Improved prediction of immune checkpoint blockade efficacy across multiple cancer types

Only a fraction of patients with cancer respond to immune checkpoint blockade (ICB) treatment, but current decision-making procedures have limited accuracy. In this study, we developed a machine learning model to predict ICB response by integrating genomic, molecular, demographic and clinical data f...

Full description

Saved in:
Bibliographic Details
Published in:Nature biotechnology Vol. 40; no. 4; pp. 499 - 506
Main Authors: Chowell, Diego, Yoo, Seong-Keun, Valero, Cristina, Pastore, Alessandro, Krishna, Chirag, Lee, Mark, Hoen, Douglas, Shi, Hongyu, Kelly, Daniel W., Patel, Neal, Makarov, Vladimir, Ma, Xiaoxiao, Vuong, Lynda, Sabio, Erich Y., Weiss, Kate, Kuo, Fengshen, Lenz, Tobias L., Samstein, Robert M., Riaz, Nadeem, Adusumilli, Prasad S., Balachandran, Vinod P., Plitas, George, Ari Hakimi, A., Abdel-Wahab, Omar, Shoushtari, Alexander N., Postow, Michael A., Motzer, Robert J., Ladanyi, Marc, Zehir, Ahmet, Berger, Michael F., Gönen, Mithat, Morris, Luc G. T., Weinhold, Nils, Chan, Timothy A.
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.04.2022
Nature Publishing Group
Subjects:
ISSN:1087-0156, 1546-1696, 1546-1696
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first