Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning
Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mos...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 11; H. 1; S. 4992 - 10 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
02.03.2021
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. |
|---|---|
| AbstractList | Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models. |
| ArticleNumber | 4992 |
| Author | Rignot, Eric Scheuchl, Bernd Jeong, Seongsu Mohajerani, Yara Milillo, Pietro Velicogna, Isabella |
| Author_xml | – sequence: 1 givenname: Yara surname: Mohajerani fullname: Mohajerani, Yara email: ymohajer@uci.edu organization: Department of Earth System Science, University of California Irvine, eScience Institute and Department of Civil and Environmental Engineering, University of Washington – sequence: 2 givenname: Seongsu surname: Jeong fullname: Jeong, Seongsu organization: Department of Earth System Science, University of California Irvine – sequence: 3 givenname: Bernd surname: Scheuchl fullname: Scheuchl, Bernd organization: Department of Earth System Science, University of California Irvine – sequence: 4 givenname: Isabella surname: Velicogna fullname: Velicogna, Isabella organization: Department of Earth System Science, University of California Irvine, Jet Propulsion Laboratory – sequence: 5 givenname: Eric surname: Rignot fullname: Rignot, Eric organization: Department of Earth System Science, University of California Irvine, Jet Propulsion Laboratory – sequence: 6 givenname: Pietro surname: Milillo fullname: Milillo, Pietro organization: Department of Earth System Science, University of California Irvine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33654148$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBn4lyQqoqPSpW4wNny2uPUq8RebAep1_5ynN0W2h7qiz2edx69mpnXzVGIAZrmLcEfCWbyU-ZEDLLFlLSSMzy07EVzQjEXLWWUHj14HzdnOW9xPYIOnAyvmmPGOsEJlyfN7flS4qyLN8jC5APUZwwoOjRO2nhIaExxCdaHEa3pjHxA1jsHCULxeqpxgVTDOENJFZNvQrmGCmz1DlJZEqCkrU7I6qLRkleSBdihCXQKNXrTvHR6ynB2d582v75--Xnxvb368e3y4vyqNYLj0oqueh-Iw33PRI-BE8Mw7ikF5qCjoJ2BYSOJMJgx46zbbAizmAM32FjL2WlzeeDaqLdql_ys042K2qv9R0yj0qn6nkBJQTdk6B2VuuedZLrTTILTg2HMEmIr6_OBtVs2M1hTe5H09Aj6OBP8tRrjH9UPVAjRVcCHO0CKvxfIRc0-G5gmHSAuWVE-dJT1dWRV-v6JdBuXFGqrVpUgkvSEVdW7h47-WbkfdRXIg8CkmHMCp4wv-2lXg35SBKt1sdRhsVRdLLVfLLWy6ZPSe_qzRexQlKs4jJD-236m6i_wiOKc |
| CitedBy_id | crossref_primary_10_1016_j_polar_2024_101124 crossref_primary_10_5194_tc_17_2645_2023 crossref_primary_10_5194_tc_17_4079_2023 crossref_primary_10_1029_2021GL095661 crossref_primary_10_5194_tc_17_2811_2023 crossref_primary_10_3390_rs14215429 crossref_primary_10_5194_tc_15_5309_2021 crossref_primary_10_1016_j_accre_2024_07_011 crossref_primary_10_1080_17538947_2024_2390438 crossref_primary_10_5194_tc_19_2431_2025 crossref_primary_10_1038_s41467_022_35471_3 crossref_primary_10_1038_s41598_022_13517_2 crossref_primary_10_5194_tc_18_3933_2024 crossref_primary_10_1029_2022GL102430 crossref_primary_10_1038_s41467_023_42970_4 crossref_primary_10_5194_tc_16_3907_2022 crossref_primary_10_1016_j_rse_2024_114478 crossref_primary_10_5194_tc_17_3593_2023 crossref_primary_10_1007_s12524_024_01918_x crossref_primary_10_1038_s41597_025_04672_y crossref_primary_10_5194_tc_19_3971_2025 crossref_primary_10_1016_j_rse_2024_114429 crossref_primary_10_5194_tc_17_1003_2023 crossref_primary_10_1109_JSTARS_2025_3601588 crossref_primary_10_5194_tc_18_4723_2024 crossref_primary_10_5194_tc_17_4675_2023 crossref_primary_10_3389_feart_2025_1545009 crossref_primary_10_5194_tc_19_2159_2025 crossref_primary_10_5194_tc_16_3021_2022 crossref_primary_10_1029_2022GL100141 crossref_primary_10_1080_10106049_2022_2032391 crossref_primary_10_1038_s41598_021_84309_3 crossref_primary_10_5194_essd_14_535_2022 crossref_primary_10_5194_essd_14_4287_2022 crossref_primary_10_1007_s11430_023_1338_8 |
| Cites_doi | 10.1126/science.1208336 10.1002/2017GL074954 10.3390/rs11010074 10.1016/j.rse.2011.05.028 10.3390/rs9040364 10.5194/tc-12-3085-2018 10.1038/467794a 10.1002/2016GL069287 10.1002/2013GL057942 10.3189/2015JoG14J152 10.1109/MCSE.2007.55 10.3189/172756501781832322 10.1029/2011GL047109 10.1029/2006GL027091 10.1073/pnas.1904822116 10.3390/rs4092753 10.3189/1998AoG27-1-25-32 10.1038/ngeo102 10.3189/172756402781818049 10.1002/2017GL074320 10.1007/s10712-011-9133-3 10.1126/science.1235798 10.1017/jog.2017.51 10.3189/002214311798043753 10.3189/172756410791392790 10.1073/pnas.1812883116 10.1017/S095410200999023X 10.1029/2012GL051634 10.1126/sciadv.aau3433 10.1029/2004JF000202 10.1007/978-3-319-24574-4_28 10.1038/s41598-021-84309-3 10.1007/978-3-030-01234-2_49 10.1029/2001JB000383 10.1029/2019GL086291 10.1109/CVPR.2017.195 10.1029/2011GL046583 10.5281/zenodo.3483425 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-021-84309-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central (New) (NC LIVE) ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database ProQuest Biological Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_852b197f28a74683a6a38efa9c33d11d PMC7925556 33654148 10_1038_s41598_021_84309_3 |
| Genre | Journal Article |
| GeographicLocations | Antarctica |
| GeographicLocations_xml | – name: Antarctica |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-5641991f0773570e41c300722e3fe62eafce9b815c033cfdfbb13d04e4c0cdd43 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625411400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:41:23 EDT 2025 Tue Nov 04 01:59:19 EST 2025 Fri Sep 05 12:15:03 EDT 2025 Tue Oct 07 07:42:12 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Sat Nov 29 02:21:08 EST 2025 Tue Nov 18 21:52:24 EST 2025 Fri Feb 21 02:39:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-5641991f0773570e41c300722e3fe62eafce9b815c033cfdfbb13d04e4c0cdd43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2495181713?pq-origsite=%requestingapplication% |
| PMID | 33654148 |
| PQID | 2495181713 |
| PQPubID | 2041939 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_852b197f28a74683a6a38efa9c33d11d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925556 proquest_miscellaneous_2496237052 proquest_journals_2495181713 pubmed_primary_33654148 crossref_citationtrail_10_1038_s41598_021_84309_3 crossref_primary_10_1038_s41598_021_84309_3 springer_journals_10_1038_s41598_021_84309_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-02 |
| PublicationDateYYYYMMDD | 2021-03-02 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Rignot (CR30) 2019; 116 Tsai, Gudmundsson (CR35) 2015; 61 Rignot, Jacobs, Mouginot, Scheuchl (CR29) 2013; 341 CR18 Gillet-Chaulet, Durand (CR22) 2010; 467 Rignot, Mouginot, Scheuchl (CR24) 2017 CR37 Fricker (CR5) 2009; 21 CR13 Brunt, Fricker, Padman, Scambos, O’Neel (CR8) 2010; 51 Schmeltz, Rignot, MacAyeal (CR12) 2002; 34 Docquier, Perichon, Pattyn (CR20) 2011; 32 Rignot, Mouginot, Scheuchl (CR25) 2011; 333 CR33 CR32 CR31 Rignot, Mouginot, Scheuchl (CR1) 2011; 38 Le Meur, Hindmarsh (CR34) 2001; 47 Horgan, Anandakrishnan (CR9) 2006; 33 Morlighem (CR36) 2017; 44 Torres (CR14) 2012; 120 Mohajerani, Wood, Velicogna, Rignot (CR15) 2019; 11 Sayag, Worster (CR38) 2013; 40 Bohlander, Scambos (CR6) 2007 Brondex, Gagliardini, Gillet-Chaulet, Durand (CR4) 2017; 63 CR7 CR28 Brunt, Fricker, Padman (CR2) 2011; 57 CR27 Robel, Seroussi, Roe (CR21) 2019; 116 CR46 CR23 CR45 CR44 CR43 Rignot (CR11) 1998; 27 Mouginot, Rignot, Scheuchl, Millan (CR10) 2017; 9 Van, Drake (CR17) 2009 CR41 Scheuchl, Mouginot, Rignot, Morlighem, Khazendar (CR16) 2016; 43 CR40 Rignot (CR3) 2008; 1 Seroussi, Morlighem (CR42) 2018; 12 Mouginot, Scheuchl, Rignot (CR26) 2012; 4 Milillo (CR39) 2017; 44 Hunter (CR19) 2007; 9 E Rignot (84309_CR30) 2019; 116 R Sayag (84309_CR38) 2013; 40 R Torres (84309_CR14) 2012; 120 Y Mohajerani (84309_CR15) 2019; 11 HA Fricker (84309_CR5) 2009; 21 H Seroussi (84309_CR42) 2018; 12 F Gillet-Chaulet (84309_CR22) 2010; 467 E Rignot (84309_CR3) 2008; 1 J Brondex (84309_CR4) 2017; 63 84309_CR28 J Bohlander (84309_CR6) 2007 84309_CR46 KM Brunt (84309_CR8) 2010; 51 E Rignot (84309_CR11) 1998; 27 E Rignot (84309_CR24) 2017 84309_CR27 84309_CR43 84309_CR44 84309_CR23 84309_CR45 84309_CR40 84309_CR41 JD Hunter (84309_CR19) 2007; 9 H Horgan (84309_CR9) 2006; 33 VC Tsai (84309_CR35) 2015; 61 84309_CR7 RG Van (84309_CR17) 2009 AA Robel (84309_CR21) 2019; 116 E Rignot (84309_CR1) 2011; 38 84309_CR18 D Docquier (84309_CR20) 2011; 32 B Scheuchl (84309_CR16) 2016; 43 84309_CR13 E Le Meur (84309_CR34) 2001; 47 84309_CR37 J Mouginot (84309_CR26) 2012; 4 84309_CR31 84309_CR32 P Milillo (84309_CR39) 2017; 44 KM Brunt (84309_CR2) 2011; 57 84309_CR33 E Rignot (84309_CR25) 2011; 333 M Morlighem (84309_CR36) 2017; 44 M Schmeltz (84309_CR12) 2002; 34 J Mouginot (84309_CR10) 2017; 9 E Rignot (84309_CR29) 2013; 341 |
| References_xml | – ident: CR45 – volume: 333 start-page: 1427 year: 2011 end-page: 1430 ident: CR25 article-title: Ice flow of the Antarctic ice sheet publication-title: Science doi: 10.1126/science.1208336 – ident: CR18 – ident: CR43 – year: 2007 ident: CR6 publication-title: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA) – volume: 44 start-page: 11 year: 2017 end-page: 051 ident: CR36 article-title: Bedmachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074954 – ident: CR37 – volume: 11 start-page: 74 year: 2019 ident: CR15 article-title: Detection of glacier calving margins with convolutional neural networks: A case study publication-title: Remote Sens. doi: 10.3390/rs11010074 – volume: 120 start-page: 9 year: 2012 end-page: 24 ident: CR14 article-title: GMES sentinel-1 mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.028 – ident: CR33 – volume: 9 start-page: 364 year: 2017 ident: CR10 article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and Radarsat-2 data publication-title: Remote Sens. doi: 10.3390/rs9040364 – volume: 12 start-page: 3085 year: 2018 end-page: 3096 ident: CR42 article-title: Representation of basal melting at the grounding line in ice flow models publication-title: Cryosphere doi: 10.5194/tc-12-3085-2018 – volume: 467 start-page: 794 year: 2010 end-page: 795 ident: CR22 article-title: Ice-sheet advance in Antarctica publication-title: Nature doi: 10.1038/467794a – year: 2009 ident: CR17 publication-title: Python 3 Reference Manual – volume: 43 start-page: 8572 year: 2016 end-page: 8579 ident: CR16 article-title: Grounding line retreat of pope, smith, and Kohler glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069287 – ident: CR40 – ident: CR27 – ident: CR23 – volume: 40 start-page: 5877 year: 2013 end-page: 5881 ident: CR38 article-title: Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL057942 – volume: 61 start-page: 216 year: 2015 end-page: 222 ident: CR35 article-title: An improved model for tidally modulated grounding-line migration publication-title: J. Glaciol. doi: 10.3189/2015JoG14J152 – ident: CR46 – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: CR19 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – ident: CR44 – volume: 47 start-page: 258 year: 2001 end-page: 270 ident: CR34 article-title: Coupled marine-ice-sheet/earth dynamics using a dynamically consistent ice-sheet model and a self-gravitating viscous earth model publication-title: J. Glaciol. doi: 10.3189/172756501781832322 – volume: 38 start-page: L10504 year: 2011 ident: CR1 article-title: Antarctic grounding line mapping from differential satellite radar interferometry publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047109 – year: 2017 ident: CR24 publication-title: Measures Insar-based Antarctica Ice Velocity Map, Version 2 – volume: 33 start-page: L18502 year: 2006 ident: CR9 article-title: Static grounding lines and dynamic ice streams: Evidence from the Siple Coast, West Antarctica publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027091 – volume: 116 start-page: 14887 year: 2019 end-page: 14892 ident: CR21 article-title: Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1904822116 – volume: 4 start-page: 2753 year: 2012 end-page: 2767 ident: CR26 article-title: Mapping of ice motion in Antarctica using synthetic-aperture radar data publication-title: Remote Sens. doi: 10.3390/rs4092753 – ident: CR31 – volume: 27 start-page: 25 year: 1998 end-page: 32 ident: CR11 article-title: Radar interferometry detection of hinge-line migration on Rutford ice stream and Carlson inlet, Antarctica publication-title: Ann. Glaciol. doi: 10.3189/1998AoG27-1-25-32 – ident: CR13 – volume: 1 start-page: 106 year: 2008 end-page: 110 ident: CR3 article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling publication-title: Nat. Geosci. doi: 10.1038/ngeo102 – volume: 34 start-page: 202 year: 2002 end-page: 208 ident: CR12 article-title: Tidal flexure along ice-sheet margins: Comparison of Insar with an elastic-plate model publication-title: Ann. Glaciol. doi: 10.3189/172756402781818049 – volume: 44 start-page: 10 year: 2017 end-page: 436 ident: CR39 article-title: On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074320 – ident: CR32 – volume: 32 start-page: 417 year: 2011 end-page: 435 ident: CR20 article-title: Representing grounding line dynamics in numerical ice sheet models: Recent advances and outlook publication-title: Surv. Geophys. doi: 10.1007/s10712-011-9133-3 – volume: 341 start-page: 266 year: 2013 end-page: 270 ident: CR29 article-title: Ice-shelf melting around Antarctica publication-title: Science doi: 10.1126/science.1235798 – volume: 63 start-page: 854 year: 2017 end-page: 866 ident: CR4 article-title: Sensitivity of grounding line dynamics to the choice of the friction law publication-title: J. Glaciol. doi: 10.1017/jog.2017.51 – volume: 57 start-page: 965 year: 2011 end-page: 975 ident: CR2 article-title: Analysis of ice plains of the Filchner–Ronne ice shelf, Antarctica, using ICESat laser altimetry publication-title: J. Glaciol. doi: 10.3189/002214311798043753 – ident: CR7 – volume: 51 start-page: 71 year: 2010 end-page: 79 ident: CR8 article-title: Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using Icesat laser altimetry publication-title: Ann. Glaciol. doi: 10.3189/172756410791392790 – ident: CR28 – ident: CR41 – volume: 116 start-page: 1095 year: 2019 end-page: 1103 ident: CR30 article-title: Four decades of Antarctic ice sheet mass balance from 1979–2017 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1812883116 – volume: 21 start-page: 515 year: 2009 ident: CR5 article-title: Mapping the grounding zone of the Amery Ice Self, East Antarctica using Insar, Modis and Icesat publication-title: Antarct. Sci. doi: 10.1017/S095410200999023X – volume: 63 start-page: 854 year: 2017 ident: 84309_CR4 publication-title: J. Glaciol. doi: 10.1017/jog.2017.51 – volume-title: Measures Insar-based Antarctica Ice Velocity Map, Version 2 year: 2017 ident: 84309_CR24 – volume: 21 start-page: 515 year: 2009 ident: 84309_CR5 publication-title: Antarct. Sci. doi: 10.1017/S095410200999023X – volume: 9 start-page: 90 year: 2007 ident: 84309_CR19 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 33 start-page: L18502 year: 2006 ident: 84309_CR9 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027091 – ident: 84309_CR13 – volume: 47 start-page: 258 year: 2001 ident: 84309_CR34 publication-title: J. Glaciol. doi: 10.3189/172756501781832322 – volume: 57 start-page: 965 year: 2011 ident: 84309_CR2 publication-title: J. Glaciol. doi: 10.3189/002214311798043753 – volume-title: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA) year: 2007 ident: 84309_CR6 – volume: 4 start-page: 2753 year: 2012 ident: 84309_CR26 publication-title: Remote Sens. doi: 10.3390/rs4092753 – volume: 1 start-page: 106 year: 2008 ident: 84309_CR3 publication-title: Nat. Geosci. doi: 10.1038/ngeo102 – ident: 84309_CR28 doi: 10.1029/2012GL051634 – volume: 51 start-page: 71 year: 2010 ident: 84309_CR8 publication-title: Ann. Glaciol. doi: 10.3189/172756410791392790 – volume: 61 start-page: 216 year: 2015 ident: 84309_CR35 publication-title: J. Glaciol. doi: 10.3189/2015JoG14J152 – volume: 34 start-page: 202 year: 2002 ident: 84309_CR12 publication-title: Ann. Glaciol. doi: 10.3189/172756402781818049 – ident: 84309_CR40 doi: 10.1126/sciadv.aau3433 – volume: 9 start-page: 364 year: 2017 ident: 84309_CR10 publication-title: Remote Sens. doi: 10.3390/rs9040364 – volume: 341 start-page: 266 year: 2013 ident: 84309_CR29 publication-title: Science doi: 10.1126/science.1235798 – ident: 84309_CR33 doi: 10.1029/2004JF000202 – ident: 84309_CR45 doi: 10.1007/978-3-319-24574-4_28 – ident: 84309_CR23 doi: 10.1038/s41598-021-84309-3 – ident: 84309_CR44 doi: 10.1007/978-3-030-01234-2_49 – ident: 84309_CR18 – volume: 32 start-page: 417 year: 2011 ident: 84309_CR20 publication-title: Surv. Geophys. doi: 10.1007/s10712-011-9133-3 – ident: 84309_CR43 – volume: 116 start-page: 1095 year: 2019 ident: 84309_CR30 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1812883116 – volume: 40 start-page: 5877 year: 2013 ident: 84309_CR38 publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL057942 – volume-title: Python 3 Reference Manual year: 2009 ident: 84309_CR17 – volume: 12 start-page: 3085 year: 2018 ident: 84309_CR42 publication-title: Cryosphere doi: 10.5194/tc-12-3085-2018 – volume: 11 start-page: 74 year: 2019 ident: 84309_CR15 publication-title: Remote Sens. doi: 10.3390/rs11010074 – volume: 27 start-page: 25 year: 1998 ident: 84309_CR11 publication-title: Ann. Glaciol. doi: 10.3189/1998AoG27-1-25-32 – ident: 84309_CR7 doi: 10.1029/2001JB000383 – volume: 116 start-page: 14887 year: 2019 ident: 84309_CR21 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1904822116 – volume: 38 start-page: L10504 year: 2011 ident: 84309_CR1 publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047109 – volume: 43 start-page: 8572 year: 2016 ident: 84309_CR16 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069287 – volume: 467 start-page: 794 year: 2010 ident: 84309_CR22 publication-title: Nature doi: 10.1038/467794a – ident: 84309_CR37 – ident: 84309_CR41 doi: 10.1029/2019GL086291 – ident: 84309_CR32 doi: 10.1109/CVPR.2017.195 – volume: 44 start-page: 11 year: 2017 ident: 84309_CR36 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074954 – ident: 84309_CR27 doi: 10.1029/2011GL046583 – volume: 44 start-page: 10 year: 2017 ident: 84309_CR39 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074320 – volume: 120 start-page: 9 year: 2012 ident: 84309_CR14 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.028 – volume: 333 start-page: 1427 year: 2011 ident: 84309_CR25 publication-title: Science doi: 10.1126/science.1208336 – ident: 84309_CR31 doi: 10.5281/zenodo.3483425 – ident: 84309_CR46 |
| SSID | ssj0000529419 |
| Score | 2.5128305 |
| Snippet | Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice... Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice... Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4992 |
| SubjectTerms | 704/106 704/106/125 Automation Bending stresses Deep learning Digitization Equilibrium Glaciers Humanities and Social Sciences Ice sheets Ice shelves Learning algorithms Machine learning Mathematical models multidisciplinary Neural networks Radar Satellites Science Science (multidisciplinary) Sea level rise |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiDeBFhmJG0SNH7GdY1tRcao4gNSb5fhRVirJKtmt1Cu_nBknu3R5XjgmdhLLnok_a2a-j5A3rRHGq0aWKrK2lMnx0kXHyhq2N8T4dRIhi03o83NzcdF8vCX1hTlhEz3wNHFHpuYta3TixmmpjHDKCROTa7wQgbGAf19APbcOUxOrN28ka-YqmUqYoxF2Kqwm46w0EsMKYmcnyoT9v0OZvyZL_hQxzRvR2QNyf0aQ9Hga-UNyJ3aPyN1JU_LmMfl2vF71mYeVBqw1nzAh7RMFoAyOPFAs5Mi1LBSbR7ro6EYmBdz9iiKDxACX_VdU2_J0vOkAJcILS7eMA0Yc6OCCGyhml1JMnL-ET8UlnRUoLp-Qz2fvP51-KGehhdIDYFuVtZKYAZUqrUWtqyiZF0gpzqNIUfHoko9Na1jtKyF8CqltmQiVjNJXPgQpnpK9ru_ic0K1rCuWkoJTnJetj075oFIVtUzGNZIXhG0m3fqZhRzFMK5sjoYLY6eFsrBQNi-UFQV5u31mOXFw_LX3Ca7ltifyZ-cbYFV2tir7L6sqyMHGEuzs1KNFmW4ARHCsL8jrbTO4I8ZYXBf7de4DgFKD_RXk2WQ425EIkUXXTUH0jkntDHW3pVt8yZTfuoGjX60K8m5jfD-G9eepePE_puIlucfRazDvjh-QvdWwjodk31-vFuPwKrvdd8CDMag priority: 102 providerName: Directory of Open Access Journals |
| Title | Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning |
| URI | https://link.springer.com/article/10.1038/s41598-021-84309-3 https://www.ncbi.nlm.nih.gov/pubmed/33654148 https://www.proquest.com/docview/2495181713 https://www.proquest.com/docview/2496237052 https://pubmed.ncbi.nlm.nih.gov/PMC7925556 https://doaj.org/article/852b197f28a74683a6a38efa9c33d11d |
| Volume | 11 |
| WOSCitedRecordID | wos000625411400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceD8CS2UkbhBtHDuxc0K7aFdw2KpCIJVT5PhRKi1JSVqkvfLL8ThpV-WxFy6WWrutU49nxp6Z7wN4VUkmdV7wOLe0irlTaaysonHmzRv6-JljJpBNiOlUzufFbLhw64a0yq1ODIraNBrvyI-QI9lbI3-merv6HiNrFEZXBwqNAxgjUhkfwfjkdDr7uLtlwTgWp8VQLZMwedR5i4VVZSmNJcfwAtuzSAG4_2_e5p9Jk79FToNBOrv7v49yD-4Mrig57mXnPtyw9QO41ZNTXj6En8ebdRMAXYnBovXeuSSNI97j9hqhJVgREopiCHZ3ZFmTLd-K1xsXBKEoWv-y-Ya0XZp0l7V3N_0XxmplWwxdkFYZ1RJMUyWYgb_wP2VXZKCyWDyCz2enn969jwfGhlh7z28dZznHVCqXCMEykVhONUNs8tQyZ_PUKqdtUUma6YQx7YyrKspMwi3XiTaGs8cwqpvaPgUieJZQ53J_HNS80lbl2uQusYI7qQqeRkC3q1bqAc4cWTUuyhBWZ7LsV7r0K12GlS5ZBK93n1n1YB7Xjj5BYdiNRCDu8EbTLsphX5cySytaCJdKJXgumcoVk9apQjNmKDURHG5loBy0Q1deCUAEL3fdfl9jsEbVttmEMd4zFV6AI3jSS95uJowF9nYZgdiTyb2p7vfUy68BO1wU_gyZ5RG82Urv1bT-_Vc8u_4pnsPtFDcUpualhzBatxv7Am7qH-tl107gQMxFaOVk2J-TcPXh2_N0hq3w7Xj24Xz25RdAK0eg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BgguvB-BAUaCE0RLbCd2DgiNx7Rpo-IwpN4yx7FLpZGUpAX1yh_E34g_J-lUHrvtwLG16zrO9_T3-AE8KySTOs14mJq4CLlVNFRGxWHi1Bva-IllpQebEKORHI-zjxvwc6iFwbTKQSZ6QV3WGu_ItxEj2Wkj51O9nn0NETUKo6sDhEZHFgdm-d25bO2r_Xfu_T6ndPf90du9sEcVCLWzTuZhknJM97GRECwRkeGxZtg_mxpmTUqNstpkhYwTHTGmbWmLImZlxA3XkS5Lzty6F-Cik-MCU8jEWKzudDBq5hbva3MiJrdbpx-xho3GoeQYzGBr-s_DBPzNtv0zRfO3OK1Xf7vX_7eDuwHXekOb7HSccRM2THULLnfQm8vb8GNnMa99u1pSYkl-ZzqT2hLnTzh51xCsd_ElPwSHWzKtyIAm46TiCcFGG437WH9BUDJN2mXljGm3YKhmpsHADGlUqRqCSbgE6wsm7q_MjPRAHZM78OlcDuAubFZ1Ze4DETyJYmtT5-xqXmijUl2mNjKCW6kyTgOIByrJdd-sHTFDTnKfNMBk3lFW7igr95SVswBerH4z61qVnDn7DRLfaia2Gfdf1M0k76VWLhNaxJmwVCrBU8lUqpg0VmWasTKOywC2BprLe9nX5qcEF8DT1bCTWhiKUpWpF36Os7uFY5gA7nWUvtoJYx6bXgYg1nhgbavrI9X0s--MLjLnISdpAC8Hbjnd1r-P4sHZT_EEruwdfTjMD_dHBw_hKkVmxiREugWb82ZhHsEl_W0-bZvHXhoQOD5vLvoF4huczQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvB-BBYwEJ4ia2E7iHBBaWFasFqoeQNqbcRy7VFqSkrSgXvlZ_DpmnKSr8tjbHji2dl3X_WY8k3l8hDwpJJcmzUWY2rgIhdMs1FbHYQLXG9r4ieOlJ5vIxmN5dJRPtsjPoRYG0yoHnegVdVkbfEY-Qo5kuI3Apxq5Pi1isrf_cv41RAYpjLQOdBodRA7t6ju4b-2Lgz34r58ytv_mw-u3Yc8wEBqwVBZhkgpM_XFRlvEki6yIDcde2sxyZ1NmtTM2L2ScmIhz40pXFDEvI2GFiUxZCg7rniPnM5EkKF3v2WT9fAcjaLB4X6cTcTlq4a7EejYWh1JgYINv3IWeMuBvdu6f6Zq_xWz9Vbh_9X8-xGvkSm-A091OYq6TLVvdIBc7Ss7VTfJjd7mofRtbWmKpfmdS09pR8DNADzYU62B8KRDF4ZbOKjqwzIC2PKbYgKOBl_UXJCsztF1VYGTDgqGe2wYDNrTRpW4oJudSrDuYwlfZOe0JPKa3yMczOYDbZLuqK3uXUEBSFDuXghNsRGGsTk2ZushmwkmdCxaQeECMMn0Td-QSOVY-mYBL1aFMAcqUR5niAXm2_sy8a2Fy6uxXCMT1TGw_7t-om6nqtZmSCSviPHNM6kykkutUc2mdzg3nZRyXAdkZ8Kd6ndiqE_AF5PF6GLQZhqh0ZeulnwP2eAbCE5A7HerXO-Hcc9bLgGQb8rCx1c2RavbZd0zPcvCckzQgzwfJOdnWv4_i3um_4hG5BMKj3h2MD--TywzlGnMT2Q7ZXjRL-4BcMN8Ws7Z56BUDJZ_OWoh-AW5npZo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+delineation+of+glacier+grounding+lines+in+differential+interferometric+synthetic-aperture+radar+data+using+deep+learning&rft.jtitle=Scientific+reports&rft.au=Mohajerani%2C+Yara&rft.au=Jeong%2C+Seongsu&rft.au=Scheuchl%2C+Bernd&rft.au=Velicogna%2C+Isabella&rft.date=2021-03-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-84309-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_84309_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |