Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning

Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 11; H. 1; S. 4992 - 10
Hauptverfasser: Mohajerani, Yara, Jeong, Seongsu, Scheuchl, Bernd, Velicogna, Isabella, Rignot, Eric, Milillo, Pietro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 02.03.2021
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.
AbstractList Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.
Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.
Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.
Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice sheet mass balance, glacier dynamics, and their contributions to sea level rise. This task has been previously done using time-consuming, mostly-manual digitizations of differential interferometric synthetic-aperture radar interferograms by human experts. This approach is no longer viable with a fast-growing set of satellite observations and the need to establish time series over entire continents with quantified uncertainties. We present a fully-convolutional neural network with parallel atrous convolutional layers and asymmetric encoder/decoder components that automatically delineates grounding lines at a large scale, efficiently, and accompanied by uncertainty estimates. Our procedure detects grounding lines within 232 m in 100-m posting interferograms, which is comparable to the performance achieved by human experts. We also find value in the machine learning approach in situations that even challenge human experts. We use this approach to map the tidal-induced variability in grounding line position around Antarctica in 22,935 interferograms from year 2018. Along the Getz Ice Shelf, in West Antarctica, we demonstrate that grounding zones are one order magnitude (13.3 ± 3.9) wider than expected from hydrostatic equilibrium, which justifies the need to map grounding lines repeatedly and comprehensively to inform numerical models.
ArticleNumber 4992
Author Rignot, Eric
Scheuchl, Bernd
Jeong, Seongsu
Mohajerani, Yara
Milillo, Pietro
Velicogna, Isabella
Author_xml – sequence: 1
  givenname: Yara
  surname: Mohajerani
  fullname: Mohajerani, Yara
  email: ymohajer@uci.edu
  organization: Department of Earth System Science, University of California Irvine, eScience Institute and Department of Civil and Environmental Engineering, University of Washington
– sequence: 2
  givenname: Seongsu
  surname: Jeong
  fullname: Jeong, Seongsu
  organization: Department of Earth System Science, University of California Irvine
– sequence: 3
  givenname: Bernd
  surname: Scheuchl
  fullname: Scheuchl, Bernd
  organization: Department of Earth System Science, University of California Irvine
– sequence: 4
  givenname: Isabella
  surname: Velicogna
  fullname: Velicogna, Isabella
  organization: Department of Earth System Science, University of California Irvine, Jet Propulsion Laboratory
– sequence: 5
  givenname: Eric
  surname: Rignot
  fullname: Rignot, Eric
  organization: Department of Earth System Science, University of California Irvine, Jet Propulsion Laboratory
– sequence: 6
  givenname: Pietro
  surname: Milillo
  fullname: Milillo, Pietro
  organization: Department of Earth System Science, University of California Irvine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33654148$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBn4lyQqoqPSpW4wNny2uPUq8RebAep1_5ynN0W2h7qiz2edx69mpnXzVGIAZrmLcEfCWbyU-ZEDLLFlLSSMzy07EVzQjEXLWWUHj14HzdnOW9xPYIOnAyvmmPGOsEJlyfN7flS4qyLN8jC5APUZwwoOjRO2nhIaExxCdaHEa3pjHxA1jsHCULxeqpxgVTDOENJFZNvQrmGCmz1DlJZEqCkrU7I6qLRkleSBdihCXQKNXrTvHR6ynB2d582v75--Xnxvb368e3y4vyqNYLj0oqueh-Iw33PRI-BE8Mw7ikF5qCjoJ2BYSOJMJgx46zbbAizmAM32FjL2WlzeeDaqLdql_ys042K2qv9R0yj0qn6nkBJQTdk6B2VuuedZLrTTILTg2HMEmIr6_OBtVs2M1hTe5H09Aj6OBP8tRrjH9UPVAjRVcCHO0CKvxfIRc0-G5gmHSAuWVE-dJT1dWRV-v6JdBuXFGqrVpUgkvSEVdW7h47-WbkfdRXIg8CkmHMCp4wv-2lXg35SBKt1sdRhsVRdLLVfLLWy6ZPSe_qzRexQlKs4jJD-236m6i_wiOKc
CitedBy_id crossref_primary_10_1016_j_polar_2024_101124
crossref_primary_10_5194_tc_17_2645_2023
crossref_primary_10_5194_tc_17_4079_2023
crossref_primary_10_1029_2021GL095661
crossref_primary_10_5194_tc_17_2811_2023
crossref_primary_10_3390_rs14215429
crossref_primary_10_5194_tc_15_5309_2021
crossref_primary_10_1016_j_accre_2024_07_011
crossref_primary_10_1080_17538947_2024_2390438
crossref_primary_10_5194_tc_19_2431_2025
crossref_primary_10_1038_s41467_022_35471_3
crossref_primary_10_1038_s41598_022_13517_2
crossref_primary_10_5194_tc_18_3933_2024
crossref_primary_10_1029_2022GL102430
crossref_primary_10_1038_s41467_023_42970_4
crossref_primary_10_5194_tc_16_3907_2022
crossref_primary_10_1016_j_rse_2024_114478
crossref_primary_10_5194_tc_17_3593_2023
crossref_primary_10_1007_s12524_024_01918_x
crossref_primary_10_1038_s41597_025_04672_y
crossref_primary_10_5194_tc_19_3971_2025
crossref_primary_10_1016_j_rse_2024_114429
crossref_primary_10_5194_tc_17_1003_2023
crossref_primary_10_1109_JSTARS_2025_3601588
crossref_primary_10_5194_tc_18_4723_2024
crossref_primary_10_5194_tc_17_4675_2023
crossref_primary_10_3389_feart_2025_1545009
crossref_primary_10_5194_tc_19_2159_2025
crossref_primary_10_5194_tc_16_3021_2022
crossref_primary_10_1029_2022GL100141
crossref_primary_10_1080_10106049_2022_2032391
crossref_primary_10_1038_s41598_021_84309_3
crossref_primary_10_5194_essd_14_535_2022
crossref_primary_10_5194_essd_14_4287_2022
crossref_primary_10_1007_s11430_023_1338_8
Cites_doi 10.1126/science.1208336
10.1002/2017GL074954
10.3390/rs11010074
10.1016/j.rse.2011.05.028
10.3390/rs9040364
10.5194/tc-12-3085-2018
10.1038/467794a
10.1002/2016GL069287
10.1002/2013GL057942
10.3189/2015JoG14J152
10.1109/MCSE.2007.55
10.3189/172756501781832322
10.1029/2011GL047109
10.1029/2006GL027091
10.1073/pnas.1904822116
10.3390/rs4092753
10.3189/1998AoG27-1-25-32
10.1038/ngeo102
10.3189/172756402781818049
10.1002/2017GL074320
10.1007/s10712-011-9133-3
10.1126/science.1235798
10.1017/jog.2017.51
10.3189/002214311798043753
10.3189/172756410791392790
10.1073/pnas.1812883116
10.1017/S095410200999023X
10.1029/2012GL051634
10.1126/sciadv.aau3433
10.1029/2004JF000202
10.1007/978-3-319-24574-4_28
10.1038/s41598-021-84309-3
10.1007/978-3-030-01234-2_49
10.1029/2001JB000383
10.1029/2019GL086291
10.1109/CVPR.2017.195
10.1029/2011GL046583
10.5281/zenodo.3483425
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-84309-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (New) (NC LIVE)
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_852b197f28a74683a6a38efa9c33d11d
PMC7925556
33654148
10_1038_s41598_021_84309_3
Genre Journal Article
GeographicLocations Antarctica
GeographicLocations_xml – name: Antarctica
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-5641991f0773570e41c300722e3fe62eafce9b815c033cfdfbb13d04e4c0cdd43
IEDL.DBID BENPR
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000625411400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:41:23 EDT 2025
Tue Nov 04 01:59:19 EST 2025
Fri Sep 05 12:15:03 EDT 2025
Tue Oct 07 07:42:12 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Sat Nov 29 02:21:08 EST 2025
Tue Nov 18 21:52:24 EST 2025
Fri Feb 21 02:39:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-5641991f0773570e41c300722e3fe62eafce9b815c033cfdfbb13d04e4c0cdd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2495181713?pq-origsite=%requestingapplication%
PMID 33654148
PQID 2495181713
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_852b197f28a74683a6a38efa9c33d11d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7925556
proquest_miscellaneous_2496237052
proquest_journals_2495181713
pubmed_primary_33654148
crossref_citationtrail_10_1038_s41598_021_84309_3
crossref_primary_10_1038_s41598_021_84309_3
springer_journals_10_1038_s41598_021_84309_3
PublicationCentury 2000
PublicationDate 2021-03-02
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rignot (CR30) 2019; 116
Tsai, Gudmundsson (CR35) 2015; 61
Rignot, Jacobs, Mouginot, Scheuchl (CR29) 2013; 341
CR18
Gillet-Chaulet, Durand (CR22) 2010; 467
Rignot, Mouginot, Scheuchl (CR24) 2017
CR37
Fricker (CR5) 2009; 21
CR13
Brunt, Fricker, Padman, Scambos, O’Neel (CR8) 2010; 51
Schmeltz, Rignot, MacAyeal (CR12) 2002; 34
Docquier, Perichon, Pattyn (CR20) 2011; 32
Rignot, Mouginot, Scheuchl (CR25) 2011; 333
CR33
CR32
CR31
Rignot, Mouginot, Scheuchl (CR1) 2011; 38
Le Meur, Hindmarsh (CR34) 2001; 47
Horgan, Anandakrishnan (CR9) 2006; 33
Morlighem (CR36) 2017; 44
Torres (CR14) 2012; 120
Mohajerani, Wood, Velicogna, Rignot (CR15) 2019; 11
Sayag, Worster (CR38) 2013; 40
Bohlander, Scambos (CR6) 2007
Brondex, Gagliardini, Gillet-Chaulet, Durand (CR4) 2017; 63
CR7
CR28
Brunt, Fricker, Padman (CR2) 2011; 57
CR27
Robel, Seroussi, Roe (CR21) 2019; 116
CR46
CR23
CR45
CR44
CR43
Rignot (CR11) 1998; 27
Mouginot, Rignot, Scheuchl, Millan (CR10) 2017; 9
Van, Drake (CR17) 2009
CR41
Scheuchl, Mouginot, Rignot, Morlighem, Khazendar (CR16) 2016; 43
CR40
Rignot (CR3) 2008; 1
Seroussi, Morlighem (CR42) 2018; 12
Mouginot, Scheuchl, Rignot (CR26) 2012; 4
Milillo (CR39) 2017; 44
Hunter (CR19) 2007; 9
E Rignot (84309_CR30) 2019; 116
R Sayag (84309_CR38) 2013; 40
R Torres (84309_CR14) 2012; 120
Y Mohajerani (84309_CR15) 2019; 11
HA Fricker (84309_CR5) 2009; 21
H Seroussi (84309_CR42) 2018; 12
F Gillet-Chaulet (84309_CR22) 2010; 467
E Rignot (84309_CR3) 2008; 1
J Brondex (84309_CR4) 2017; 63
84309_CR28
J Bohlander (84309_CR6) 2007
84309_CR46
KM Brunt (84309_CR8) 2010; 51
E Rignot (84309_CR11) 1998; 27
E Rignot (84309_CR24) 2017
84309_CR27
84309_CR43
84309_CR44
84309_CR23
84309_CR45
84309_CR40
84309_CR41
JD Hunter (84309_CR19) 2007; 9
H Horgan (84309_CR9) 2006; 33
VC Tsai (84309_CR35) 2015; 61
84309_CR7
RG Van (84309_CR17) 2009
AA Robel (84309_CR21) 2019; 116
E Rignot (84309_CR1) 2011; 38
84309_CR18
D Docquier (84309_CR20) 2011; 32
B Scheuchl (84309_CR16) 2016; 43
84309_CR13
E Le Meur (84309_CR34) 2001; 47
84309_CR37
J Mouginot (84309_CR26) 2012; 4
84309_CR31
84309_CR32
P Milillo (84309_CR39) 2017; 44
KM Brunt (84309_CR2) 2011; 57
84309_CR33
E Rignot (84309_CR25) 2011; 333
M Morlighem (84309_CR36) 2017; 44
M Schmeltz (84309_CR12) 2002; 34
J Mouginot (84309_CR10) 2017; 9
E Rignot (84309_CR29) 2013; 341
References_xml – ident: CR45
– volume: 333
  start-page: 1427
  year: 2011
  end-page: 1430
  ident: CR25
  article-title: Ice flow of the Antarctic ice sheet
  publication-title: Science
  doi: 10.1126/science.1208336
– ident: CR18
– ident: CR43
– year: 2007
  ident: CR6
  publication-title: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA)
– volume: 44
  start-page: 11
  year: 2017
  end-page: 051
  ident: CR36
  article-title: Bedmachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074954
– ident: CR37
– volume: 11
  start-page: 74
  year: 2019
  ident: CR15
  article-title: Detection of glacier calving margins with convolutional neural networks: A case study
  publication-title: Remote Sens.
  doi: 10.3390/rs11010074
– volume: 120
  start-page: 9
  year: 2012
  end-page: 24
  ident: CR14
  article-title: GMES sentinel-1 mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– ident: CR33
– volume: 9
  start-page: 364
  year: 2017
  ident: CR10
  article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and Radarsat-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– volume: 12
  start-page: 3085
  year: 2018
  end-page: 3096
  ident: CR42
  article-title: Representation of basal melting at the grounding line in ice flow models
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3085-2018
– volume: 467
  start-page: 794
  year: 2010
  end-page: 795
  ident: CR22
  article-title: Ice-sheet advance in Antarctica
  publication-title: Nature
  doi: 10.1038/467794a
– year: 2009
  ident: CR17
  publication-title: Python 3 Reference Manual
– volume: 43
  start-page: 8572
  year: 2016
  end-page: 8579
  ident: CR16
  article-title: Grounding line retreat of pope, smith, and Kohler glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069287
– ident: CR40
– ident: CR27
– ident: CR23
– volume: 40
  start-page: 5877
  year: 2013
  end-page: 5881
  ident: CR38
  article-title: Elastic dynamics and tidal migration of grounding lines modify subglacial lubrication and melting
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL057942
– volume: 61
  start-page: 216
  year: 2015
  end-page: 222
  ident: CR35
  article-title: An improved model for tidally modulated grounding-line migration
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG14J152
– ident: CR46
– volume: 9
  start-page: 90
  year: 2007
  end-page: 95
  ident: CR19
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– ident: CR44
– volume: 47
  start-page: 258
  year: 2001
  end-page: 270
  ident: CR34
  article-title: Coupled marine-ice-sheet/earth dynamics using a dynamically consistent ice-sheet model and a self-gravitating viscous earth model
  publication-title: J. Glaciol.
  doi: 10.3189/172756501781832322
– volume: 38
  start-page: L10504
  year: 2011
  ident: CR1
  article-title: Antarctic grounding line mapping from differential satellite radar interferometry
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047109
– year: 2017
  ident: CR24
  publication-title: Measures Insar-based Antarctica Ice Velocity Map, Version 2
– volume: 33
  start-page: L18502
  year: 2006
  ident: CR9
  article-title: Static grounding lines and dynamic ice streams: Evidence from the Siple Coast, West Antarctica
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027091
– volume: 116
  start-page: 14887
  year: 2019
  end-page: 14892
  ident: CR21
  article-title: Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1904822116
– volume: 4
  start-page: 2753
  year: 2012
  end-page: 2767
  ident: CR26
  article-title: Mapping of ice motion in Antarctica using synthetic-aperture radar data
  publication-title: Remote Sens.
  doi: 10.3390/rs4092753
– ident: CR31
– volume: 27
  start-page: 25
  year: 1998
  end-page: 32
  ident: CR11
  article-title: Radar interferometry detection of hinge-line migration on Rutford ice stream and Carlson inlet, Antarctica
  publication-title: Ann. Glaciol.
  doi: 10.3189/1998AoG27-1-25-32
– ident: CR13
– volume: 1
  start-page: 106
  year: 2008
  end-page: 110
  ident: CR3
  article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo102
– volume: 34
  start-page: 202
  year: 2002
  end-page: 208
  ident: CR12
  article-title: Tidal flexure along ice-sheet margins: Comparison of Insar with an elastic-plate model
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756402781818049
– volume: 44
  start-page: 10
  year: 2017
  end-page: 436
  ident: CR39
  article-title: On the short-term grounding zone dynamics of Pine Island Glacier, West Antarctica, observed with COSMO-SkyMed interferometric data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074320
– ident: CR32
– volume: 32
  start-page: 417
  year: 2011
  end-page: 435
  ident: CR20
  article-title: Representing grounding line dynamics in numerical ice sheet models: Recent advances and outlook
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-011-9133-3
– volume: 341
  start-page: 266
  year: 2013
  end-page: 270
  ident: CR29
  article-title: Ice-shelf melting around Antarctica
  publication-title: Science
  doi: 10.1126/science.1235798
– volume: 63
  start-page: 854
  year: 2017
  end-page: 866
  ident: CR4
  article-title: Sensitivity of grounding line dynamics to the choice of the friction law
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2017.51
– volume: 57
  start-page: 965
  year: 2011
  end-page: 975
  ident: CR2
  article-title: Analysis of ice plains of the Filchner–Ronne ice shelf, Antarctica, using ICESat laser altimetry
  publication-title: J. Glaciol.
  doi: 10.3189/002214311798043753
– ident: CR7
– volume: 51
  start-page: 71
  year: 2010
  end-page: 79
  ident: CR8
  article-title: Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using Icesat laser altimetry
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756410791392790
– ident: CR28
– ident: CR41
– volume: 116
  start-page: 1095
  year: 2019
  end-page: 1103
  ident: CR30
  article-title: Four decades of Antarctic ice sheet mass balance from 1979–2017
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1812883116
– volume: 21
  start-page: 515
  year: 2009
  ident: CR5
  article-title: Mapping the grounding zone of the Amery Ice Self, East Antarctica using Insar, Modis and Icesat
  publication-title: Antarct. Sci.
  doi: 10.1017/S095410200999023X
– volume: 63
  start-page: 854
  year: 2017
  ident: 84309_CR4
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2017.51
– volume-title: Measures Insar-based Antarctica Ice Velocity Map, Version 2
  year: 2017
  ident: 84309_CR24
– volume: 21
  start-page: 515
  year: 2009
  ident: 84309_CR5
  publication-title: Antarct. Sci.
  doi: 10.1017/S095410200999023X
– volume: 9
  start-page: 90
  year: 2007
  ident: 84309_CR19
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 33
  start-page: L18502
  year: 2006
  ident: 84309_CR9
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027091
– ident: 84309_CR13
– volume: 47
  start-page: 258
  year: 2001
  ident: 84309_CR34
  publication-title: J. Glaciol.
  doi: 10.3189/172756501781832322
– volume: 57
  start-page: 965
  year: 2011
  ident: 84309_CR2
  publication-title: J. Glaciol.
  doi: 10.3189/002214311798043753
– volume-title: Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA)
  year: 2007
  ident: 84309_CR6
– volume: 4
  start-page: 2753
  year: 2012
  ident: 84309_CR26
  publication-title: Remote Sens.
  doi: 10.3390/rs4092753
– volume: 1
  start-page: 106
  year: 2008
  ident: 84309_CR3
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo102
– ident: 84309_CR28
  doi: 10.1029/2012GL051634
– volume: 51
  start-page: 71
  year: 2010
  ident: 84309_CR8
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756410791392790
– volume: 61
  start-page: 216
  year: 2015
  ident: 84309_CR35
  publication-title: J. Glaciol.
  doi: 10.3189/2015JoG14J152
– volume: 34
  start-page: 202
  year: 2002
  ident: 84309_CR12
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756402781818049
– ident: 84309_CR40
  doi: 10.1126/sciadv.aau3433
– volume: 9
  start-page: 364
  year: 2017
  ident: 84309_CR10
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– volume: 341
  start-page: 266
  year: 2013
  ident: 84309_CR29
  publication-title: Science
  doi: 10.1126/science.1235798
– ident: 84309_CR33
  doi: 10.1029/2004JF000202
– ident: 84309_CR45
  doi: 10.1007/978-3-319-24574-4_28
– ident: 84309_CR23
  doi: 10.1038/s41598-021-84309-3
– ident: 84309_CR44
  doi: 10.1007/978-3-030-01234-2_49
– ident: 84309_CR18
– volume: 32
  start-page: 417
  year: 2011
  ident: 84309_CR20
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-011-9133-3
– ident: 84309_CR43
– volume: 116
  start-page: 1095
  year: 2019
  ident: 84309_CR30
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1812883116
– volume: 40
  start-page: 5877
  year: 2013
  ident: 84309_CR38
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL057942
– volume-title: Python 3 Reference Manual
  year: 2009
  ident: 84309_CR17
– volume: 12
  start-page: 3085
  year: 2018
  ident: 84309_CR42
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3085-2018
– volume: 11
  start-page: 74
  year: 2019
  ident: 84309_CR15
  publication-title: Remote Sens.
  doi: 10.3390/rs11010074
– volume: 27
  start-page: 25
  year: 1998
  ident: 84309_CR11
  publication-title: Ann. Glaciol.
  doi: 10.3189/1998AoG27-1-25-32
– ident: 84309_CR7
  doi: 10.1029/2001JB000383
– volume: 116
  start-page: 14887
  year: 2019
  ident: 84309_CR21
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1904822116
– volume: 38
  start-page: L10504
  year: 2011
  ident: 84309_CR1
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047109
– volume: 43
  start-page: 8572
  year: 2016
  ident: 84309_CR16
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069287
– volume: 467
  start-page: 794
  year: 2010
  ident: 84309_CR22
  publication-title: Nature
  doi: 10.1038/467794a
– ident: 84309_CR37
– ident: 84309_CR41
  doi: 10.1029/2019GL086291
– ident: 84309_CR32
  doi: 10.1109/CVPR.2017.195
– volume: 44
  start-page: 11
  year: 2017
  ident: 84309_CR36
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074954
– ident: 84309_CR27
  doi: 10.1029/2011GL046583
– volume: 44
  start-page: 10
  year: 2017
  ident: 84309_CR39
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074320
– volume: 120
  start-page: 9
  year: 2012
  ident: 84309_CR14
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.028
– volume: 333
  start-page: 1427
  year: 2011
  ident: 84309_CR25
  publication-title: Science
  doi: 10.1126/science.1208336
– ident: 84309_CR31
  doi: 10.5281/zenodo.3483425
– ident: 84309_CR46
SSID ssj0000529419
Score 2.5128305
Snippet Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and understanding ice...
Delineating the grounding line of marine-terminating glaciers-where ice starts to become afloat in ocean waters-is crucial for measuring and understanding ice...
Abstract Delineating the grounding line of marine-terminating glaciers—where ice starts to become afloat in ocean waters—is crucial for measuring and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4992
SubjectTerms 704/106
704/106/125
Automation
Bending stresses
Deep learning
Digitization
Equilibrium
Glaciers
Humanities and Social Sciences
Ice sheets
Ice shelves
Learning algorithms
Machine learning
Mathematical models
multidisciplinary
Neural networks
Radar
Satellites
Science
Science (multidisciplinary)
Sea level rise
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiDeBFhmJG0SNH7GdY1tRcao4gNSb5fhRVirJKtmt1Cu_nBknu3R5XjgmdhLLnok_a2a-j5A3rRHGq0aWKrK2lMnx0kXHyhq2N8T4dRIhi03o83NzcdF8vCX1hTlhEz3wNHFHpuYta3TixmmpjHDKCROTa7wQgbGAf19APbcOUxOrN28ka-YqmUqYoxF2Kqwm46w0EsMKYmcnyoT9v0OZvyZL_hQxzRvR2QNyf0aQ9Hga-UNyJ3aPyN1JU_LmMfl2vF71mYeVBqw1nzAh7RMFoAyOPFAs5Mi1LBSbR7ro6EYmBdz9iiKDxACX_VdU2_J0vOkAJcILS7eMA0Yc6OCCGyhml1JMnL-ET8UlnRUoLp-Qz2fvP51-KGehhdIDYFuVtZKYAZUqrUWtqyiZF0gpzqNIUfHoko9Na1jtKyF8CqltmQiVjNJXPgQpnpK9ru_ic0K1rCuWkoJTnJetj075oFIVtUzGNZIXhG0m3fqZhRzFMK5sjoYLY6eFsrBQNi-UFQV5u31mOXFw_LX3Ca7ltifyZ-cbYFV2tir7L6sqyMHGEuzs1KNFmW4ARHCsL8jrbTO4I8ZYXBf7de4DgFKD_RXk2WQ425EIkUXXTUH0jkntDHW3pVt8yZTfuoGjX60K8m5jfD-G9eepePE_puIlucfRazDvjh-QvdWwjodk31-vFuPwKrvdd8CDMag
  priority: 102
  providerName: Directory of Open Access Journals
Title Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning
URI https://link.springer.com/article/10.1038/s41598-021-84309-3
https://www.ncbi.nlm.nih.gov/pubmed/33654148
https://www.proquest.com/docview/2495181713
https://www.proquest.com/docview/2496237052
https://pubmed.ncbi.nlm.nih.gov/PMC7925556
https://doaj.org/article/852b197f28a74683a6a38efa9c33d11d
Volume 11
WOSCitedRecordID wos000625411400025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xLUhceD8CS2UkbhBtHDuxc0K7aFdw2KpCIJVT5PhRKi1JSVqkvfLL8ThpV-WxFy6WWrutU49nxp6Z7wN4VUkmdV7wOLe0irlTaaysonHmzRv6-JljJpBNiOlUzufFbLhw64a0yq1ODIraNBrvyI-QI9lbI3-merv6HiNrFEZXBwqNAxgjUhkfwfjkdDr7uLtlwTgWp8VQLZMwedR5i4VVZSmNJcfwAtuzSAG4_2_e5p9Jk79FToNBOrv7v49yD-4Mrig57mXnPtyw9QO41ZNTXj6En8ebdRMAXYnBovXeuSSNI97j9hqhJVgREopiCHZ3ZFmTLd-K1xsXBKEoWv-y-Ya0XZp0l7V3N_0XxmplWwxdkFYZ1RJMUyWYgb_wP2VXZKCyWDyCz2enn969jwfGhlh7z28dZznHVCqXCMEykVhONUNs8tQyZ_PUKqdtUUma6YQx7YyrKspMwi3XiTaGs8cwqpvaPgUieJZQ53J_HNS80lbl2uQusYI7qQqeRkC3q1bqAc4cWTUuyhBWZ7LsV7r0K12GlS5ZBK93n1n1YB7Xjj5BYdiNRCDu8EbTLsphX5cySytaCJdKJXgumcoVk9apQjNmKDURHG5loBy0Q1deCUAEL3fdfl9jsEbVttmEMd4zFV6AI3jSS95uJowF9nYZgdiTyb2p7vfUy68BO1wU_gyZ5RG82Urv1bT-_Vc8u_4pnsPtFDcUpualhzBatxv7Am7qH-tl107gQMxFaOVk2J-TcPXh2_N0hq3w7Xj24Xz25RdAK0eg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BgguvB-BAUaCE0RLbCd2DgiNx7Rpo-IwpN4yx7FLpZGUpAX1yh_E34g_J-lUHrvtwLG16zrO9_T3-AE8KySTOs14mJq4CLlVNFRGxWHi1Bva-IllpQebEKORHI-zjxvwc6iFwbTKQSZ6QV3WGu_ItxEj2Wkj51O9nn0NETUKo6sDhEZHFgdm-d25bO2r_Xfu_T6ndPf90du9sEcVCLWzTuZhknJM97GRECwRkeGxZtg_mxpmTUqNstpkhYwTHTGmbWmLImZlxA3XkS5Lzty6F-Cik-MCU8jEWKzudDBq5hbva3MiJrdbpx-xho3GoeQYzGBr-s_DBPzNtv0zRfO3OK1Xf7vX_7eDuwHXekOb7HSccRM2THULLnfQm8vb8GNnMa99u1pSYkl-ZzqT2hLnTzh51xCsd_ElPwSHWzKtyIAm46TiCcFGG437WH9BUDJN2mXljGm3YKhmpsHADGlUqRqCSbgE6wsm7q_MjPRAHZM78OlcDuAubFZ1Ze4DETyJYmtT5-xqXmijUl2mNjKCW6kyTgOIByrJdd-sHTFDTnKfNMBk3lFW7igr95SVswBerH4z61qVnDn7DRLfaia2Gfdf1M0k76VWLhNaxJmwVCrBU8lUqpg0VmWasTKOywC2BprLe9nX5qcEF8DT1bCTWhiKUpWpF36Os7uFY5gA7nWUvtoJYx6bXgYg1nhgbavrI9X0s--MLjLnISdpAC8Hbjnd1r-P4sHZT_EEruwdfTjMD_dHBw_hKkVmxiREugWb82ZhHsEl_W0-bZvHXhoQOD5vLvoF4huczQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaW5SEuvB-BBYwEJ4ia2E7iHBBaWFasFqoeQNqbcRy7VFqSkrSgXvlZ_DpmnKSr8tjbHji2dl3X_WY8k3l8hDwpJJcmzUWY2rgIhdMs1FbHYQLXG9r4ieOlJ5vIxmN5dJRPtsjPoRYG0yoHnegVdVkbfEY-Qo5kuI3Apxq5Pi1isrf_cv41RAYpjLQOdBodRA7t6ju4b-2Lgz34r58ytv_mw-u3Yc8wEBqwVBZhkgpM_XFRlvEki6yIDcde2sxyZ1NmtTM2L2ScmIhz40pXFDEvI2GFiUxZCg7rniPnM5EkKF3v2WT9fAcjaLB4X6cTcTlq4a7EejYWh1JgYINv3IWeMuBvdu6f6Zq_xWz9Vbh_9X8-xGvkSm-A091OYq6TLVvdIBc7Ss7VTfJjd7mofRtbWmKpfmdS09pR8DNADzYU62B8KRDF4ZbOKjqwzIC2PKbYgKOBl_UXJCsztF1VYGTDgqGe2wYDNrTRpW4oJudSrDuYwlfZOe0JPKa3yMczOYDbZLuqK3uXUEBSFDuXghNsRGGsTk2ZushmwkmdCxaQeECMMn0Td-QSOVY-mYBL1aFMAcqUR5niAXm2_sy8a2Fy6uxXCMT1TGw_7t-om6nqtZmSCSviPHNM6kykkutUc2mdzg3nZRyXAdkZ8Kd6ndiqE_AF5PF6GLQZhqh0ZeulnwP2eAbCE5A7HerXO-Hcc9bLgGQb8rCx1c2RavbZd0zPcvCckzQgzwfJOdnWv4_i3um_4hG5BMKj3h2MD--TywzlGnMT2Q7ZXjRL-4BcMN8Ws7Z56BUDJZ_OWoh-AW5npZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+delineation+of+glacier+grounding+lines+in+differential+interferometric+synthetic-aperture+radar+data+using+deep+learning&rft.jtitle=Scientific+reports&rft.au=Mohajerani%2C+Yara&rft.au=Jeong%2C+Seongsu&rft.au=Scheuchl%2C+Bernd&rft.au=Velicogna%2C+Isabella&rft.date=2021-03-02&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-84309-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_84309_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon