Application of network link prediction in drug discovery

Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 22; H. 1; S. 187 - 21
Hauptverfasser: Abbas, Khushnood, Abbasi, Alireza, Dong, Shi, Niu, Ling, Yu, Laihang, Chen, Bolun, Cai, Shi-Min, Hasan, Qambar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 12.04.2021
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone ,  ACT and L R W 5 are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
AbstractList Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and \(LRW_5\) are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone ,  ACT and L R W 5 are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug-drug, drug-disease, and protein-protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and [Formula: see text] are the top 3 best performers on all five datasets. This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug-drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug-drug, drug-disease, and protein-protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches.BACKGROUNDTechnological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug-drug, drug-disease, and protein-protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches.We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and [Formula: see text] are the top 3 best performers on all five datasets.RESULTSWe applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and [Formula: see text] are the top 3 best performers on all five datasets.This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug-drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.CONCLUSIONSThis work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug-drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
Abstract Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for modeling entities and interactions in biological and similar complex systems. In the field of network biology and network medicine, there is a particular interest in predicting results from drug–drug, drug–disease, and protein–protein interactions to advance the speed of drug discovery. Existing data and modern computational methods allow to identify potentially beneficial and harmful interactions, and therefore, narrow drug trials ahead of actual clinical trials. Such automated data-driven investigation relies on machine learning techniques. However, traditional machine learning approaches require extensive preprocessing of the data that makes them impractical for large datasets. This study presents wide range of machine learning methods for predicting outcomes from biomedical interactions and evaluates the performance of the traditional methods with more recent network-based approaches. Results We applied a wide range of 32 different network-based machine learning models to five commonly available biomedical datasets, and evaluated their performance based on three important evaluations metrics namely AUROC, AUPR, and F1-score. We achieved this by converting link prediction problem as binary classification problem. In order to achieve this we have considered the existing links as positive example and randomly sampled negative examples from non-existant set. After experimental evaluation we found that Prone, ACT and $$LRW_5$$ L R W 5 are the top 3 best performers on all five datasets. Conclusions This work presents a comparative evaluation of network-based machine learning algorithms for predicting network links, with applications in the prediction of drug-target and drug–drug interactions, and applied well known network-based machine learning methods. Our work is helpful in guiding researchers in the appropriate selection of machine learning methods for pharmaceutical tasks.
ArticleNumber 187
Author Dong, Shi
Cai, Shi-Min
Chen, Bolun
Abbas, Khushnood
Yu, Laihang
Abbasi, Alireza
Niu, Ling
Hasan, Qambar
Author_xml – sequence: 1
  givenname: Khushnood
  orcidid: 0000-0002-0096-3179
  surname: Abbas
  fullname: Abbas, Khushnood
  email: abbas@cigit.ac.cn
  organization: School of Computer Science and Technology, Zhoukou Normal University, School of Engineering and Information Technology, University of New South Wales
– sequence: 2
  givenname: Alireza
  surname: Abbasi
  fullname: Abbasi, Alireza
  organization: School of Engineering and Information Technology, University of New South Wales
– sequence: 3
  givenname: Shi
  surname: Dong
  fullname: Dong, Shi
  organization: School of Computer Science and Technology, Zhoukou Normal University
– sequence: 4
  givenname: Ling
  surname: Niu
  fullname: Niu, Ling
  organization: School of Computer Science and Technology, Zhoukou Normal University
– sequence: 5
  givenname: Laihang
  surname: Yu
  fullname: Yu, Laihang
  organization: School of Computer Science and Technology, Zhoukou Normal University
– sequence: 6
  givenname: Bolun
  surname: Chen
  fullname: Chen, Bolun
  organization: College of Computer and Software Engineering, Huaiyin Institute of Technology
– sequence: 7
  givenname: Shi-Min
  surname: Cai
  fullname: Cai, Shi-Min
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China
– sequence: 8
  givenname: Qambar
  surname: Hasan
  fullname: Hasan, Qambar
  organization: Centre for Cellular and Molecular Biology, School of Life and Environmental Science, Deakin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33845763$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUhVGVqnm0f6CLylI33Tjh8rBhUymK-ogUKZtmjTDgKRMPuGAnmn9fMs57kRWIe86no8s5RHshBofQZ8DHAKI5yUAElzUmUGOGBam379ABsBZqApjvPbvvo8Oc1xhDKzD_gPYpFYy3DT1A4nQcB2_05GOoYl8FN93GdF0NPlxXY3LWm93Ih8qmeVVZn028cWn7Eb3v9ZDdp_vzCF39_PHn7Hd9cfnr_Oz0ojac4aluOCctkb3krjFMYAEN4bJvGe562-IOJHCH254Z3fVAQZoWeEetlVYIwQw9QucL10a9VmPyG522Kmqvdg8xrZROkzeDU2AxaEktlZowLjspml4QZ7QWElgjCuv7whrnbuOscWFKengBfTkJ_q9axRslMCNS8AL4dg9I8d_s8qQ2ZR9uGHRwcc6KcCCUMQy0SL--kq7jnEJZ1Z2KkYbghhTVl-eJHqM8fFARiEVgUsw5uV4ZP-1-qwT0gwKs7rqgli6o0gW164LaFit5ZX2gv2miiykXcVi59BT7Ddd_vBvFYA
CitedBy_id crossref_primary_10_1007_s12530_025_09690_0
crossref_primary_10_1371_journal_pcbi_1009909
crossref_primary_10_1371_journal_pone_0315507
crossref_primary_10_1038_s41467_025_63494_z
crossref_primary_10_1016_j_ipm_2023_103292
crossref_primary_10_1016_j_engappai_2024_108846
crossref_primary_10_3389_fphar_2023_1113007
crossref_primary_10_3390_electronics11233866
crossref_primary_10_1007_s41109_025_00705_y
crossref_primary_10_1016_j_jbi_2023_104373
crossref_primary_10_1093_bib_bbac481
crossref_primary_10_1016_j_eswa_2023_121716
crossref_primary_10_1007_s11042_024_20123_z
crossref_primary_10_1016_j_chroma_2023_464109
crossref_primary_10_3389_fcell_2021_732370
crossref_primary_10_3390_su17083607
crossref_primary_10_1016_j_eswa_2024_126284
crossref_primary_10_1109_TCSS_2022_3200526
crossref_primary_10_3390_sym15061182
crossref_primary_10_1093_bioadv_vbae097
crossref_primary_10_1016_j_procs_2025_03_057
crossref_primary_10_3390_systems12070257
crossref_primary_10_3390_ijms26178407
crossref_primary_10_1016_j_artmed_2023_102687
crossref_primary_10_1016_j_ins_2022_07_031
crossref_primary_10_3390_bdcc6020066
crossref_primary_10_1002_qub2_38
crossref_primary_10_1016_j_jocs_2024_102513
crossref_primary_10_1287_ijoc_2022_0130
crossref_primary_10_1002_adma_202209503
crossref_primary_10_1016_j_neucom_2024_127820
crossref_primary_10_1038_s41598_022_22843_4
crossref_primary_10_1007_s11633_024_1519_z
crossref_primary_10_3390_e25030422
crossref_primary_10_1146_annurev_biodatasci_110123_025333
crossref_primary_10_3390_app13179685
crossref_primary_10_1016_j_jii_2025_100802
crossref_primary_10_1109_TNSE_2025_3566227
crossref_primary_10_3390_genes13030473
crossref_primary_10_1109_ACCESS_2023_3260652
crossref_primary_10_2196_46777
crossref_primary_10_1007_s11280_022_01076_5
Cites_doi 10.1111/imm.12195
10.1142/9789814366496_0038
10.9758/cpn.2015.13.2.212
10.1007/s10822-016-9938-8
10.1186/s12859-016-1005-x
10.1038/msb.2009.98
10.1186/1471-2105-14-S16-S3
10.1093/bib/bbr028
10.1103/PhysRevE.80.017101
10.1038/nrd3078
10.1038/nrd.2016.3
10.1016/j.physa.2010.11.027
10.1007/978-3-319-66179-7_21
10.1007/978-1-4419-8462-3_9
10.1016/j.pharmthera.2013.01.016
10.1093/nar/gkx1037
10.1007/s11432-014-5237-y
10.1016/j.media.2018.06.001
10.1103/PhysRevE.73.026120
10.1038/msb.2008.60
10.1126/science.286.5439.509
10.1093/nar/gkw838
10.1038/srep07160
10.3390/molecules24091714
10.1103/PhysRevE.80.046122
10.1007/BF01164627
10.1039/c3mb70554d
10.1142/9789814583220_0014
10.1186/1752-0509-7-S5-S6
10.1016/S0169-7552(98)00110-X
10.1038/nrd1470
10.1038/nbt.1549
10.24963/ijcai.2019/594
10.1145/2939672.2939754
10.1126/science.1073374
10.1093/bioinformatics/bty294
10.1109/BIBM.2012.6392722
10.1039/c2mb00002d
10.1093/nar/gkm862
10.1103/PhysRevLett.120.145301
10.1145/2783258.2783307
10.1145/2736277.2741093
10.1209/0295-5075/89/58007
10.1016/S0378-8733(03)00009-1
10.1145/2623330.2623732
10.1089/cmb.2014.0158
10.1158/0008-5472.CAN-11-2333
10.1007/978-3-319-66182-7_54
10.1140/epjb/e2009-00335-8
10.1145/775047.775126
10.1038/nrd3681
10.1126/science.1158140
10.1002/wsbm.144
10.1209/0295-5075/96/48007
10.1371/journal.pcbi.1002503
10.1103/PhysRevE.64.025102
10.1016/j.compbiolchem.2019.03.016
10.1080/01621459.1937.10503522
10.1145/2939672.2939751
10.7150/ijbs.24612
10.1186/1471-2105-15-267
10.1145/2806416.2806512
10.1021/acs.jcim.6b00601
10.1007/978-3-319-34129-3_47
10.1109/TKDE.2007.46
10.1007/BF02289026
10.1038/nrd1468
10.1145/3159652.3159706
10.1038/s41467-017-00680-8
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04082-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 21
ExternalDocumentID oai_doaj_org_article_1d01a93d39a2459b986f82ecaa891468
PMC8042985
33845763
10_1186_s12859_021_04082_y
Genre Journal Article
GrantInformation_xml – fundername: Zhoukou Normal University
  grantid: ZKNUC2018019
  funderid: http://dx.doi.org/10.13039/100012901
– fundername: http://dx.doi.org/10.13039/501100011447
  grantid: 202102210379
  funderid: http://dx.doi.org/10.13039/501100011447
– fundername: http://dx.doi.org/10.13039/501100011447
  grantid: 202102210379
– fundername: Zhoukou Normal University
  grantid: ZKNUC2018019
– fundername: ;
  grantid: ZKNUC2018019
– fundername: ;
  grantid: 202102210379
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-6552729f95e6c480816259f740bfd70b1915e07f4cabf1319c715b3dd9d8884c3
IEDL.DBID M7P
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000639869800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:50:38 EDT 2025
Tue Nov 04 01:50:16 EST 2025
Thu Oct 02 09:44:37 EDT 2025
Mon Oct 06 18:28:01 EDT 2025
Mon Jul 21 05:53:50 EDT 2025
Tue Nov 18 22:20:04 EST 2025
Sat Nov 29 05:40:09 EST 2025
Sat Sep 06 07:27:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Poly-pharmacy
Drug-target prediction
Network link prediction
Poly-pharmacy side effects prediction
Data-driven drug discovery
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-6552729f95e6c480816259f740bfd70b1915e07f4cabf1319c715b3dd9d8884c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0096-3179
OpenAccessLink https://www.proquest.com/docview/2514262062?pq-origsite=%requestingapplication%
PMID 33845763
PQID 2514262062
PQPubID 44065
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_1d01a93d39a2459b986f82ecaa891468
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8042985
proquest_miscellaneous_2512344013
proquest_journals_2514262062
pubmed_primary_33845763
crossref_citationtrail_10_1186_s12859_021_04082_y
crossref_primary_10_1186_s12859_021_04082_y
springer_journals_10_1186_s12859_021_04082_y
PublicationCentury 2000
PublicationDate 2021-04-12
PublicationDateYYYYMMDD 2021-04-12
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References L Lü (4082_CR64) 2009; 80
M Žitnik (4082_CR12) 2015; 22
4082_CR8
F Tan (4082_CR43) 2014; 10
F Fouss (4082_CR68) 2007; 19
S Parisot (4082_CR35) 2018; 48
SM Paul (4082_CR5) 2010; 9
H Bisgin (4082_CR39) 2014; 15
DJ Klein (4082_CR67) 1993; 12
TT Ashburn (4082_CR15) 2004; 3
D Vidović (4082_CR37) 2014; 5
P Csermely (4082_CR1) 2013; 138
4082_CR33
4082_CR77
4082_CR34
T Zhou (4082_CR63) 2009; 71
4082_CR78
4082_CR79
4082_CR36
P Jaccard (4082_CR57) 1901; 37
F Cheng (4082_CR20) 2012; 8
LA Adamic (4082_CR62) 2003; 25
Y Luo (4082_CR24) 2017; 8
J Loscalzo (4082_CR2) 2011; 3
4082_CR71
S-M Wang (4082_CR16) 2015; 13
K Yang (4082_CR23) 2008; 4
4082_CR74
4082_CR75
4082_CR76
J Li (4082_CR50) 2013; 14
L Katz (4082_CR66) 1953; 18
M Campillos (4082_CR22) 2008; 321
JW Scannell (4082_CR3) 2012; 11
W Liu (4082_CR70) 2010; 89
4082_CR26
T Xie (4082_CR32) 2018; 120
M Zitnik (4082_CR48) 2018; 34
4082_CR27
4082_CR28
S Günther (4082_CR86) 2007; 36
4082_CR29
D Sun (4082_CR72) 2009; 80
AP Davis (4082_CR84) 2017; 45
DS Wishart (4082_CR85) 2017; 46
4082_CR6
H Huang (4082_CR21) 2014; 4
4082_CR7
P Wang (4082_CR13) 2015; 58
4082_CR65
Z Liu (4082_CR73) 2011; 96
L Lü (4082_CR60) 2011; 390
G Jin (4082_CR52) 2012; 72
H Xue (4082_CR9) 2018; 14
L Zhou (4082_CR10) 2019; 24
ME Newman (4082_CR55) 2001; 64
4082_CR56
EA Leicht (4082_CR11) 2006; 73
4082_CR17
4082_CR18
TA Sorensen (4082_CR58) 1948; 5
I Kola (4082_CR4) 2004; 3
X Chen (4082_CR19) 2012; 8
E Ravasz (4082_CR59) 2002; 297
M Friedman (4082_CR87) 1937; 32
4082_CR53
SJ Hebbring (4082_CR38) 2014; 141
4082_CR54
CW Coley (4082_CR30) 2017; 57
SJ Swamidass (4082_CR42) 2011; 12
S Kearnes (4082_CR31) 2016; 30
J You (4082_CR14) 2019; 80
4082_CR44
A-L Barabási (4082_CR61) 1999; 286
RM Webster (4082_CR45) 2016; 15
4082_CR47
S Brin (4082_CR69) 1998; 30
4082_CR49
C Wu (4082_CR51) 2013; 7
4082_CR80
4082_CR81
4082_CR82
4082_CR83
G Fu (4082_CR25) 2016; 17
4082_CR41
J Lehár (4082_CR46) 2009; 27
M Kuhn (4082_CR40) 2010; 6
References_xml – volume: 141
  start-page: 157
  issue: 2
  year: 2014
  ident: 4082_CR38
  publication-title: Immunology
  doi: 10.1111/imm.12195
– ident: 4082_CR41
  doi: 10.1142/9789814366496_0038
– volume: 13
  start-page: 212
  issue: 2
  year: 2015
  ident: 4082_CR16
  publication-title: Clin Psychopharmacol Neurosci
  doi: 10.9758/cpn.2015.13.2.212
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 4082_CR31
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 17
  start-page: 160
  issue: 1
  year: 2016
  ident: 4082_CR25
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1005-x
– volume: 6
  start-page: 343
  issue: 1
  year: 2010
  ident: 4082_CR40
  publication-title: Mol Syst Biol
  doi: 10.1038/msb.2009.98
– volume: 14
  start-page: 3
  issue: 16
  year: 2013
  ident: 4082_CR50
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-14-S16-S3
– volume: 12
  start-page: 327
  issue: 4
  year: 2011
  ident: 4082_CR42
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbr028
– volume: 80
  start-page: 017101
  issue: 1
  year: 2009
  ident: 4082_CR72
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.017101
– volume: 9
  start-page: 203
  issue: 3
  year: 2010
  ident: 4082_CR5
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3078
– volume: 15
  start-page: 81
  issue: 2
  year: 2016
  ident: 4082_CR45
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.3
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 4082_CR60
  publication-title: Phys A
  doi: 10.1016/j.physa.2010.11.027
– ident: 4082_CR8
– ident: 4082_CR28
– ident: 4082_CR34
  doi: 10.1007/978-3-319-66179-7_21
– ident: 4082_CR53
– ident: 4082_CR65
  doi: 10.1007/978-1-4419-8462-3_9
– volume: 138
  start-page: 333
  issue: 3
  year: 2013
  ident: 4082_CR1
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2013.01.016
– volume: 46
  start-page: 1074
  issue: D1
  year: 2017
  ident: 4082_CR85
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 58
  start-page: 1
  issue: 1
  year: 2015
  ident: 4082_CR13
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-014-5237-y
– volume: 48
  start-page: 117
  year: 2018
  ident: 4082_CR35
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.06.001
– volume: 73
  start-page: 026120
  issue: 2
  year: 2006
  ident: 4082_CR11
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.73.026120
– volume: 4
  start-page: 228
  issue: 1
  year: 2008
  ident: 4082_CR23
  publication-title: Mol Syst Biol.
  doi: 10.1038/msb.2008.60
– volume: 286
  start-page: 509
  issue: 5439
  year: 1999
  ident: 4082_CR61
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 45
  start-page: 972
  issue: D1
  year: 2017
  ident: 4082_CR84
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw838
– volume: 4
  start-page: 7160
  year: 2014
  ident: 4082_CR21
  publication-title: Sci Rep
  doi: 10.1038/srep07160
– volume: 24
  start-page: 1714
  issue: 9
  year: 2019
  ident: 4082_CR10
  publication-title: Molecules
  doi: 10.3390/molecules24091714
– volume: 80
  start-page: 046122
  issue: 4
  year: 2009
  ident: 4082_CR64
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.80.046122
– volume: 12
  start-page: 81
  issue: 1
  year: 1993
  ident: 4082_CR67
  publication-title: J Math Chem
  doi: 10.1007/BF01164627
– volume: 10
  start-page: 1126
  issue: 5
  year: 2014
  ident: 4082_CR43
  publication-title: Mol BioSyst
  doi: 10.1039/c3mb70554d
– ident: 4082_CR47
– ident: 4082_CR44
  doi: 10.1142/9789814583220_0014
– volume: 7
  start-page: 6
  issue: 5
  year: 2013
  ident: 4082_CR51
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-S5-S6
– volume: 30
  start-page: 107
  issue: 1–7
  year: 1998
  ident: 4082_CR69
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00110-X
– volume: 3
  start-page: 711
  issue: 8
  year: 2004
  ident: 4082_CR4
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1470
– volume: 27
  start-page: 659
  issue: 7
  year: 2009
  ident: 4082_CR46
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1549
– ident: 4082_CR75
  doi: 10.24963/ijcai.2019/594
– ident: 4082_CR77
  doi: 10.1145/2939672.2939754
– ident: 4082_CR54
– volume: 297
  start-page: 1551
  issue: 5586
  year: 2002
  ident: 4082_CR59
  publication-title: Science
  doi: 10.1126/science.1073374
– ident: 4082_CR7
– volume: 34
  start-page: 457
  issue: 13
  year: 2018
  ident: 4082_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– ident: 4082_CR49
  doi: 10.1109/BIBM.2012.6392722
– volume: 8
  start-page: 1970
  issue: 7
  year: 2012
  ident: 4082_CR19
  publication-title: Mol BioSyst
  doi: 10.1039/c2mb00002d
– ident: 4082_CR27
– volume: 36
  start-page: 919
  issue: suppl–1
  year: 2007
  ident: 4082_CR86
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm862
– volume: 120
  start-page: 145301
  issue: 14
  year: 2018
  ident: 4082_CR32
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.120.145301
– ident: 4082_CR81
  doi: 10.1145/2783258.2783307
– ident: 4082_CR79
  doi: 10.1145/2736277.2741093
– ident: 4082_CR17
– volume: 5
  start-page: 1
  year: 1948
  ident: 4082_CR58
  publication-title: Biol Skar
– volume: 89
  start-page: 58007
  issue: 5
  year: 2010
  ident: 4082_CR70
  publication-title: EPL (Europhys Lett)
  doi: 10.1209/0295-5075/89/58007
– ident: 4082_CR36
– volume: 25
  start-page: 211
  issue: 3
  year: 2003
  ident: 4082_CR62
  publication-title: Soc Netw
  doi: 10.1016/S0378-8733(03)00009-1
– ident: 4082_CR76
  doi: 10.1145/2623330.2623732
– volume: 22
  start-page: 595
  issue: 6
  year: 2015
  ident: 4082_CR12
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2014.0158
– volume: 72
  start-page: 33
  issue: 1
  year: 2012
  ident: 4082_CR52
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-2333
– ident: 4082_CR33
  doi: 10.1007/978-3-319-66182-7_54
– volume: 71
  start-page: 623
  issue: 4
  year: 2009
  ident: 4082_CR63
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2009-00335-8
– ident: 4082_CR71
  doi: 10.1145/775047.775126
– ident: 4082_CR78
– volume: 11
  start-page: 191
  issue: 3
  year: 2012
  ident: 4082_CR3
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3681
– ident: 4082_CR6
– volume: 321
  start-page: 263
  issue: 5886
  year: 2008
  ident: 4082_CR22
  publication-title: Science
  doi: 10.1126/science.1158140
– volume: 3
  start-page: 619
  issue: 6
  year: 2011
  ident: 4082_CR2
  publication-title: Wiley Interdiscip Rev Syst Biol Med
  doi: 10.1002/wsbm.144
– ident: 4082_CR26
– volume: 96
  start-page: 48007
  issue: 4
  year: 2011
  ident: 4082_CR73
  publication-title: EPL (Europhys Lett)
  doi: 10.1209/0295-5075/96/48007
– volume: 8
  start-page: e1002503
  issue: 5
  year: 2012
  ident: 4082_CR20
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1002503
– volume: 64
  start-page: 025102
  issue: 2
  year: 2001
  ident: 4082_CR55
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.64.025102
– volume: 80
  start-page: 90
  year: 2019
  ident: 4082_CR14
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2019.03.016
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 4082_CR87
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1937.10503522
– ident: 4082_CR82
  doi: 10.1145/2939672.2939751
– ident: 4082_CR74
– volume: 14
  start-page: 1232
  issue: 10
  year: 2018
  ident: 4082_CR9
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24612
– volume: 15
  start-page: 267
  issue: 1
  year: 2014
  ident: 4082_CR39
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-267
– ident: 4082_CR83
  doi: 10.1145/2806416.2806512
– volume: 57
  start-page: 1757
  issue: 8
  year: 2017
  ident: 4082_CR30
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00601
– ident: 4082_CR18
  doi: 10.1007/978-3-319-34129-3_47
– volume: 37
  start-page: 547
  year: 1901
  ident: 4082_CR57
  publication-title: Bull Soc Vaudoise Sci Nat
– volume: 19
  start-page: 355
  issue: 3
  year: 2007
  ident: 4082_CR68
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2007.46
– ident: 4082_CR56
– ident: 4082_CR29
– volume: 5
  start-page: 342
  year: 2014
  ident: 4082_CR37
  publication-title: Front Genet
– volume: 18
  start-page: 39
  issue: 1
  year: 1953
  ident: 4082_CR66
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 3
  start-page: 673
  issue: 8
  year: 2004
  ident: 4082_CR15
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1468
– ident: 4082_CR80
  doi: 10.1145/3159652.3159706
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 4082_CR24
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00680-8
SSID ssj0017805
Score 2.6125975
Snippet Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful...
Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful for...
Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data become useful...
Abstract Background Technological and research advances have produced large volumes of biomedical data. When represented as a network (graph), these data...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 187
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Biomedical data
Clinical trials
Complex systems
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Data-driven drug discovery
Datasets
Deep learning
Disease
Drug Discovery
Drug Interactions
Drug-target prediction
Drugs
Gene expression
Graph representations
Graphical representations
Learning algorithms
Life Sciences
Ligands
Machine Learning
Machine Learning and Artificial Intelligence in Bioinformatics
Microarrays
Model testing
Network analysis
Network link prediction
Neural networks
Performance evaluation
Pharmaceuticals
Poly-pharmacy
Poly-pharmacy side effects prediction
Predictions
Protein interaction
Proteins
R&D
Research & development
Research Article
Therapeutic targets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hqki9IAqUhi4oSNwg2thxEvvYVqw4oBUHQL1ZiT_KSihb7Uel_fedsZMt2xZ64bp2pNF4Zv2eZvwG4ANXZWPrps0QrBdIUATLpPOedG8F96ryLMgx_PxaT6fy4kJ9-2PUF_WERXng6LgxszlrVGEL1XBRqlbJykvuTNNIRc-G6N8XUc9Apvr6ASn1D09kZDVeMtJpy6gdIacJy9lm5xoKav0PQcz7nZJ3yqXhFpo8h2c9fExPo9mH8MR1L-BpHCi5eQny9LYenc592sUm75TKtOnVgooyYWnWpXaxvkzpTS71cG5ewY_J5-_nX7J-NkJmEGOtsoqU07jyqnSVEWF8BhIZX4u89bbOW6RhpctrL0zTeoZ5ZmpWtoW1yiLnFaY4gr1u3rljSA233ksEDqWXoqhdiwxRidw6QgvK2QTY4CpteuFwml_xWwcCISsd3avRvTq4V28S-Lj95irKZvxz9xmdwHYnSV6HHzAQdB8I-rFASGA0nJ_u83CpEb0Fyf2KJ_B-u4wZRGWRpnPzddjDC0E8M4HX8bi3liCBF8jIcKXeCYQdU3dXutmvoNIt6aqXZQKfhpC5NevvrnjzP1xxAgc8xnrG-Aj2Vou1ewv75no1Wy7ehUy5AZ3gE2Y
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xlLgUCoWGR5VK3CAidpzEPkJVxAGtqkIRNyvxA1ZCWZTdrbT_vh7nsVoeldprPFFG45l4Ps34G4BjKtJC50UZuWQ9cQCFkYgba5H3llErMks8HcPddT4Y8Pt78aO9FDbuut27kqT_U_uw5tnZmCDXWoQtBTFOSY5my7DqjjuO4fjz5q6vHSBLf3c95s33Fo4gz9T_Vnr5ukvyRanUn0CXm_-n-xZ8aDPO8LxxkY-wZKptWG9mUM52gJ_PS9jhyIZV0xce4mfC5xrrOH5pWIW6nj6EeI0X2z5nn-DX5ffbb1dRO04hUi4tm0QZkq1RYUVqMsX8xA2HfWzO4tLqPC4dcktNnFumitISF5oqJ2mZaC20g8lMJbuwUo0q8xlCRbW13Bk_tZwluSkdqBQs1gYTDGF0AKSzsFQt1ziOvHiSHnPwTDYWkc4i0ltEzgI46d95bpg2_ip9gRvXSyJLtn8wqh9kG3SS6JgUItGJKChLRSl4Zjk1qii4wCtnARx22y7b0B1Ll_B5lv6MBvC1X3ZBh5WUojKjqZehCUNoGsBe4yW9Jg7zMwfi3Eq-4D8Lqi6uVMNHT-zNMTvgaQCnnRfN1XrfFPv_Jn4AG7RxxIjQQ1iZ1FNzBGvq92Q4rr_4UPoDQyEY9Q
  priority: 102
  providerName: Springer Nature
Title Application of network link prediction in drug discovery
URI https://link.springer.com/article/10.1186/s12859-021-04082-y
https://www.ncbi.nlm.nih.gov/pubmed/33845763
https://www.proquest.com/docview/2514262062
https://www.proquest.com/docview/2512344013
https://pubmed.ncbi.nlm.nih.gov/PMC8042985
https://doaj.org/article/1d01a93d39a2459b986f82ecaa891468
Volume 22
WOSCitedRecordID wos000639869800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvEsDZRUkbmA1iZ3YPqEWtQIBq6hAtXCxktguK6Fkuw-k_fd4nMdqefTCxVIyjmR7ZuIZz_gbgBeJTAvNi5I4Y506B4XFRBhrEfeWJVZmNvZwDBcf-HgsJhOZdwduiy6tsv8n-h-1bio8Iz9y-7AHT8-S17MrglWjMLraldDYgT1ESaA-dS8fogiI199flBHZ0SJGtDaCSQkR1lkm663NyGP2_83Q_DNf8regqd-Lzu7-7yzuwZ3OCg2PW7G5DzdM_QButXUp1w9BHG_C2mFjw7rNFQ8x2hvO5hjb8aRpHer56jLEq72YCrp-BF_OTj-_eUu6EgukcqbakmQIwJZIK1OTVcxX4XD-kOUsKq3mUem8udRE3LKqKG3s1LXicVpSraV2rjOr6D7s1k1tDiCsEm2tcPZHagWj3JTO0ZQs0gaNDml0AHG_1qrq8MexDMYP5f0QkamWP8rxR3n-qHUAL4dvZi36xrW9T5CFQ09EzvYvmvml6hRRxTqKC0k1lUXCUllKkVmRmKoohMRraAEc9pxTnTov1IZtATwfyE4RMbpS1KZZ-T4JZeiuBvC4lZdhJJQK5hw7R-FbkrQ11G1KPf3uwb4FWgwiDeBVL3ObYf17KZ5cP4uncDtp1YDEySHsLucr8wxuVj-X08V8BDt8wn0rRrB3cjrOz0f-rMK17zkZeSVzbZ5-c_T83cf8q3s6_3TxCzVAKuU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70egQJDgBFET24ntA0LlUbXaZcWhoN7cJLbLSihZ9gHKn-I34nEeq-XRWw9cYydynM_jmcz4-wCeEZnmmudF5Jx16gIUlkTCWIu8t4xYmdnE0zF8HvPJRBwfy49b8LM_C4Nllb1N9IZa1yX-I991-7AnT8_I69m3CFWjMLvaS2i0sBiZ5ocL2RavDt-57_uckP33R28Pok5VICqdd7KMMuQcI9LK1GQl88ITLgSwnMWF1TwuXACTmphbVuaFTRxCS56kBdVaahctspK6516Ai4wKjlz9Ix4NWQvUB-gP5ohsd5EgO1yERRAx6jpHzcbm5zUC_ubY_lmf-VuS1u99-9f_t1m7Adc6Lzvca5fFTdgy1S243OpuNrdB7K3T9mFtw6qthQ8xmx3O5pi78k3TKtTz1WmIR5ex1LW5A5_OZdh3YbuqK3MfwpJoa4Xzr1IrGOWmcIG0ZLE26FRJowNI-m-ryo5fHWU-viofZ4lMtXhQDg_K40E1AbwY7pm17CJn9n6DkBl6IjO4v1DPT1VnaFSi4ySXVFOZE5bKQorMCmLKPBcSj9kFsNMjRXXmaqHWMAng6dDsDA1mj_LK1Cvfh1CG4XgA91p8DiOhVDAXuLoWvoHcjaFutlTTL57MXKBHJNIAXvYYXw_r31Px4Oy3eAJXDo4-jNX4cDJ6CFdJuwSjhOzA9nK-Mo_gUvl9OV3MH_sFHMLJeWP_F_XnfE4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQLZymBAkHiDaLGRxL7sRwrENWqElD1zUp8lJVQdpXdrbT_Ho-dpCwUJMRrxlacyYw8n2bmG4CXVBa1qeom88E68wCFk0xY55D3llMnS0cCHcPJUTWditNTefxTF3-odh9SkrGnAVma2tXBwrjo4qI8WBLkXcuwvCDHicnZ5ipc4zg0CPH655Mxj4CM_UOrzKX7tq6jwNp_Waj5e8XkL2nTcBtN7vz_d9yF230kmh5G07kHV2x7H27E2ZSbByAOL1Lb6dylbawXT_GV6aLD_E4QzdrUdOuzFNt7sRx0swtfJ--_vP2Q9WMWMu3DtVVWIgkblU4WttQ8TOLwmMhVPG-cqfLGI7rC5pXjum4c8S6rK1I0zBhpPHzmmj2EnXbe2keQamqcEz4GKZzgrLKNB5uS58Zi4CGtSYAM2la65yDHURjfVcAiolRRI8prRAWNqE0Cr8Y9i8jA8dfVb_AnjiuRPTs8mHdnqndGRUxOaskMkzXlhWykKJ2gVte1kNiKlsD-YAKqd-ml8oFgYO8vaQIvRrF3Rsyw1K2dr8MayjhC1gT2osWMJ2FMcA_uvKTasqWto25L2tm3QPgtMGoQRQKvB4u6ONafVfH435Y_h5vH7ybq6OP00xO4RaNNZoTuw86qW9uncF2fr2bL7lnwsB_6diS9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+network+link+prediction+in+drug+discovery&rft.jtitle=BMC+bioinformatics&rft.au=Abbas%2C+Khushnood&rft.au=Abbasi%2C+Alireza&rft.au=Dong%2C+Shi&rft.au=Niu%2C+Ling&rft.date=2021-04-12&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=22&rft_id=info:doi/10.1186%2Fs12859-021-04082-y&rft_id=info%3Apmid%2F33845763&rft.externalDocID=PMC8042985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon