioinformatics/btaa169 10.1186/s13059-019-1766-4 10.15252/msb.20188557 10.1162/tacl_a_00325 10.1073/pnas.0506580102 10.1186/s13059-017-1382-0 10.1093/cercor/bhx065 10.3389/fncel.2019.00352 10.1093/bioinformatics/btaa293 10.1101/2020.07.16.205997 10.1038/s41467-018-07882-8 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41592-019-0619-0 10.1038/s41592-020-00979-3 10.1093/database/baz046 10.1038/s41593-020-0621-y 10.1145/2736277.2741093 10.1101/2020.11.16.373274 10.1038/s41592-020-01050-x 10.1145/2939672.2939754 10.21105/joss.00861 10.1038/s41380-021-01040-1 10.5281/zenodo.5176796 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. corrected publication 2021 2021. The Author(s). The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021, corrected publication 2021 |
| Copyright_xml | – notice: The Author(s) 2021. corrected publication 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021, corrected publication 2021 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-021-25534-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 2041-1723 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_7990959eb2ba4fc09e678054e84e1c54 PMC8421403 34489404 10_1038_s41467_021_25534_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology) grantid: NFRFE-2019-00980 funderid: https://doi.org/10.13039/501100002790 – fundername: Canada First Research Excellence Fund (Fonds d'excellence en recherche Apogée Canada) grantid: G249591 funderid: https://doi.org/10.13039/501100010785 – fundername: ; grantid: NFRFE-2019-00980 – fundername: ; grantid: G249591 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-c540t-6d50dcaeb99659a82b84148f9992a2fb12b87550b983d0d59c117eca84b6a4f33 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694666900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Mon Nov 10 04:30:51 EST 2025 Tue Nov 04 01:53:29 EST 2025 Sun Nov 09 14:05:00 EST 2025 Tue Oct 07 06:54:27 EDT 2025 Mon Jul 21 06:03:09 EDT 2025 Sat Nov 29 06:29:30 EST 2025 Tue Nov 18 21:00:10 EST 2025 Fri Feb 21 02:39:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-6d50dcaeb99659a82b84148f9992a2fb12b87550b983d0d59c117eca84b6a4f33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8506-537X 0000-0003-3844-4865 0000-0003-4829-1428 |
| OpenAccessLink | https://www.proquest.com/docview/2569483151?pq-origsite=%requestingapplication% |
| PMID | 34489404 |
| PQID | 2569483151 |
| PQPubID | 546298 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7990959eb2ba4fc09e678054e84e1c54 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8421403 proquest_miscellaneous_2570109955 proquest_journals_2569483151 pubmed_primary_34489404 crossref_citationtrail_10_1038_s41467_021_25534_2 crossref_primary_10_1038_s41467_021_25534_2 springer_journals_10_1038_s41467_021_25534_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-06 |
| PublicationDateYYYYMMDD | 2021-09-06 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Ashburner (CR50) 2000; 25 Li (CR23) 2020; 11 Qiu (CR17) 2020; 11 Rahmati (CR48) 2020; 48 CR39 Du (CR56) 2019; 20 Blei, Ng, Jordan (CR59) 2003; 3 CR78 CR32 CR76 Welch (CR9) 2019; 177 CR31 CR75 Gutiérrez-Sacristán (CR69) 2015; 31 Carbon (CR51) 2021; 49 CR70 Rozenblatt-Rosen, Stubbington, Regev, Teichmann (CR5) 2017; 550 Lee, Seung (CR25) 1999; 401 Qiu (CR49) 2017; 27 Hwang, Lee, Bang (CR1) 2018; 50 Han (CR2) 2020; 581 Tung (CR19) 2017; 7 Boyle (CR66) 2004; 20 CR42 Subramanian (CR44) 2005; 102 Shekhar (CR37) 2016; 166 CR41 Traag, Waltman, van Eck (CR74) 2019; 9 Haghverdi, Lun, Morgan, Marioni (CR12) 2018; 36 Sun (CR13) 2019; 10 Muris (CR3) 2018; 562 Batool, Hennig (CR40) 2021; 158 Lotfollahi, Wolf, Theis (CR26) 2019; 16 Bahrami (CR38) 2020; 3 Blake (CR65) 2020; 49 Macosko (CR36) 2015; 161 Kiselev, Andrews, Hemberg (CR20) 2019; 20 Butler, Hoffman, Smibert, Papalexi, Satija (CR8) 2018; 36 Wolf, Angerer, Theis (CR16) 2018; 19 Yao (CR43) 2021; 184 CR58 CR57 Mathys (CR35) 2019; 570 Regev (CR4) 2017; 6 CR11 CR55 CR54 CR52 Hie, Bryson, Berger (CR10) 2019; 37 González-Blas (CR22) 2019; 16 Pedregosa (CR72) 2011; 12 Backenroth (CR21) 2018; 102 Lopez, Regier, Cole, Jordan, Yosef (CR6) 2018; 15 Perenthaler, Yousefi, Niggl, Barakat (CR47) 2019; 13 Levitin (CR53) 2019; 15 Chen, Yan (CR45) 2006; 58 Stuart (CR7) 2019; 177 Büttner, Miao, Wolf, Teichmann, Theis (CR18) 2019; 16 Mukherjee, Zhang, Fan, Seelig, Kannan (CR30) 2018; 34 Li (CR73) 2020; 17 CR29 CR28 CR27 Johansen, Quon (CR15) 2019; 20 Svensson, Gayoso, Yosef, Pachter (CR14) 2020; 36 CR24 Sunkin (CR77) 2012; 41 CR67 Dieng, Ruiz, Blei (CR33) 2020; 8 CR63 CR62 CR61 Smith, Eppig (CR64) 2009; 1 Baron (CR34) 2016; 3 CR60 Hubert, Arabie (CR71) 1985; 2 Cabili (CR46) 2011; 25 Liberzon (CR68) 2011; 27 25534_CR70 V Svensson (25534_CR14) 2020; 36 N Johansen (25534_CR15) 2019; 20 CL Smith (25534_CR64) 2009; 1 A Butler (25534_CR8) 2018; 36 DD Lee (25534_CR25) 1999; 401 AB Dieng (25534_CR33) 2020; 8 K Shekhar (25534_CR37) 2016; 166 EI Boyle (25534_CR66) 2004; 20 T Muris (25534_CR3) 2018; 562 M Ashburner (25534_CR50) 2000; 25 M Büttner (25534_CR18) 2019; 16 25534_CR78 Z Yao (25534_CR43) 2021; 184 25534_CR31 25534_CR75 M Lotfollahi (25534_CR26) 2019; 16 L Hubert (25534_CR71) 1985; 2 25534_CR32 25534_CR76 J Blake (25534_CR65) 2020; 49 SM Sunkin (25534_CR77) 2012; 41 VY Kiselev (25534_CR20) 2019; 20 25534_CR28 25534_CR27 X Chen (25534_CR45) 2006; 58 T Stuart (25534_CR7) 2019; 177 25534_CR29 R Lopez (25534_CR6) 2018; 15 P-Y Tung (25534_CR19) 2017; 7 S Mukherjee (25534_CR30) 2018; 34 B Li (25534_CR73) 2020; 17 F Pedregosa (25534_CR72) 2011; 12 25534_CR42 25534_CR41 X Han (25534_CR2) 2020; 581 25534_CR39 O Rozenblatt-Rosen (25534_CR5) 2017; 550 DM Blei (25534_CR59) 2003; 3 MN Cabili (25534_CR46) 2011; 25 A Qiu (25534_CR49) 2017; 27 HM Levitin (25534_CR53) 2019; 15 L Haghverdi (25534_CR12) 2018; 36 H Mathys (25534_CR35) 2019; 570 25534_CR57 A Subramanian (25534_CR44) 2005; 102 25534_CR58 Y Li (25534_CR23) 2020; 11 25534_CR52 25534_CR11 25534_CR55 25534_CR54 J Du (25534_CR56) 2019; 20 P Qiu (25534_CR17) 2020; 11 S Carbon (25534_CR51) 2021; 49 A Regev (25534_CR4) 2017; 6 JD Welch (25534_CR9) 2019; 177 B Hwang (25534_CR1) 2018; 50 D Backenroth (25534_CR21) 2018; 102 25534_CR60 B Hie (25534_CR10) 2019; 37 25534_CR62 A Liberzon (25534_CR68) 2011; 27 25534_CR61 25534_CR24 25534_CR67 EZ Macosko (25534_CR36) 2015; 161 FA Wolf (25534_CR16) 2018; 19 25534_CR63 E Perenthaler (25534_CR47) 2019; 13 M Bahrami (25534_CR38) 2020; 3 Z Sun (25534_CR13) 2019; 10 S Rahmati (25534_CR48) 2020; 48 A Gutiérrez-Sacristán (25534_CR69) 2015; 31 V Traag (25534_CR74) 2019; 9 CB González-Blas (25534_CR22) 2019; 16 F Batool (25534_CR40) 2021; 158 M Baron (25534_CR34) 2016; 3 34599193 - Nat Commun. 2021 Oct 1;12(1):5860 |
| References_xml | – ident: CR70 – volume: 16 start-page: 43 year: 2019 end-page: 49 ident: CR18 article-title: A test metric for assessing single-cell rna-seq batch correction publication-title: Nat. Methods doi: 10.1038/s41592-018-0254-1 – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: CR13 article-title: A bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies publication-title: Nat. Commun. – ident: CR39 – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: CR71 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – volume: 581 start-page: 303 year: 2020 end-page: 309 ident: CR2 article-title: Construction of a human cell landscape at single-cell level publication-title: Nature doi: 10.1038/s41586-020-2157-4 – volume: 25 start-page: 1915 year: 2011 end-page: 1927 ident: CR46 article-title: Integrative annotation of human large intergenic noncoding rnas reveals global properties and specific subclasses publication-title: Genes Dev doi: 10.1101/gad.17446611 – volume: 20 issue: Feb. year: 2019 ident: CR56 article-title: Gene2vec: distributed representation of genes based on co-expression publication-title: BMC Genomics doi: 10.1186/s12864-018-5370-x – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR72 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 9 issue: Mar. year: 2019 ident: CR74 article-title: From louvain to leiden: guaranteeing well-connected communities publication-title: Sci. Reports – ident: CR29 – ident: CR54 – ident: CR61 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR7 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 20 start-page: 3710 year: 2004 end-page: 3715 ident: CR66 article-title: Go:: Termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth456 – ident: CR58 – ident: CR42 – volume: 102 start-page: 920 year: 2018 end-page: 942 ident: CR21 article-title: FUN-LDA: a latent dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications publication-title: Am. J. Human Genet. doi: 10.1016/j.ajhg.2018.03.026 – volume: 562 start-page: 367 year: 2018 ident: CR3 article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 3 start-page: 346 year: 2016 end-page: 360 ident: CR34 article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure publication-title: Cell Systems doi: 10.1016/j.cels.2016.08.011 – ident: CR67 – ident: CR75 – volume: 41 start-page: D996 year: 2012 end-page: D1008 ident: CR77 article-title: Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1042 – volume: 16 start-page: 1 issue: April year: 2019 end-page: 14 ident: CR22 article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data publication-title: Nat. Methods – volume: 184 start-page: 3222 year: 2021 end-page: 3241.e26 ident: CR43 article-title: A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation publication-title: Cell doi: 10.1016/j.cell.2021.04.021 – volume: 34 start-page: i124 year: 2018 end-page: i132 ident: CR30 article-title: Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty293 – ident: CR11 – volume: 166 start-page: 1308 year: 2016 end-page: 1323.e30 ident: CR37 article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics publication-title: Cell doi: 10.1016/j.cell.2016.07.054 – ident: CR57 – volume: 37 start-page: 685 year: 2019 end-page: 691 ident: CR10 article-title: Efficient integration of heterogeneous single-cell transcriptomes using scanorama publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – ident: CR32 – volume: 570 start-page: 332 year: 2019 end-page: 337 ident: CR35 article-title: Single-cell transcriptomic analysis of alzheimer’s disease publication-title: Nature doi: 10.1038/s41586-019-1195-2 – ident: CR60 – volume: 158 start-page: 107190 year: 2021 ident: CR40 article-title: Clustering with the average silhouette width publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2021.107190 – ident: CR78 – volume: 36 start-page: 421 year: 2018 end-page: 427 ident: CR12 article-title: Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4091 – volume: 17 start-page: 793 issue: Aug. year: 2020 end-page: 798 ident: CR73 article-title: Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus rna-seq publication-title: Nat. Methods doi: 10.1038/s41592-020-0905-x – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: CR6 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 11 start-page: 1 year: 2020 end-page: 9 ident: CR17 article-title: Embracing the dropouts in single-cell rna-seq analysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-14976-9 – volume: 3 start-page: 993 issue: March year: 2003 end-page: 1022 ident: CR59 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 715 issue: Aug. year: 2019 end-page: 721 ident: CR26 article-title: scgen predicts single-cell perturbation responses publication-title: Nat. Methods doi: 10.1038/s41592-019-0494-8 – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: CR8 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 11 start-page: 1 issue: May year: 2020 end-page: 17 ident: CR23 article-title: Inferring multimodal latent topics from electronic health records publication-title: Nat. Commun. – volume: 31 start-page: 3075 year: 2015 end-page: 3077 ident: CR69 article-title: Psygenet: a knowledge platform on psychiatric disorders and their genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv301 – volume: 6 start-page: e27041 year: 2017 ident: CR4 article-title: Science forum: the human cell atlas publication-title: Elife doi: 10.7554/eLife.27041 – volume: 550 start-page: 451 year: 2017 ident: CR5 article-title: The human cell atlas: from vision to reality publication-title: Nat. News doi: 10.1038/550451a – volume: 49 start-page: gkaa1083 year: 2020 ident: CR65 article-title: Mouse Genome Database (MGD): Knowledgebase for mouse–human comparative biology publication-title: Nucleic Acids Res. – ident: CR63 – volume: 177 start-page: 1873 year: 2019 end-page: 1887 ident: CR9 article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 50 start-page: 1 year: 2018 end-page: 14 ident: CR1 article-title: Single-cell rna sequencing technologies and bioinformatics pipelines publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0071-8 – ident: CR27 – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: CR68 article-title: Molecular signatures database (msigdb) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 161 start-page: 1202 year: 2015 end-page: 1214 ident: CR36 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 49 start-page: D325 year: 2021 end-page: D334 ident: CR51 article-title: The gene ontology resource: enriching a gold mine publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1113 – volume: 58 start-page: 686 year: 2006 end-page: 694 ident: CR45 article-title: Mitochondrial a a potential cause of metabolic dysfunction in alzheimer’s disease publication-title: IUBMB life doi: 10.1080/15216540601047767 – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: CR50 article-title: Gene ontology: tool for the unification of biology publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 401 start-page: 788 issue: Oct. year: 1999 end-page: 791 ident: CR25 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 20 start-page: 273 year: 2019 end-page: 282 ident: CR20 article-title: Challenges in unsupervised clustering of single-cell rna-seq data publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0088-9 – volume: 48 start-page: D479 year: 2020 end-page: D488 ident: CR48 article-title: pathdip 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species publication-title: Nucleic Acids Res. – volume: 36 start-page: 3418 year: 2020 end-page: 3421 ident: CR14 article-title: Interpretable factor models of single-cell rna-seq via variational autoencoders publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa169 – volume: 20 start-page: 1 year: 2019 end-page: 21 ident: CR15 article-title: scalign: a tool for alignment, integration, and rare cell identification from scrna-seq data publication-title: Genome Biol. doi: 10.1186/s13059-019-1766-4 – ident: CR52 – volume: 15 start-page: e8557 year: 2019 ident: CR53 article-title: De novo gene signature identification from single-cell rna-seq with hierarchical poisson factorization publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188557 – ident: CR31 – volume: 8 start-page: 439 year: 2020 end-page: 453 ident: CR33 article-title: Topic modeling in embedding spaces publication-title: Trans. Assoc. Computat. Linguist. doi: 10.1162/tacl_a_00325 – volume: 102 start-page: 15545–15550 year: 2005 ident: CR44 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 19 year: 2018 ident: CR16 article-title: Scanpy: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 27 start-page: 3080 year: 2017 end-page: 3092 ident: CR49 article-title: Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx065 – volume: 13 start-page: 352 year: 2019 ident: CR47 article-title: Beyond the exome: the non-coding genome and enhancers in malformations of cortical development publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2019.00352 – ident: CR55 – volume: 1 start-page: 390 year: 2009 end-page: 399 ident: CR64 article-title: The mammalian phenotype ontology: enabling robust annotation and comparative analysis publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – ident: CR76 – ident: CR28 – ident: CR41 – ident: CR62 – volume: 7 year: 2017 ident: CR19 article-title: Batch effects and the effective design of single-cell gene expression studies publication-title: Sci. Reports – ident: CR24 – volume: 3 start-page: 346 year: 2020 ident: CR38 article-title: Deep feature extraction of single-cell transcriptomes by generative adversarial network publication-title: Bioinformatics (Oxford, England) – ident: 25534_CR11 doi: 10.1093/bioinformatics/btaa293 – volume: 20 start-page: 1 year: 2019 ident: 25534_CR15 publication-title: Genome Biol. doi: 10.1186/s13059-019-1766-4 – ident: 25534_CR27 doi: 10.1101/2020.07.16.205997 – volume: 570 start-page: 332 year: 2019 ident: 25534_CR35 publication-title: Nature doi: 10.1038/s41586-019-1195-2 – volume: 10 start-page: 1 year: 2019 ident: 25534_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – ident: 25534_CR67 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 25534_CR28 doi: 10.1038/s41592-019-0619-0 – volume: 31 start-page: 3075 year: 2015 ident: 25534_CR69 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv301 – ident: 25534_CR31 doi: 10.1038/s41592-020-00979-3 – volume: 34 start-page: i124 year: 2018 ident: 25534_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty293 – ident: 25534_CR63 – volume: 401 start-page: 788 issue: Oct. year: 1999 ident: 25534_CR25 publication-title: Nature doi: 10.1038/44565 – ident: 25534_CR70 doi: 10.1093/database/baz046 – volume: 550 start-page: 451 year: 2017 ident: 25534_CR5 publication-title: Nat. News doi: 10.1038/550451a – ident: 25534_CR29 doi: 10.1038/s41593-020-0621-y – volume: 12 start-page: 2825 year: 2011 ident: 25534_CR72 publication-title: J. Mach. Learn. Res. – volume: 102 start-page: 920 year: 2018 ident: 25534_CR21 publication-title: Am. J. Human Genet. doi: 10.1016/j.ajhg.2018.03.026 – volume: 161 start-page: 1202 year: 2015 ident: 25534_CR36 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 16 start-page: 1 issue: April year: 2019 ident: 25534_CR22 publication-title: Nat. Methods – volume: 581 start-page: 303 year: 2020 ident: 25534_CR2 publication-title: Nature doi: 10.1038/s41586-020-2157-4 – volume: 177 start-page: 1873 year: 2019 ident: 25534_CR9 publication-title: Cell doi: 10.1016/j.cell.2019.05.006 – volume: 184 start-page: 3222 year: 2021 ident: 25534_CR43 publication-title: Cell doi: 10.1016/j.cell.2021.04.021 – volume: 49 start-page: gkaa1083 year: 2020 ident: 25534_CR65 publication-title: Nucleic Acids Res. – volume: 16 start-page: 43 year: 2019 ident: 25534_CR18 publication-title: Nat. Methods doi: 10.1038/s41592-018-0254-1 – volume: 11 start-page: 1 year: 2020 ident: 25534_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14976-9 – volume: 13 start-page: 352 year: 2019 ident: 25534_CR47 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2019.00352 – ident: 25534_CR60 – volume: 3 start-page: 993 issue: March year: 2003 ident: 25534_CR59 publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 193 year: 1985 ident: 25534_CR71 publication-title: J. Classif. doi: 10.1007/BF01908075 – ident: 25534_CR57 doi: 10.1145/2736277.2741093 – ident: 25534_CR24 doi: 10.1101/2020.11.16.373274 – ident: 25534_CR54 doi: 10.1038/s41592-020-01050-x – volume: 15 start-page: 1053 year: 2018 ident: 25534_CR6 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 16 start-page: 715 issue: Aug. year: 2019 ident: 25534_CR26 publication-title: Nat. Methods doi: 10.1038/s41592-019-0494-8 – volume: 58 start-page: 686 year: 2006 ident: 25534_CR45 publication-title: IUBMB life doi: 10.1080/15216540601047767 – volume: 102 start-page: 15545–15550 year: 2005 ident: 25534_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 48 start-page: D479 year: 2020 ident: 25534_CR48 publication-title: Nucleic Acids Res. – ident: 25534_CR58 doi: 10.1145/2939672.2939754 – volume: 20 start-page: 3710 year: 2004 ident: 25534_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth456 – ident: 25534_CR75 – volume: 1 start-page: 390 year: 2009 ident: 25534_CR64 publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med. – volume: 9 issue: Mar. year: 2019 ident: 25534_CR74 publication-title: Sci. Reports – ident: 25534_CR32 – volume: 20 issue: Feb. year: 2019 ident: 25534_CR56 publication-title: BMC Genomics doi: 10.1186/s12864-018-5370-x – volume: 27 start-page: 3080 year: 2017 ident: 25534_CR49 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx065 – volume: 19 year: 2018 ident: 25534_CR16 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 41 start-page: D996 year: 2012 ident: 25534_CR77 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1042 – ident: 25534_CR42 – volume: 36 start-page: 3418 year: 2020 ident: 25534_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa169 – ident: 25534_CR61 – volume: 7 year: 2017 ident: 25534_CR19 publication-title: Sci. Reports – ident: 25534_CR39 doi: 10.21105/joss.00861 – volume: 177 start-page: 1888 year: 2019 ident: 25534_CR7 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 3 start-page: 346 year: 2020 ident: 25534_CR38 publication-title: Bioinformatics (Oxford, England) – volume: 158 start-page: 107190 year: 2021 ident: 25534_CR40 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2021.107190 – volume: 36 start-page: 411 year: 2018 ident: 25534_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – ident: 25534_CR52 doi: 10.1038/s41380-021-01040-1 – ident: 25534_CR55 – volume: 562 start-page: 367 year: 2018 ident: 25534_CR3 publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 6 start-page: e27041 year: 2017 ident: 25534_CR4 publication-title: Elife doi: 10.7554/eLife.27041 – volume: 15 start-page: e8557 year: 2019 ident: 25534_CR53 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20188557 – ident: 25534_CR76 – volume: 25 start-page: 25 year: 2000 ident: 25534_CR50 publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 17 start-page: 793 issue: Aug. year: 2020 ident: 25534_CR73 publication-title: Nat. Methods doi: 10.1038/s41592-020-0905-x – volume: 50 start-page: 1 year: 2018 ident: 25534_CR1 publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0071-8 – ident: 25534_CR78 doi: 10.5281/zenodo.5176796 – volume: 36 start-page: 421 year: 2018 ident: 25534_CR12 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4091 – volume: 49 start-page: D325 year: 2021 ident: 25534_CR51 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1113 – volume: 3 start-page: 346 year: 2016 ident: 25534_CR34 publication-title: Cell Systems doi: 10.1016/j.cels.2016.08.011 – volume: 20 start-page: 273 year: 2019 ident: 25534_CR20 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0088-9 – volume: 8 start-page: 439 year: 2020 ident: 25534_CR33 publication-title: Trans. Assoc. Computat. Linguist. doi: 10.1162/tacl_a_00325 – volume: 25 start-page: 1915 year: 2011 ident: 25534_CR46 publication-title: Genes Dev doi: 10.1101/gad.17446611 – volume: 27 start-page: 1739 year: 2011 ident: 25534_CR68 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 37 start-page: 685 year: 2019 ident: 25534_CR10 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – volume: 166 start-page: 1308 year: 2016 ident: 25534_CR37 publication-title: Cell doi: 10.1016/j.cell.2016.07.054 – ident: 25534_CR41 – ident: 25534_CR62 – volume: 11 start-page: 1 issue: May year: 2020 ident: 25534_CR23 publication-title: Nat. Commun. – reference: 34599193 - Nat Commun. 2021 Oct 1;12(1):5860 |
| SSID | ssj0000391844 |
| Score | 2.5831313 |
| Snippet | The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of... Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5261 |
| SubjectTerms | 631/114/1305 631/114/2404 Alzheimer Disease - genetics Alzheimer Disease - pathology Animals Clustering Coders Computer applications Computer science Data analysis Databases, Genetic Datasets Depressive Disorder, Major - genetics Depressive Disorder, Major - pathology Gene expression Gene Expression Profiling - methods Gene Expression Profiling - statistics & numerical data Gene sequencing Gene set enrichment analysis Genes, Mitochondrial Humanities and Social Sciences Humans Learning Mathematical analysis Mice Models, Genetic multidisciplinary Neural networks Neural Networks, Computer Retina - cytology Retina - physiology Ribonucleic acid RNA RNA, Small Cytoplasmic Science Science (multidisciplinary) Sequence Analysis, RNA - methods Sequence Analysis, RNA - statistics & numerical data Single-Cell Analysis - methods Transcriptomics Transfer learning |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUMszpSAjcYOoie0k9hEQFQdUcQDUm-XHBFZaUtTdIvXfd8bJhi7PC1c_Emse9oxn_A3Asz4x6kmvSxUqZAfFl0b5rvS1D12yyXc5GfPTu-7kxJye2vfXSn1xTtgIDzwS7qij7dI2lhzA4HUfK4stw_BrNBrr2GQkULJ6rjlTeQ9WllwXPb2SqZQ5Wum8J3BGAlnRSpdy6yTKgP2_szJ_TZb8KWKaD6LjPbg9WZDi5bjyfbiBwx24OdaUvLwLYUJM_SwWcz5hWKLgG3pOORV-SIKkBgWnbmRYT4FfA6YchBL83ETw_cESS54i1nyY5a2F3y8Lzii9Bx-P33x4_bacCimURKBqXbapqVL0GCzDB3ojgyFqmJ6MQ-llH2pq6MhVCdaoVKXGxrruMHqjQ0tEV-o-7AxnAz4EEZrGEAtqHUmRMVXeRytlNDZEhbXEAuoNUV2cUMa52MXS5Wi3Mm5khCNGuMwIJwt4Ps_5NmJs_HX0K-bVPJLxsXMDSY2bpMb9S2oKONxw2k1Ku6IftFYbRTZQAU_nblI3Jrcf8OyCx3Q5mNg0BTwYBWNeiSJX1-qKPt5ticzWUrd7hsWXDOlttGTgxAJebITrx7L-TIqD_0GKR3BLslZwkKw9hJ31-QU-ht34fb1YnT_JanUF_N0kuQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data |
| URI | https://link.springer.com/article/10.1038/s41467-021-25534-2 https://www.ncbi.nlm.nih.gov/pubmed/34489404 https://www.proquest.com/docview/2569483151 https://www.proquest.com/docview/2570109955 https://pubmed.ncbi.nlm.nih.gov/PMC8421403 https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54 |
| Volume | 12 |
| WOSCitedRecordID | wos000694666900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSReGAzGAqMyEm8QLbGd2n5CDG0CCaoIASq8RP7KqFTSre2Q-O_xuW6m8rEXXvIQO5Ht83347vw7gGetQ9STlufMFB4PKDqXTItcl9oIp5wWMRnz8zsxGsnxWNXJ4bZIaZVrmRgFtZtZ9JEfBdWsuGRBQb08v8ixahRGV1MJjS3YQZQEZMy6-tr7WBD9XHKe7soUTB4teJQMmJcQbGnGc7qhjyJs_99szT9TJn-Lm0Z1dLr7vxO5C3eSIUperXbOPbjhuz24tSpN-XMPdtflHkji_vtgEhbrGZn0mYpm6gn6_jGZlejOkbAfPcGkkAgYSvx3410MbxG8yELQMzH1OX5Clqgmo9DCm9EEc1UfwKfTk4-v3-SpRENug6m3zIeuKpzV3igEJtSSGhlWWLbB7KSatqYML0Q4BBklmStcpWxZCm-15GaoecvYPmx3s84fADFVJZUP1oINIsK7QmurKLVSGct8SX0G5ZpQjU345VhGY9rEODqTzYq4TSBuE4nb0Aye99-cr9A7ru19jPTveyLydnwxm581iZEbEdS3qpQ31IQJ2CIMGctCcC-5L8OiZHC4JnuTxMGiuaJ5Bk_75sDIuNy687NL7CNimLKqMni42mz9SFg4RCtehJ-LjW24MdTNlm7yLYKFS04RkjGDF-sNezWsfy_Fo-tn8RhuU-QhDKwND2F7Ob_0T-Cm_bGcLOYD2BJjEZ9yADvHJ6P6wyD6OgaYWVsPIpOGlvrt-_rLL877QLk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqAoILhfJaKGAkOMGqu15vbB8Q4lW1aog4FJSb69eWSGFTkhTUP8VvZMb7qMKjtx647noj25n5PPZ8_oaQp5VH1ZOKp4XNAm5QTCoLI1KTGyu88kZEMubnoRiN5HisPq6Rn91dGKRVdpgYgdrPHJ6Rb8PSrLgsYIF6dfwtxapRmF3tSmg0ZrEfTn_Alm3xcu8d_L_PGNt5f_B2N22rCqQOopNlOvBl5p0JVqGWnpHMSg57ggoiJWZYZXN4ICBut0oWPvOlcnkugjOS24HhFR6AAuRfAhwXSCETY9Gf6aDauuS8vZuTFXJ7wSMSIQ8CYveCp2xl_YtlAv4W2_5J0fwtTxuXv52N_23ibpDrbaBNXzeecZOshXqTXGlKb55uko2unAVt0e0Wsa3W7BGd9ExMOw0UcxtI1qWm9hT8LVAkvURBVBq-2uBj-o7iRR2KJy_TkOIndIlhQARlvPlNkYt7m3y6kDHfIev1rA73CLVlKVWAaMgBBAafGeMUY04q64qQs5CQvDMM7Vp9diwTMtWRJ1BI3RiTBmPS0Zg0S8jz_pvjRp3k3NZv0N76lqgsHh_M5ke6BSotIDxRpQqWWRiAy6DLWPaCB8lDDpOSkK3OzHQLdwt9ZmMJedK_BqDC6TZ1mJ1gGxHTsGWZkLuNcfc9KTiXimfw42LF7Fe6uvqmnnyJYuiSM5ScTMiLzkHOuvXvqbh__igek6u7Bx-Gerg32n9ArjH0X0wiDrbI-nJ-Eh6Sy-77crKYP4oAQMnhRTvOLwsyldI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuFMorUMBIcIJoE8fZ2AeEgLKiarXaA6CKS-pXykpLtnS3oP41fh0zzqNaHr31wDVxVrZ35vPY8_kbgKeVI9WTSsSZSTxtUHQsM13EOtWmcMrpIpAxP-0V47Hc31eTNfjZ3YUhWmWHiQGo3dzSGfkAl2YlZIYL1KBqaRGT7dGro28xVZCiTGtXTqMxkV1_-gO3b4uXO9v4Xz_jfPTuw9v3cVthILYYqSzjocsTZ7U3inT1tORGCtwfVBg1cc0rk-KDAmN4o2TmEpcrm6aFt1oKM9SiosNQhP9LBe4xaeM3yT_35zukvC6FaO_pJJkcLERAJeJEYByfiZivrIWhZMDf4tw_6Zq_5WzDUjja-J8n8QZcbwNw9rrxmJuw5utNuNKU5DzdhI2uzAVrUe8WmFaD9pBNe4ammXlGOQ8i8TJdO4Z-6BmRYYJQKvNfjXchrcfoAg-jE5mZj-kTtqTwIIA13QhnxNG9DR8vZMx3YL2e1_4eMJPnUnmMkixCo3eJ1lZxbqUyNvMp9xGknZGUttVtp_IhszLwBzJZNoZVomGVwbBKHsHz_pujRrXk3NZvyPb6lqQ4Hh7Mjw_LFsDKAsMWlStvuMEB2AS7TOUwhJfCpzgpEWx1Jle2MLgoz-wtgif9awQwmm5d-_kJtSlCejbPI7jbGHrfk0wIqUSCP16suMBKV1ff1NMvQSRdCk5SlBG86JzlrFv_nor754_iMVxFfyn3dsa7D-AaJ1em3OJwC9aXxyf-IVy235fTxfGjgAUMDi7ab34BlMmexQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+interpretable+cellular+and+gene+signature+embeddings+from+single-cell+transcriptomic+data&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Yifan&rft.au=Cai+Huiyu&rft.au=Zhang+Zuobai&rft.au=Tang%2C+Jian&rft.date=2021-09-06&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-25534-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |