Creating solvation environments in heterogeneous catalysts for efficient biomass conversion

Chemical transformations are highly sensitive toward changes in the solvation environment and solvents have long been used to control their outcome. Reactions display unique performance in solvents like ionic liquids or DMSO, however, isolating products from them is cumbersome and energy-consuming....

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 9; no. 1; pp. 3236 - 8
Main Authors: Sun, Qi, Wang, Sai, Aguila, Briana, Meng, Xiangju, Ma, Shengqian, Xiao, Feng-Shou
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13.08.2018
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chemical transformations are highly sensitive toward changes in the solvation environment and solvents have long been used to control their outcome. Reactions display unique performance in solvents like ionic liquids or DMSO, however, isolating products from them is cumbersome and energy-consuming. Here, we develop promising alternatives by constructing solvent moieties into porous materials, which in turn serve as platforms for introducing catalytic species. Due to the high density of the solvent moieties, these porous solid solvents (PSSs) retain solvation ability, which greatly influences the performance of incorporated active sites via concerted non-covalent substrate–catalyst interactions. As a proof-of-concept, the -SO 3 H-incorporated PSSs exhibit high yields of fructose to 5-hydroxymethylfurfural in THF, which exceeds the best results reported using readily separable solvents and even rivals those in ionic liquids or DMSO. Given the wide application, our strategy provides a step forward towards sustainable synthesis by eliminating the concerns with separation unfriendly solvents. Solvents play important roles in chemical transformations, but isolating products from solvents is cumbersome and energy-consuming. Here, the authors develop promising alternatives by anchoring the solvent moieties onto porous materials for creating solvation environments in heterogeneous catalysts for efficient biomass conversion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05534-5