Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data

The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 12; číslo 1; s. 5261 - 15
Hlavní autoři: Zhao, Yifan, Cai, Huiyu, Zhang, Zuobai, Tang, Jian, Li, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 06.09.2021
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 6 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
AbstractList The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 6 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 6 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 106 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings. Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address these challenges by learning meaningful embeddings from the data that simultaneously refine gene signatures and cell functions in diverse conditions.
The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of scRNA-seq data remains a challenge largely due to unwanted batch effects and the limited transferabilty, interpretability, and scalability of the existing computational methods. We present single-cell Embedded Topic Model (scETM). Our key contribution is the utilization of a transferable neural-network-based encoder while having an interpretable linear decoder via a matrix tri-factorization. In particular, scETM simultaneously learns an encoder network to infer cell type mixture and a set of highly interpretable gene embeddings, topic embeddings, and batch-effect linear intercepts from multiple scRNA-seq datasets. scETM is scalable to over 10 cells and confers remarkable cross-tissue and cross-species zero-shot transfer-learning performance. Using gene set enrichment analysis, we find that scETM-learned topics are enriched in biologically meaningful and disease-related pathways. Lastly, scETM enables the incorporation of known gene sets into the gene embeddings, thereby directly learning the associations between pathways and topics via the topic embeddings.
ArticleNumber 5261
Author Zhang, Zuobai
Zhao, Yifan
Li, Yue
Tang, Jian
Cai, Huiyu
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0003-4829-1428
  surname: Zhao
  fullname: Zhao, Yifan
  organization: School of Computer Science, McGill University, Harvard-MIT Health Sciences and Technology
– sequence: 2
  givenname: Huiyu
  orcidid: 0000-0001-8506-537X
  surname: Cai
  fullname: Cai, Huiyu
  organization: Department of Machine Intelligence, Peking University
– sequence: 3
  givenname: Zuobai
  surname: Zhang
  fullname: Zhang, Zuobai
  organization: School of Computer Science, Fudan University
– sequence: 4
  givenname: Jian
  surname: Tang
  fullname: Tang, Jian
  email: jian.tang@hec.ca
  organization: HEC Montreal
– sequence: 5
  givenname: Yue
  orcidid: 0000-0003-3844-4865
  surname: Li
  fullname: Li, Yue
  email: yueli@cs.mcgill.ca
  organization: School of Computer Science, McGill University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34489404$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1TAQtFARbR_9AQ4oEhcuAduxE_uChCoolZ7EBc6W7WyCnxL7YTtI_XucpoW2h_pia3dmNLuec3TigweE3hD8geBGfEyMsLarMSU15bxhNX2BzihmpCYdbU4evE_RRUoHXE4jiWDsFTptGBOSYXaGzB509M6PlfMZ4jFC1maCysI0LZOOlfZ9NYKHKrnR67xEqGA20PeFk6ohhrl0_DhBvVKqHLVPNrpjDrOzVa-zfo1eDnpKcHF379DPr19-XH6r99-vri8_72vLGc5123PcWw1GypZLLagRZUQxSCmppoMhpdBxjo0UTY97Li0hHVgtmGk1G5pmh6433T7ogzpGN-t4o4J26rYQ4qh0zM5OoDopseQSDDWFarGEthOYMxAMSLFTtD5tWsfFzNBb8GWw6ZHo4453v9QY_ijBKGF4NfP-TiCG3wukrGaX1g1pD2FJivIOEyxl-bodevcEeghL9GVVBdVKJhrCSUG9fejon5X7rywAsQFsDClFGJR1WWcXVoNuUgSrNThqC44qwVG3wVG0UOkT6r36s6RmI6UC9iPE_7afYf0FRfLVpA
CitedBy_id crossref_primary_10_1007_s11760_025_03859_5
crossref_primary_10_1093_bib_bbad293
crossref_primary_10_1016_j_crmeth_2023_100563
crossref_primary_10_1093_nar_gkac006
crossref_primary_10_1111_acel_14471
crossref_primary_10_1016_j_gpb_2022_11_011
crossref_primary_10_1038_s42003_024_06273_8
crossref_primary_10_1186_s13059_025_03722_3
crossref_primary_10_1038_s41592_022_01595_z
crossref_primary_10_1093_bib_bbaf018
crossref_primary_10_1186_s13059_023_03034_4
crossref_primary_10_7554_eLife_98469
crossref_primary_10_1038_s42256_023_00684_8
crossref_primary_10_1093_bib_bbaf296
crossref_primary_10_1038_s41467_024_46089_y
crossref_primary_10_26508_lsa_202402713
crossref_primary_10_1002_jmv_29355
crossref_primary_10_1186_s13059_023_02850_y
crossref_primary_10_3390_ijms25042234
crossref_primary_10_1021_acsnano_4c16347
crossref_primary_10_1093_nargab_lqab104
crossref_primary_10_1038_s41467_022_30545_8
crossref_primary_10_1093_bib_bbae314
crossref_primary_10_1038_s41592_024_02380_w
crossref_primary_10_7554_eLife_98469_3
crossref_primary_10_1101_gr_279141_124
crossref_primary_10_1371_journal_pcbi_1012742
crossref_primary_10_1093_gigascience_giad098
crossref_primary_10_1016_j_jid_2023_03_1679
crossref_primary_10_1177_00220345231205283
crossref_primary_10_1371_journal_pcbi_1011198
crossref_primary_10_1038_s41556_022_01072_x
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_59717_j_xinn_med_2024_100091
crossref_primary_10_1093_gigascience_giae108
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_1093_bib_bbac608
crossref_primary_10_1073_pnas_2306901121
Cites_doi 10.1038/s41592-018-0254-1
10.1007/BF01908075
10.1038/s41586-020-2157-4
10.1101/gad.17446611
10.1186/s12864-018-5370-x
10.1016/j.cell.2019.05.031
10.1093/bioinformatics/bth456
10.1016/j.ajhg.2018.03.026
10.1038/s41586-018-0590-4
10.1016/j.cels.2016.08.011
10.1093/nar/gks1042
10.1016/j.cell.2021.04.021
10.1093/bioinformatics/bty293
10.1016/j.cell.2016.07.054
10.1038/s41587-019-0113-3
10.1038/s41586-019-1195-2
10.1016/j.csda.2021.107190
10.1038/nbt.4091
10.1038/s41592-020-0905-x
10.1038/s41592-018-0229-2
10.1038/s41467-020-14976-9
10.1038/s41592-019-0494-8
10.1038/nbt.4096
10.1093/bioinformatics/btv301
10.7554/eLife.27041
10.1038/550451a
10.1016/j.cell.2019.05.006
10.1038/s12276-018-0071-8
10.1093/bioinformatics/btr260
10.1016/j.cell.2015.05.002
10.1093/nar/gkaa1113
10.1080/15216540601047767
10.1038/75556
10.1038/44565
10.1038/s41576-018-0088-9
10.1093/bioinformatics/btaa169
10.1186/s13059-019-1766-4
10.15252/msb.20188557
10.1162/tacl_a_00325
10.1073/pnas.0506580102
10.1186/s13059-017-1382-0
10.1093/cercor/bhx065
10.3389/fncel.2019.00352
10.1093/bioinformatics/btaa293
10.1101/2020.07.16.205997
10.1038/s41467-018-07882-8
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41592-019-0619-0
10.1038/s41592-020-00979-3
10.1093/database/baz046
10.1038/s41593-020-0621-y
10.1145/2736277.2741093
10.1101/2020.11.16.373274
10.1038/s41592-020-01050-x
10.1145/2939672.2939754
10.21105/joss.00861
10.1038/s41380-021-01040-1
10.5281/zenodo.5176796
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
2021. The Author(s).
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021, corrected publication 2021
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021, corrected publication 2021
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-25534-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_7990959eb2ba4fc09e678054e84e1c54
PMC8421403
34489404
10_1038_s41467_021_25534_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology)
  grantid: NFRFE-2019-00980
  funderid: https://doi.org/10.13039/501100002790
– fundername: Canada First Research Excellence Fund (Fonds d'excellence en recherche Apogée Canada)
  grantid: G249591
  funderid: https://doi.org/10.13039/501100010785
– fundername: ;
  grantid: NFRFE-2019-00980
– fundername: ;
  grantid: G249591
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c540t-6d50dcaeb99659a82b84148f9992a2fb12b87550b983d0d59c117eca84b6a4f33
IEDL.DBID P5Z
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694666900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Mon Nov 10 04:30:51 EST 2025
Tue Nov 04 01:53:29 EST 2025
Sun Nov 09 14:05:00 EST 2025
Tue Oct 07 06:54:27 EDT 2025
Mon Jul 21 06:03:09 EDT 2025
Sat Nov 29 06:29:30 EST 2025
Tue Nov 18 21:00:10 EST 2025
Fri Feb 21 02:39:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-6d50dcaeb99659a82b84148f9992a2fb12b87550b983d0d59c117eca84b6a4f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8506-537X
0000-0003-3844-4865
0000-0003-4829-1428
OpenAccessLink https://www.proquest.com/docview/2569483151?pq-origsite=%requestingapplication%
PMID 34489404
PQID 2569483151
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7990959eb2ba4fc09e678054e84e1c54
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8421403
proquest_miscellaneous_2570109955
proquest_journals_2569483151
pubmed_primary_34489404
crossref_citationtrail_10_1038_s41467_021_25534_2
crossref_primary_10_1038_s41467_021_25534_2
springer_journals_10_1038_s41467_021_25534_2
PublicationCentury 2000
PublicationDate 2021-09-06
PublicationDateYYYYMMDD 2021-09-06
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ashburner (CR50) 2000; 25
Li (CR23) 2020; 11
Qiu (CR17) 2020; 11
Rahmati (CR48) 2020; 48
CR39
Du (CR56) 2019; 20
Blei, Ng, Jordan (CR59) 2003; 3
CR78
CR32
CR76
Welch (CR9) 2019; 177
CR31
CR75
Gutiérrez-Sacristán (CR69) 2015; 31
Carbon (CR51) 2021; 49
CR70
Rozenblatt-Rosen, Stubbington, Regev, Teichmann (CR5) 2017; 550
Lee, Seung (CR25) 1999; 401
Qiu (CR49) 2017; 27
Hwang, Lee, Bang (CR1) 2018; 50
Han (CR2) 2020; 581
Tung (CR19) 2017; 7
Boyle (CR66) 2004; 20
CR42
Subramanian (CR44) 2005; 102
Shekhar (CR37) 2016; 166
CR41
Traag, Waltman, van Eck (CR74) 2019; 9
Haghverdi, Lun, Morgan, Marioni (CR12) 2018; 36
Sun (CR13) 2019; 10
Muris (CR3) 2018; 562
Batool, Hennig (CR40) 2021; 158
Lotfollahi, Wolf, Theis (CR26) 2019; 16
Bahrami (CR38) 2020; 3
Blake (CR65) 2020; 49
Macosko (CR36) 2015; 161
Kiselev, Andrews, Hemberg (CR20) 2019; 20
Butler, Hoffman, Smibert, Papalexi, Satija (CR8) 2018; 36
Wolf, Angerer, Theis (CR16) 2018; 19
Yao (CR43) 2021; 184
CR58
CR57
Mathys (CR35) 2019; 570
Regev (CR4) 2017; 6
CR11
CR55
CR54
CR52
Hie, Bryson, Berger (CR10) 2019; 37
González-Blas (CR22) 2019; 16
Pedregosa (CR72) 2011; 12
Backenroth (CR21) 2018; 102
Lopez, Regier, Cole, Jordan, Yosef (CR6) 2018; 15
Perenthaler, Yousefi, Niggl, Barakat (CR47) 2019; 13
Levitin (CR53) 2019; 15
Chen, Yan (CR45) 2006; 58
Stuart (CR7) 2019; 177
Büttner, Miao, Wolf, Teichmann, Theis (CR18) 2019; 16
Mukherjee, Zhang, Fan, Seelig, Kannan (CR30) 2018; 34
Li (CR73) 2020; 17
CR29
CR28
CR27
Johansen, Quon (CR15) 2019; 20
Svensson, Gayoso, Yosef, Pachter (CR14) 2020; 36
CR24
Sunkin (CR77) 2012; 41
CR67
Dieng, Ruiz, Blei (CR33) 2020; 8
CR63
CR62
CR61
Smith, Eppig (CR64) 2009; 1
Baron (CR34) 2016; 3
CR60
Hubert, Arabie (CR71) 1985; 2
Cabili (CR46) 2011; 25
Liberzon (CR68) 2011; 27
25534_CR70
V Svensson (25534_CR14) 2020; 36
N Johansen (25534_CR15) 2019; 20
CL Smith (25534_CR64) 2009; 1
A Butler (25534_CR8) 2018; 36
DD Lee (25534_CR25) 1999; 401
AB Dieng (25534_CR33) 2020; 8
K Shekhar (25534_CR37) 2016; 166
EI Boyle (25534_CR66) 2004; 20
T Muris (25534_CR3) 2018; 562
M Ashburner (25534_CR50) 2000; 25
M Büttner (25534_CR18) 2019; 16
25534_CR78
Z Yao (25534_CR43) 2021; 184
25534_CR31
25534_CR75
M Lotfollahi (25534_CR26) 2019; 16
L Hubert (25534_CR71) 1985; 2
25534_CR32
25534_CR76
J Blake (25534_CR65) 2020; 49
SM Sunkin (25534_CR77) 2012; 41
VY Kiselev (25534_CR20) 2019; 20
25534_CR28
25534_CR27
X Chen (25534_CR45) 2006; 58
T Stuart (25534_CR7) 2019; 177
25534_CR29
R Lopez (25534_CR6) 2018; 15
P-Y Tung (25534_CR19) 2017; 7
S Mukherjee (25534_CR30) 2018; 34
B Li (25534_CR73) 2020; 17
F Pedregosa (25534_CR72) 2011; 12
25534_CR42
25534_CR41
X Han (25534_CR2) 2020; 581
25534_CR39
O Rozenblatt-Rosen (25534_CR5) 2017; 550
DM Blei (25534_CR59) 2003; 3
MN Cabili (25534_CR46) 2011; 25
A Qiu (25534_CR49) 2017; 27
HM Levitin (25534_CR53) 2019; 15
L Haghverdi (25534_CR12) 2018; 36
H Mathys (25534_CR35) 2019; 570
25534_CR57
A Subramanian (25534_CR44) 2005; 102
25534_CR58
Y Li (25534_CR23) 2020; 11
25534_CR52
25534_CR11
25534_CR55
25534_CR54
J Du (25534_CR56) 2019; 20
P Qiu (25534_CR17) 2020; 11
S Carbon (25534_CR51) 2021; 49
A Regev (25534_CR4) 2017; 6
JD Welch (25534_CR9) 2019; 177
B Hwang (25534_CR1) 2018; 50
D Backenroth (25534_CR21) 2018; 102
25534_CR60
B Hie (25534_CR10) 2019; 37
25534_CR62
A Liberzon (25534_CR68) 2011; 27
25534_CR61
25534_CR24
25534_CR67
EZ Macosko (25534_CR36) 2015; 161
FA Wolf (25534_CR16) 2018; 19
25534_CR63
E Perenthaler (25534_CR47) 2019; 13
M Bahrami (25534_CR38) 2020; 3
Z Sun (25534_CR13) 2019; 10
S Rahmati (25534_CR48) 2020; 48
A Gutiérrez-Sacristán (25534_CR69) 2015; 31
V Traag (25534_CR74) 2019; 9
CB González-Blas (25534_CR22) 2019; 16
F Batool (25534_CR40) 2021; 158
M Baron (25534_CR34) 2016; 3
34599193 - Nat Commun. 2021 Oct 1;12(1):5860
References_xml – ident: CR70
– volume: 16
  start-page: 43
  year: 2019
  end-page: 49
  ident: CR18
  article-title: A test metric for assessing single-cell rna-seq batch correction
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0254-1
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR13
  article-title: A bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
  publication-title: Nat. Commun.
– ident: CR39
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: CR71
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 581
  start-page: 303
  year: 2020
  end-page: 309
  ident: CR2
  article-title: Construction of a human cell landscape at single-cell level
  publication-title: Nature
  doi: 10.1038/s41586-020-2157-4
– volume: 25
  start-page: 1915
  year: 2011
  end-page: 1927
  ident: CR46
  article-title: Integrative annotation of human large intergenic noncoding rnas reveals global properties and specific subclasses
  publication-title: Genes Dev
  doi: 10.1101/gad.17446611
– volume: 20
  issue: Feb.
  year: 2019
  ident: CR56
  article-title: Gene2vec: distributed representation of genes based on co-expression
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5370-x
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR72
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 9
  issue: Mar.
  year: 2019
  ident: CR74
  article-title: From louvain to leiden: guaranteeing well-connected communities
  publication-title: Sci. Reports
– ident: CR29
– ident: CR54
– ident: CR61
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR7
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 20
  start-page: 3710
  year: 2004
  end-page: 3715
  ident: CR66
  article-title: Go:: Termfinder-open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth456
– ident: CR58
– ident: CR42
– volume: 102
  start-page: 920
  year: 2018
  end-page: 942
  ident: CR21
  article-title: FUN-LDA: a latent dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications
  publication-title: Am. J. Human Genet.
  doi: 10.1016/j.ajhg.2018.03.026
– volume: 562
  start-page: 367
  year: 2018
  ident: CR3
  article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 3
  start-page: 346
  year: 2016
  end-page: 360
  ident: CR34
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2016.08.011
– ident: CR67
– ident: CR75
– volume: 41
  start-page: D996
  year: 2012
  end-page: D1008
  ident: CR77
  article-title: Allen brain atlas: an integrated spatio-temporal portal for exploring the central nervous system
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1042
– volume: 16
  start-page: 1
  issue: April
  year: 2019
  end-page: 14
  ident: CR22
  article-title: cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
  publication-title: Nat. Methods
– volume: 184
  start-page: 3222
  year: 2021
  end-page: 3241.e26
  ident: CR43
  article-title: A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.021
– volume: 34
  start-page: i124
  year: 2018
  end-page: i132
  ident: CR30
  article-title: Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty293
– ident: CR11
– volume: 166
  start-page: 1308
  year: 2016
  end-page: 1323.e30
  ident: CR37
  article-title: Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.054
– ident: CR57
– volume: 37
  start-page: 685
  year: 2019
  end-page: 691
  ident: CR10
  article-title: Efficient integration of heterogeneous single-cell transcriptomes using scanorama
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0113-3
– ident: CR32
– volume: 570
  start-page: 332
  year: 2019
  end-page: 337
  ident: CR35
  article-title: Single-cell transcriptomic analysis of alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– ident: CR60
– volume: 158
  start-page: 107190
  year: 2021
  ident: CR40
  article-title: Clustering with the average silhouette width
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2021.107190
– ident: CR78
– volume: 36
  start-page: 421
  year: 2018
  end-page: 427
  ident: CR12
  article-title: Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4091
– volume: 17
  start-page: 793
  issue: Aug.
  year: 2020
  end-page: 798
  ident: CR73
  article-title: Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus rna-seq
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0905-x
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: CR6
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 11
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR17
  article-title: Embracing the dropouts in single-cell rna-seq analysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14976-9
– volume: 3
  start-page: 993
  issue: March
  year: 2003
  end-page: 1022
  ident: CR59
  article-title: Latent dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 715
  issue: Aug.
  year: 2019
  end-page: 721
  ident: CR26
  article-title: scgen predicts single-cell perturbation responses
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0494-8
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR8
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 11
  start-page: 1
  issue: May
  year: 2020
  end-page: 17
  ident: CR23
  article-title: Inferring multimodal latent topics from electronic health records
  publication-title: Nat. Commun.
– volume: 31
  start-page: 3075
  year: 2015
  end-page: 3077
  ident: CR69
  article-title: Psygenet: a knowledge platform on psychiatric disorders and their genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv301
– volume: 6
  start-page: e27041
  year: 2017
  ident: CR4
  article-title: Science forum: the human cell atlas
  publication-title: Elife
  doi: 10.7554/eLife.27041
– volume: 550
  start-page: 451
  year: 2017
  ident: CR5
  article-title: The human cell atlas: from vision to reality
  publication-title: Nat. News
  doi: 10.1038/550451a
– volume: 49
  start-page: gkaa1083
  year: 2020
  ident: CR65
  article-title: Mouse Genome Database (MGD): Knowledgebase for mouse–human comparative biology
  publication-title: Nucleic Acids Res.
– ident: CR63
– volume: 177
  start-page: 1873
  year: 2019
  end-page: 1887
  ident: CR9
  article-title: Single-cell multi-omic integration compares and contrasts features of brain cell identity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 50
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR1
  article-title: Single-cell rna sequencing technologies and bioinformatics pipelines
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0071-8
– ident: CR27
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: CR68
  article-title: Molecular signatures database (msigdb) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  ident: CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 49
  start-page: D325
  year: 2021
  end-page: D334
  ident: CR51
  article-title: The gene ontology resource: enriching a gold mine
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1113
– volume: 58
  start-page: 686
  year: 2006
  end-page: 694
  ident: CR45
  article-title: Mitochondrial a a potential cause of metabolic dysfunction in alzheimer’s disease
  publication-title: IUBMB life
  doi: 10.1080/15216540601047767
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  ident: CR50
  article-title: Gene ontology: tool for the unification of biology
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 401
  start-page: 788
  issue: Oct.
  year: 1999
  end-page: 791
  ident: CR25
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 20
  start-page: 273
  year: 2019
  end-page: 282
  ident: CR20
  article-title: Challenges in unsupervised clustering of single-cell rna-seq data
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0088-9
– volume: 48
  start-page: D479
  year: 2020
  end-page: D488
  ident: CR48
  article-title: pathdip 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species
  publication-title: Nucleic Acids Res.
– volume: 36
  start-page: 3418
  year: 2020
  end-page: 3421
  ident: CR14
  article-title: Interpretable factor models of single-cell rna-seq via variational autoencoders
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa169
– volume: 20
  start-page: 1
  year: 2019
  end-page: 21
  ident: CR15
  article-title: scalign: a tool for alignment, integration, and rare cell identification from scrna-seq data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1766-4
– ident: CR52
– volume: 15
  start-page: e8557
  year: 2019
  ident: CR53
  article-title: De novo gene signature identification from single-cell rna-seq with hierarchical poisson factorization
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188557
– ident: CR31
– volume: 8
  start-page: 439
  year: 2020
  end-page: 453
  ident: CR33
  article-title: Topic modeling in embedding spaces
  publication-title: Trans. Assoc. Computat. Linguist.
  doi: 10.1162/tacl_a_00325
– volume: 102
  start-page: 15545–15550
  year: 2005
  ident: CR44
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 19
  year: 2018
  ident: CR16
  article-title: Scanpy: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 27
  start-page: 3080
  year: 2017
  end-page: 3092
  ident: CR49
  article-title: Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx065
– volume: 13
  start-page: 352
  year: 2019
  ident: CR47
  article-title: Beyond the exome: the non-coding genome and enhancers in malformations of cortical development
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2019.00352
– ident: CR55
– volume: 1
  start-page: 390
  year: 2009
  end-page: 399
  ident: CR64
  article-title: The mammalian phenotype ontology: enabling robust annotation and comparative analysis
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– ident: CR76
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 7
  year: 2017
  ident: CR19
  article-title: Batch effects and the effective design of single-cell gene expression studies
  publication-title: Sci. Reports
– ident: CR24
– volume: 3
  start-page: 346
  year: 2020
  ident: CR38
  article-title: Deep feature extraction of single-cell transcriptomes by generative adversarial network
  publication-title: Bioinformatics (Oxford, England)
– ident: 25534_CR11
  doi: 10.1093/bioinformatics/btaa293
– volume: 20
  start-page: 1
  year: 2019
  ident: 25534_CR15
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1766-4
– ident: 25534_CR27
  doi: 10.1101/2020.07.16.205997
– volume: 570
  start-page: 332
  year: 2019
  ident: 25534_CR35
  publication-title: Nature
  doi: 10.1038/s41586-019-1195-2
– volume: 10
  start-page: 1
  year: 2019
  ident: 25534_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– ident: 25534_CR67
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 25534_CR28
  doi: 10.1038/s41592-019-0619-0
– volume: 31
  start-page: 3075
  year: 2015
  ident: 25534_CR69
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv301
– ident: 25534_CR31
  doi: 10.1038/s41592-020-00979-3
– volume: 34
  start-page: i124
  year: 2018
  ident: 25534_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty293
– ident: 25534_CR63
– volume: 401
  start-page: 788
  issue: Oct.
  year: 1999
  ident: 25534_CR25
  publication-title: Nature
  doi: 10.1038/44565
– ident: 25534_CR70
  doi: 10.1093/database/baz046
– volume: 550
  start-page: 451
  year: 2017
  ident: 25534_CR5
  publication-title: Nat. News
  doi: 10.1038/550451a
– ident: 25534_CR29
  doi: 10.1038/s41593-020-0621-y
– volume: 12
  start-page: 2825
  year: 2011
  ident: 25534_CR72
  publication-title: J. Mach. Learn. Res.
– volume: 102
  start-page: 920
  year: 2018
  ident: 25534_CR21
  publication-title: Am. J. Human Genet.
  doi: 10.1016/j.ajhg.2018.03.026
– volume: 161
  start-page: 1202
  year: 2015
  ident: 25534_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 16
  start-page: 1
  issue: April
  year: 2019
  ident: 25534_CR22
  publication-title: Nat. Methods
– volume: 581
  start-page: 303
  year: 2020
  ident: 25534_CR2
  publication-title: Nature
  doi: 10.1038/s41586-020-2157-4
– volume: 177
  start-page: 1873
  year: 2019
  ident: 25534_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.006
– volume: 184
  start-page: 3222
  year: 2021
  ident: 25534_CR43
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.021
– volume: 49
  start-page: gkaa1083
  year: 2020
  ident: 25534_CR65
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 43
  year: 2019
  ident: 25534_CR18
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0254-1
– volume: 11
  start-page: 1
  year: 2020
  ident: 25534_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14976-9
– volume: 13
  start-page: 352
  year: 2019
  ident: 25534_CR47
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2019.00352
– ident: 25534_CR60
– volume: 3
  start-page: 993
  issue: March
  year: 2003
  ident: 25534_CR59
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 193
  year: 1985
  ident: 25534_CR71
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– ident: 25534_CR57
  doi: 10.1145/2736277.2741093
– ident: 25534_CR24
  doi: 10.1101/2020.11.16.373274
– ident: 25534_CR54
  doi: 10.1038/s41592-020-01050-x
– volume: 15
  start-page: 1053
  year: 2018
  ident: 25534_CR6
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 16
  start-page: 715
  issue: Aug.
  year: 2019
  ident: 25534_CR26
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0494-8
– volume: 58
  start-page: 686
  year: 2006
  ident: 25534_CR45
  publication-title: IUBMB life
  doi: 10.1080/15216540601047767
– volume: 102
  start-page: 15545–15550
  year: 2005
  ident: 25534_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 48
  start-page: D479
  year: 2020
  ident: 25534_CR48
  publication-title: Nucleic Acids Res.
– ident: 25534_CR58
  doi: 10.1145/2939672.2939754
– volume: 20
  start-page: 3710
  year: 2004
  ident: 25534_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth456
– ident: 25534_CR75
– volume: 1
  start-page: 390
  year: 2009
  ident: 25534_CR64
  publication-title: Wiley Interdiscip. Rev.: Syst. Biol. Med.
– volume: 9
  issue: Mar.
  year: 2019
  ident: 25534_CR74
  publication-title: Sci. Reports
– ident: 25534_CR32
– volume: 20
  issue: Feb.
  year: 2019
  ident: 25534_CR56
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5370-x
– volume: 27
  start-page: 3080
  year: 2017
  ident: 25534_CR49
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx065
– volume: 19
  year: 2018
  ident: 25534_CR16
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 41
  start-page: D996
  year: 2012
  ident: 25534_CR77
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1042
– ident: 25534_CR42
– volume: 36
  start-page: 3418
  year: 2020
  ident: 25534_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa169
– ident: 25534_CR61
– volume: 7
  year: 2017
  ident: 25534_CR19
  publication-title: Sci. Reports
– ident: 25534_CR39
  doi: 10.21105/joss.00861
– volume: 177
  start-page: 1888
  year: 2019
  ident: 25534_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 3
  start-page: 346
  year: 2020
  ident: 25534_CR38
  publication-title: Bioinformatics (Oxford, England)
– volume: 158
  start-page: 107190
  year: 2021
  ident: 25534_CR40
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2021.107190
– volume: 36
  start-page: 411
  year: 2018
  ident: 25534_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– ident: 25534_CR52
  doi: 10.1038/s41380-021-01040-1
– ident: 25534_CR55
– volume: 562
  start-page: 367
  year: 2018
  ident: 25534_CR3
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 6
  start-page: e27041
  year: 2017
  ident: 25534_CR4
  publication-title: Elife
  doi: 10.7554/eLife.27041
– volume: 15
  start-page: e8557
  year: 2019
  ident: 25534_CR53
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20188557
– ident: 25534_CR76
– volume: 25
  start-page: 25
  year: 2000
  ident: 25534_CR50
  publication-title: Nat. Genet.
  doi: 10.1038/75556
– volume: 17
  start-page: 793
  issue: Aug.
  year: 2020
  ident: 25534_CR73
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0905-x
– volume: 50
  start-page: 1
  year: 2018
  ident: 25534_CR1
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-018-0071-8
– ident: 25534_CR78
  doi: 10.5281/zenodo.5176796
– volume: 36
  start-page: 421
  year: 2018
  ident: 25534_CR12
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4091
– volume: 49
  start-page: D325
  year: 2021
  ident: 25534_CR51
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1113
– volume: 3
  start-page: 346
  year: 2016
  ident: 25534_CR34
  publication-title: Cell Systems
  doi: 10.1016/j.cels.2016.08.011
– volume: 20
  start-page: 273
  year: 2019
  ident: 25534_CR20
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0088-9
– volume: 8
  start-page: 439
  year: 2020
  ident: 25534_CR33
  publication-title: Trans. Assoc. Computat. Linguist.
  doi: 10.1162/tacl_a_00325
– volume: 25
  start-page: 1915
  year: 2011
  ident: 25534_CR46
  publication-title: Genes Dev
  doi: 10.1101/gad.17446611
– volume: 27
  start-page: 1739
  year: 2011
  ident: 25534_CR68
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 37
  start-page: 685
  year: 2019
  ident: 25534_CR10
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0113-3
– volume: 166
  start-page: 1308
  year: 2016
  ident: 25534_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.054
– ident: 25534_CR41
– ident: 25534_CR62
– volume: 11
  start-page: 1
  issue: May
  year: 2020
  ident: 25534_CR23
  publication-title: Nat. Commun.
– reference: 34599193 - Nat Commun. 2021 Oct 1;12(1):5860
SSID ssj0000391844
Score 2.5831313
Snippet The advent of single-cell RNA sequencing (scRNA-seq) technologies has revolutionized transcriptomic studies. However, large-scale integrative analysis of...
Computational single-cell RNA-seq analyses often face challenges in scalability, model interpretability, and confounders. Here, we show a new model to address...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5261
SubjectTerms 631/114/1305
631/114/2404
Alzheimer Disease - genetics
Alzheimer Disease - pathology
Animals
Clustering
Coders
Computer applications
Computer science
Data analysis
Databases, Genetic
Datasets
Depressive Disorder, Major - genetics
Depressive Disorder, Major - pathology
Gene expression
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Gene sequencing
Gene set enrichment analysis
Genes, Mitochondrial
Humanities and Social Sciences
Humans
Learning
Mathematical analysis
Mice
Models, Genetic
multidisciplinary
Neural networks
Neural Networks, Computer
Retina - cytology
Retina - physiology
Ribonucleic acid
RNA
RNA, Small Cytoplasmic
Science
Science (multidisciplinary)
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - statistics & numerical data
Single-Cell Analysis - methods
Transcriptomics
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqkhcUMszpSAjcYOoie0k9hEQFQdUcQDUm-XHBFZaUtTdIvXfd8bJhi7PC1c_Emse9oxn_A3Asz4x6kmvSxUqZAfFl0b5rvS1D12yyXc5GfPTu-7kxJye2vfXSn1xTtgIDzwS7qij7dI2lhzA4HUfK4stw_BrNBrr2GQkULJ6rjlTeQ9WllwXPb2SqZQ5Wum8J3BGAlnRSpdy6yTKgP2_szJ_TZb8KWKaD6LjPbg9WZDi5bjyfbiBwx24OdaUvLwLYUJM_SwWcz5hWKLgG3pOORV-SIKkBgWnbmRYT4FfA6YchBL83ETw_cESS54i1nyY5a2F3y8Lzii9Bx-P33x4_bacCimURKBqXbapqVL0GCzDB3ojgyFqmJ6MQ-llH2pq6MhVCdaoVKXGxrruMHqjQ0tEV-o-7AxnAz4EEZrGEAtqHUmRMVXeRytlNDZEhbXEAuoNUV2cUMa52MXS5Wi3Mm5khCNGuMwIJwt4Ps_5NmJs_HX0K-bVPJLxsXMDSY2bpMb9S2oKONxw2k1Ku6IftFYbRTZQAU_nblI3Jrcf8OyCx3Q5mNg0BTwYBWNeiSJX1-qKPt5ticzWUrd7hsWXDOlttGTgxAJebITrx7L-TIqD_0GKR3BLslZwkKw9hJ31-QU-ht34fb1YnT_JanUF_N0kuQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Learning interpretable cellular and gene signature embeddings from single-cell transcriptomic data
URI https://link.springer.com/article/10.1038/s41467-021-25534-2
https://www.ncbi.nlm.nih.gov/pubmed/34489404
https://www.proquest.com/docview/2569483151
https://www.proquest.com/docview/2570109955
https://pubmed.ncbi.nlm.nih.gov/PMC8421403
https://doaj.org/article/7990959eb2ba4fc09e678054e84e1c54
Volume 12
WOSCitedRecordID wos000694666900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSReGAzGAqMyEm8QLbGd2n5CDG0CCaoIASq8RP7KqFTSre2Q-O_xuW6m8rEXXvIQO5Ht83347vw7gGetQ9STlufMFB4PKDqXTItcl9oIp5wWMRnz8zsxGsnxWNXJ4bZIaZVrmRgFtZtZ9JEfBdWsuGRBQb08v8ixahRGV1MJjS3YQZQEZMy6-tr7WBD9XHKe7soUTB4teJQMmJcQbGnGc7qhjyJs_99szT9TJn-Lm0Z1dLr7vxO5C3eSIUperXbOPbjhuz24tSpN-XMPdtflHkji_vtgEhbrGZn0mYpm6gn6_jGZlejOkbAfPcGkkAgYSvx3410MbxG8yELQMzH1OX5Clqgmo9DCm9EEc1UfwKfTk4-v3-SpRENug6m3zIeuKpzV3igEJtSSGhlWWLbB7KSatqYML0Q4BBklmStcpWxZCm-15GaoecvYPmx3s84fADFVJZUP1oINIsK7QmurKLVSGct8SX0G5ZpQjU345VhGY9rEODqTzYq4TSBuE4nb0Aye99-cr9A7ru19jPTveyLydnwxm581iZEbEdS3qpQ31IQJ2CIMGctCcC-5L8OiZHC4JnuTxMGiuaJ5Bk_75sDIuNy687NL7CNimLKqMni42mz9SFg4RCtehJ-LjW24MdTNlm7yLYKFS04RkjGDF-sNezWsfy_Fo-tn8RhuU-QhDKwND2F7Ob_0T-Cm_bGcLOYD2BJjEZ9yADvHJ6P6wyD6OgaYWVsPIpOGlvrt-_rLL877QLk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELaqAoILhfJaKGAkOMGqu15vbB8Q4lW1aog4FJSb69eWSGFTkhTUP8VvZMb7qMKjtx647noj25n5PPZ8_oaQp5VH1ZOKp4XNAm5QTCoLI1KTGyu88kZEMubnoRiN5HisPq6Rn91dGKRVdpgYgdrPHJ6Rb8PSrLgsYIF6dfwtxapRmF3tSmg0ZrEfTn_Alm3xcu8d_L_PGNt5f_B2N22rCqQOopNlOvBl5p0JVqGWnpHMSg57ggoiJWZYZXN4ICBut0oWPvOlcnkugjOS24HhFR6AAuRfAhwXSCETY9Gf6aDauuS8vZuTFXJ7wSMSIQ8CYveCp2xl_YtlAv4W2_5J0fwtTxuXv52N_23ibpDrbaBNXzeecZOshXqTXGlKb55uko2unAVt0e0Wsa3W7BGd9ExMOw0UcxtI1qWm9hT8LVAkvURBVBq-2uBj-o7iRR2KJy_TkOIndIlhQARlvPlNkYt7m3y6kDHfIev1rA73CLVlKVWAaMgBBAafGeMUY04q64qQs5CQvDMM7Vp9diwTMtWRJ1BI3RiTBmPS0Zg0S8jz_pvjRp3k3NZv0N76lqgsHh_M5ke6BSotIDxRpQqWWRiAy6DLWPaCB8lDDpOSkK3OzHQLdwt9ZmMJedK_BqDC6TZ1mJ1gGxHTsGWZkLuNcfc9KTiXimfw42LF7Fe6uvqmnnyJYuiSM5ScTMiLzkHOuvXvqbh__igek6u7Bx-Gerg32n9ArjH0X0wiDrbI-nJ-Eh6Sy-77crKYP4oAQMnhRTvOLwsyldI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuFMorUMBIcIJoE8fZ2AeEgLKiarXaA6CKS-pXykpLtnS3oP41fh0zzqNaHr31wDVxVrZ35vPY8_kbgKeVI9WTSsSZSTxtUHQsM13EOtWmcMrpIpAxP-0V47Hc31eTNfjZ3YUhWmWHiQGo3dzSGfkAl2YlZIYL1KBqaRGT7dGro28xVZCiTGtXTqMxkV1_-gO3b4uXO9v4Xz_jfPTuw9v3cVthILYYqSzjocsTZ7U3inT1tORGCtwfVBg1cc0rk-KDAmN4o2TmEpcrm6aFt1oKM9SiosNQhP9LBe4xaeM3yT_35zukvC6FaO_pJJkcLERAJeJEYByfiZivrIWhZMDf4tw_6Zq_5WzDUjja-J8n8QZcbwNw9rrxmJuw5utNuNKU5DzdhI2uzAVrUe8WmFaD9pBNe4ammXlGOQ8i8TJdO4Z-6BmRYYJQKvNfjXchrcfoAg-jE5mZj-kTtqTwIIA13QhnxNG9DR8vZMx3YL2e1_4eMJPnUnmMkixCo3eJ1lZxbqUyNvMp9xGknZGUttVtp_IhszLwBzJZNoZVomGVwbBKHsHz_pujRrXk3NZvyPb6lqQ4Hh7Mjw_LFsDKAsMWlStvuMEB2AS7TOUwhJfCpzgpEWx1Jle2MLgoz-wtgif9awQwmm5d-_kJtSlCejbPI7jbGHrfk0wIqUSCP16suMBKV1ff1NMvQSRdCk5SlBG86JzlrFv_nor754_iMVxFfyn3dsa7D-AaJ1em3OJwC9aXxyf-IVy235fTxfGjgAUMDi7ab34BlMmexQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+interpretable+cellular+and+gene+signature+embeddings+from+single-cell+transcriptomic+data&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Yifan&rft.au=Cai+Huiyu&rft.au=Zhang+Zuobai&rft.au=Tang%2C+Jian&rft.date=2021-09-06&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-25534-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon