Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement

In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of biomechanics Ročník 34; číslo 9; s. 1157 - 1170
Hlavní autoři: Doblare, M, Garcia, J M
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Ltd 01.09.2001
Témata:
ISSN:0021-9290, 1873-2380
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A “damage-repair” tensor is defined in terms of the apparent density and Cowin's “fabric tensor”, respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcı́a, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355–378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
AbstractList In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcia, J. M., Martinez, M. A., Doblare, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. copyright 2001 Elsevier Science Ltd. All right reserved.
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A 'damage-repair' tensor is defined in terms of the apparent density and Cowin's 'fabric tensor', respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcia, J. M., Martinez, M. A., Doblare, M., 2001. An anisotrophic internal- external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. (ABSTRACT TRUNCATED).
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A “damage-repair” tensor is defined in terms of the apparent density and Cowin's “fabric tensor”, respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcı́a, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355–378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.
Author Garcı́a, J.M.
Doblaré, M.
Author_xml – sequence: 1
  givenname: M
  surname: Doblare
  fullname: Doblare, M
– sequence: 2
  givenname: J
  surname: Garcia
  middlename: M
  fullname: Garcia, J M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11506786$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URNuBRwB5xWUROE4yiS2EUFVxkyqxANaWL8etIYlT24OYx-FNcWYKSF0wSLZsy9__-3L-U3I0hQkJecjgOQPWvfgEULNK1AKeAnsGAJ2o4A45YbxvqrrhcERO_iDH5DSlrwXq217cI8eMraHreXdCfp7N8-CNyj5MNDiqptJ8CjmG2Ruqy6FVxDFYHAY_XdLdjGqV0NKiUNSqUV0uzKx8pPkKQ9zSHJZZcVLDNvm0GC_rOYYfflQDdThuItXoQlwoS5XLWNQhl80rP9NiNyiDI075Prnr1JDwwc24Il_evvl8_r66-Pjuw_nZRWXWLeSqRcVA9dBobS1wa12vLG8E5412jUAntDG1U53jtRBCoVNaoO5abaDBVjcr8mTvW255vcGU5eiTKc9WE4ZNkn2_fBoT60I-_jfJQDDe1QfBmrUdb9ZwGAQmSuX4QZDxpm1Y6Svy6Abc6BGtnGP5-LiVvytfgPUeMDGkFNH9RUAuCZO7hMklPhKY3CVMLld9eUtnfN7FJ0flh4Pq13s1lkp-9xhlMh4ng9ZHNFna4A86vLrlYEowS4KHb7j9D_0vWn0ACg
CitedBy_id crossref_primary_10_1016_j_jmbbm_2013_11_015
crossref_primary_10_1016_S1672_6529_16_60432_8
crossref_primary_10_1007_s10237_005_0067_x
crossref_primary_10_1016_j_engfracmech_2006_01_005
crossref_primary_10_1080_10255840600792451
crossref_primary_10_1016_j_jbiomech_2011_04_009
crossref_primary_10_1243_09544119JEIM341
crossref_primary_10_1371_journal_pone_0148603
crossref_primary_10_1016_j_jmbbm_2021_104903
crossref_primary_10_1016_j_jbiomech_2009_09_045
crossref_primary_10_1016_j_jmbbm_2016_10_005
crossref_primary_10_1016_j_jbiomech_2009_01_020
crossref_primary_10_1080_10255842_2014_903933
crossref_primary_10_1080_10255842_2011_561793
crossref_primary_10_1016_j_jbiomech_2005_05_025
crossref_primary_10_1007_s11831_006_9001_3
crossref_primary_10_1177_1081286520984690
crossref_primary_10_1016_j_bone_2021_116032
crossref_primary_10_1016_j_medengphy_2005_09_007
crossref_primary_10_1016_j_jmbbm_2013_05_017
crossref_primary_10_1016_j_enganabound_2018_05_007
crossref_primary_10_1016_j_medengphy_2015_05_006
crossref_primary_10_1080_10255840903045029
crossref_primary_10_1016_j_medengphy_2005_12_008
crossref_primary_10_1016_S0045_7825_02_00538_8
crossref_primary_10_1007_s00466_014_0984_6
crossref_primary_10_1016_j_compbiomed_2022_105898
crossref_primary_10_1016_S0021_9290_02_00309_3
crossref_primary_10_1007_s00419_018_1438_y
crossref_primary_10_1371_journal_pone_0173228
crossref_primary_10_1007_s10439_008_9616_7
crossref_primary_10_1016_j_compbiomed_2018_01_001
crossref_primary_10_1007_s10237_008_0122_5
crossref_primary_10_3390_math10183367
crossref_primary_10_1016_j_euromechsol_2021_104409
crossref_primary_10_1016_j_jmbbm_2008_08_005
crossref_primary_10_1016_j_jmbbm_2011_06_011
crossref_primary_10_1016_j_engfracmech_2003_08_003
crossref_primary_10_1016_j_jbiomech_2010_07_028
crossref_primary_10_1016_j_jbiomech_2010_07_027
crossref_primary_10_1016_j_mechrescom_2018_12_003
crossref_primary_10_1016_j_jmbbm_2012_02_011
crossref_primary_10_1016_j_jmbbm_2016_08_026
crossref_primary_10_1186_s13018_020_02025_6
crossref_primary_10_1243_09544119JEIM84
crossref_primary_10_3390_app13042738
crossref_primary_10_1016_j_cma_2004_06_031
crossref_primary_10_1016_j_medengphy_2018_06_001
crossref_primary_10_1007_s10237_019_01158_w
crossref_primary_10_1007_s10439_007_9430_7
crossref_primary_10_1007_s10439_020_02550_9
crossref_primary_10_1016_j_jbiomech_2013_06_031
crossref_primary_10_1016_j_jmbbm_2025_107031
crossref_primary_10_1177_0954411912467884
crossref_primary_10_1016_j_jbiomech_2009_10_040
crossref_primary_10_1016_S0927_0256_02_00254_9
crossref_primary_10_1007_BF02905856
crossref_primary_10_1155_2017_5932545
crossref_primary_10_1016_j_medengphy_2021_103739
crossref_primary_10_1108_15736101011095118
crossref_primary_10_1007_s00161_017_0611_9
crossref_primary_10_1016_j_recot_2014_12_003
crossref_primary_10_1080_10255842_2020_1713484
crossref_primary_10_1007_s10237_020_01353_0
crossref_primary_10_1016_j_cma_2014_02_003
crossref_primary_10_1016_j_medengphy_2011_08_015
crossref_primary_10_1016_j_medengphy_2020_10_007
crossref_primary_10_1016_j_cma_2007_03_020
crossref_primary_10_1016_j_jcp_2023_112576
crossref_primary_10_1016_j_recote_2015_07_006
crossref_primary_10_1371_journal_pone_0184361
crossref_primary_10_3390_math13132156
crossref_primary_10_1016_j_medengphy_2013_10_013
crossref_primary_10_1155_2018_7243696
crossref_primary_10_1007_s11538_020_00808_w
crossref_primary_10_1016_j_cma_2013_10_005
crossref_primary_10_1016_j_jmbbm_2024_106773
crossref_primary_10_1007_s10237_015_0678_9
crossref_primary_10_1016_j_jbiomech_2010_10_007
crossref_primary_10_1007_s12008_010_0097_1
crossref_primary_10_1016_j_cma_2008_02_010
crossref_primary_10_1016_j_cmpb_2021_106365
crossref_primary_10_1016_j_aanat_2015_02_004
crossref_primary_10_1016_j_medengphy_2020_08_004
crossref_primary_10_1023_A_1020835720405
crossref_primary_10_1007_s10237_021_01436_6
crossref_primary_10_1016_j_jmbbm_2015_01_015
crossref_primary_10_1016_j_jmbbm_2013_12_025
crossref_primary_10_1016_S1350_4533_03_00026_2
crossref_primary_10_1007_s10439_016_1551_4
crossref_primary_10_1016_j_bonr_2020_100271
Cites_doi 10.1115/1.2834756
10.1115/1.3225775
10.1007/978-94-009-6827-1_44
10.1016/0021-9290(87)90058-3
10.1016/S0021-9290(96)00177-7
10.1115/1.3138303
10.1016/0021-9290(89)90091-2
10.1007/BF02737117
10.1016/0021-9290(93)90058-M
10.1016/0021-9290(94)00087-K
10.1016/0020-7683(87)90083-7
10.1115/1.2895436
10.1080/10255849908907982
10.1115/1.2796084
10.1115/1.3138584
10.1111/j.1365-2818.1974.tb03878.x
10.1302/0301-620X.79B4.7173
10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q
10.1016/S0021-9290(97)00074-2
10.1016/0021-9290(84)90029-0
10.1016/0021-9290(94)90223-2
10.1111/j.1365-2818.1990.tb02955.x
10.1016/0021-9290(87)90030-3
10.1016/S0021-9290(97)00041-9
10.1007/BF00121253
10.1007/978-3-642-71031-5
10.1080/10255840108908014
10.1002/jor.1100080507
10.1016/0021-9290(92)90056-7
10.1016/S0021-9290(96)00189-3
10.1016/S0021-9290(96)00149-2
10.1016/S0021-9290(99)00041-X
10.1002/nme.1620330702
10.1016/0021-9290(96)00093-0
10.1016/0142-9612(96)85767-X
10.2106/00004623-197456050-00012
10.1007/BF00540446
10.1097/00003086-199810000-00007
10.1002/nme.1620360508
10.1016/0021-9290(75)90075-5
ContentType Journal Article
Copyright 2001 Elsevier Science Ltd
Copyright_xml – notice: 2001 Elsevier Science Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QO
8FD
FR3
P64
7X8
DOI 10.1016/S0021-9290(01)00069-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
Engineering Research Database


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 1170
ExternalDocumentID 563962
11506786
10_1016_S0021_9290_01_00069_0
S0021929001000690
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFFDN
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
F3I
LCYCR
RIG
YCJ
9DU
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QP
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c540t-4ea10a703bbdd08ddf7ad839883bf39ef9bcc2fa6f82999aefab9eb64bc03e4b3
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000170683400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
IngestDate Thu Oct 02 08:14:39 EDT 2025
Sun Sep 28 08:00:51 EDT 2025
Sun Sep 28 00:22:53 EDT 2025
Sun Nov 09 09:21:08 EST 2025
Sat Sep 27 23:20:12 EDT 2025
Wed Feb 19 02:34:09 EST 2025
Sat Nov 29 04:02:26 EST 2025
Tue Nov 18 21:30:49 EST 2025
Fri Feb 23 02:18:20 EST 2024
Tue Oct 14 19:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Damage mechanics
Finite elements
Exeter prosthesis
Fabric tensor
Bone implants
Bone remodelling simulation
Anisotropic internal bone remodelling
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-4ea10a703bbdd08ddf7ad839883bf39ef9bcc2fa6f82999aefab9eb64bc03e4b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 11506786
PQID 18343134
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_771506195
proquest_miscellaneous_71091862
proquest_miscellaneous_21468350
proquest_miscellaneous_20194798
proquest_miscellaneous_18343134
pubmed_primary_11506786
crossref_primary_10_1016_S0021_9290_01_00069_0
crossref_citationtrail_10_1016_S0021_9290_01_00069_0
elsevier_sciencedirect_doi_10_1016_S0021_9290_01_00069_0
elsevier_clinicalkey_doi_10_1016_S0021_9290_01_00069_0
PublicationCentury 2000
PublicationDate 2001-09-01
PublicationDateYYYYMMDD 2001-09-01
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2001
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pettermann, Reiter, Rammerstorfer (BIB36) 1997; 4
Toni McNamara, Viceconti, Sudanese, Baruffaldi, Giunti (BIB44) 1996; 7
Weinans, Huiskes, Grootenboer (BIB47) 1992; 25
Stülpner, Reddy, Starke, Spirakis (BIB43) 1997; 30
Cowin (BIB9) 1986; 108
Rodrigues, H., Jacobs, C.R., Guedes, J.M., Bendsoe, M.P., 1998. Global and local material optimization models applied to anisotropic bone adaptation. Iutam Symposium-Synthesis in Bio Solid Mechanics.
Harrigan, Hamilton, Reuben, Toni, Viceconti (BIB18) 1996; 17
Jacobs, Simo, Beaupré, Carter (BIB23) 1997; 30
Karlsson, L.M., Cruz-Orive, L.M., 1993. Application of the star volume distribution to characterize structural anisotropy of a duples stailess steel. In: Stereology in Materials Science: Demostration of Some Methods. Royal Institute of Technology, Stockholm.
Fernandes, Rodrigues, Jacobs (BIB12) 1999; 2
Zysset, Goulet, Hollister (BIB54) 1998; 120
Goldberg, V.M., Davy, D.T., Lotzar, G.L., Heiple, K.G., Brown, R.H., Berilla, J., Burstein, A.H., 1988. In Vivo Hip Forces. Non-Cemented Total Hip Arthroplasty. Raven Press, pp. 251–255.
Kerner, Huiskes, van Lenthe, Weinans, van Rietbergen, Engh, Amis (BIB26) 1999; 32
Bergmann, Graichen, Rohlmann (BIB4) 1993; 26
Cowin, Sadegh, Luo (BIB10) 1992; 114
Simo, Ju (BIB42) 1987; 23
Garcı́a, Martinez, Doblaré (BIB55) 2001; 4
Harrigan, Mann (BIB17) 1984; 19
Huiskes, Weinans, Grootenboer, Dalstra, Fudala, Sloof (BIB20) 1987; 20
Zienckiewicz, Zhu (BIB53) 1992; 33
Hibbit, Karlsson, Sorensen, Inc., 1998. ABAQUS. User's Manual. Version 5.8.
Ashman, Cowin, Van Buskirk, Rice (BIB1) 1984; 17
Chang, Mann, Bartel (BIB7) 1998; 355
Cordebois, J.P., Sideroff, F., 1982. Damage induced elastic anisotropy. Mechanical Behavior of Anisotropic Solids, Proceedings of the EUROMECH Colloque, Vol. 115, pp. 761–774.
Harrigan, Hamilton (BIB16) 1993; 36
Verdonschot, Huiskes (BIB46) 1997; 79B
Lekhnitskii (BIB28) 1981
Beaupré, Orr, Carter (BIB3) 1990; 8
Fowler, Gie, Lee, Ling (BIB13) 1988; 19
Prendergast, Taylor (BIB37) 1994; 27
Whitehouse (BIB48) 1974; 101
Van Rietbergen, Odgaard, Kabel, Huiskes (BIB45) 1996; 29
Wolff (BIB50) 1892
Odgaard, Kaber, Van Rietbergen, Dalstra, Huiskes (BIB34) 1997; 30
Zhang, Victory (BIB52) 1996; 12
Reilly, Burstein (BIB39) 1974; 56
Carter, Orr, Pyhrie (BIB5) 1989; 22
Beaupré, Orr, Carter (BIB2) 1990; 8
Pedersen, Brand, Davy (BIB35) 1997; 30
Jacobs, Levenston, Beaupré, Simo, Carter (BIB22) 1995; 28
Lemaitre (BIB29) 1985; 107
Ling, R.S.M., 1997. The history and development of the exeter hip. Oxon: OBE MA BM.
Jacobs, C.R., 1994. Numerical simulation of bone adaptation to mechanical loading. Ph.D.Thesis, Stanford University.
Wolff, J., 1986. The Law of Bone Remodelling (translated by P. Maquet and R. Furlong). Verlag, Berlin.
Carter, Pyhrie, Whalen (BIB6) 1987; 20
Levenston (BIB30) 1997; 30
Kuiper, Huiskes (BIB27) 1997; 119
Kachanov (BIB24) 1958; 8
Rakotomanana, L.R., Terrier, A., Leyvraz, P.F., 1996. Anisotropic bone adaptation models: application to orthopaedic implants. In: Computer Methods in Biomechanics and Biomedical Engineering. Gordon and Breach, London, pp. 95–104.
Williams, Lewis (BIB49) 1982; 104
Garcı́a, J.M., 1999. Modelos de Remodelación Ósea: Análisis Numérico y Aplicaciones al Diseño de Fijaciones de Fracturas del Fémur Proximal. Tesis Doctoral, Universidad de Zaragoza.
Reilly, Burstein (BIB40) 1975; 8
Odgaard, Jensen, Gundersen (BIB33) 1990; 157
Odgaard (10.1016/S0021-9290(01)00069-0_BIB33) 1990; 157
Levenston (10.1016/S0021-9290(01)00069-0_BIB30) 1997; 30
Pettermann (10.1016/S0021-9290(01)00069-0_BIB36) 1997; 4
Verdonschot (10.1016/S0021-9290(01)00069-0_BIB46) 1997; 79B
Lekhnitskii (10.1016/S0021-9290(01)00069-0_BIB28) 1981
Reilly (10.1016/S0021-9290(01)00069-0_BIB39) 1974; 56
Toni McNamara (10.1016/S0021-9290(01)00069-0_BIB44) 1996; 7
Zienckiewicz (10.1016/S0021-9290(01)00069-0_BIB53) 1992; 33
10.1016/S0021-9290(01)00069-0_BIB38
Kuiper (10.1016/S0021-9290(01)00069-0_BIB27) 1997; 119
Harrigan (10.1016/S0021-9290(01)00069-0_BIB16) 1993; 36
10.1016/S0021-9290(01)00069-0_BIB31
Cowin (10.1016/S0021-9290(01)00069-0_BIB9) 1986; 108
Van Rietbergen (10.1016/S0021-9290(01)00069-0_BIB45) 1996; 29
Ashman (10.1016/S0021-9290(01)00069-0_BIB1) 1984; 17
Odgaard (10.1016/S0021-9290(01)00069-0_BIB34) 1997; 30
Zhang (10.1016/S0021-9290(01)00069-0_BIB52) 1996; 12
Prendergast (10.1016/S0021-9290(01)00069-0_BIB37) 1994; 27
Weinans (10.1016/S0021-9290(01)00069-0_BIB47) 1992; 25
Carter (10.1016/S0021-9290(01)00069-0_BIB5) 1989; 22
Carter (10.1016/S0021-9290(01)00069-0_BIB6) 1987; 20
Garcı́a (10.1016/S0021-9290(01)00069-0_BIB55) 2001; 4
Zysset (10.1016/S0021-9290(01)00069-0_BIB54) 1998; 120
10.1016/S0021-9290(01)00069-0_BIB8
Huiskes (10.1016/S0021-9290(01)00069-0_BIB20) 1987; 20
Beaupré (10.1016/S0021-9290(01)00069-0_BIB3) 1990; 8
10.1016/S0021-9290(01)00069-0_BIB25
Fowler (10.1016/S0021-9290(01)00069-0_BIB13) 1988; 19
Reilly (10.1016/S0021-9290(01)00069-0_BIB40) 1975; 8
10.1016/S0021-9290(01)00069-0_BIB21
Harrigan (10.1016/S0021-9290(01)00069-0_BIB17) 1984; 19
Jacobs (10.1016/S0021-9290(01)00069-0_BIB22) 1995; 28
Lemaitre (10.1016/S0021-9290(01)00069-0_BIB29) 1985; 107
Pedersen (10.1016/S0021-9290(01)00069-0_BIB35) 1997; 30
Jacobs (10.1016/S0021-9290(01)00069-0_BIB23) 1997; 30
Harrigan (10.1016/S0021-9290(01)00069-0_BIB18) 1996; 17
Fernandes (10.1016/S0021-9290(01)00069-0_BIB12) 1999; 2
10.1016/S0021-9290(01)00069-0_BIB19
Chang (10.1016/S0021-9290(01)00069-0_BIB7) 1998; 355
10.1016/S0021-9290(01)00069-0_BIB15
Bergmann (10.1016/S0021-9290(01)00069-0_BIB4) 1993; 26
10.1016/S0021-9290(01)00069-0_BIB14
Simo (10.1016/S0021-9290(01)00069-0_BIB42) 1987; 23
Beaupré (10.1016/S0021-9290(01)00069-0_BIB2) 1990; 8
Stülpner (10.1016/S0021-9290(01)00069-0_BIB43) 1997; 30
10.1016/S0021-9290(01)00069-0_BIB51
Kerner (10.1016/S0021-9290(01)00069-0_BIB26) 1999; 32
Williams (10.1016/S0021-9290(01)00069-0_BIB49) 1982; 104
Whitehouse (10.1016/S0021-9290(01)00069-0_BIB48) 1974; 101
Kachanov (10.1016/S0021-9290(01)00069-0_BIB24) 1958; 8
10.1016/S0021-9290(01)00069-0_BIB41
Cowin (10.1016/S0021-9290(01)00069-0_BIB10) 1992; 114
Wolff (10.1016/S0021-9290(01)00069-0_BIB50) 1892
References_xml – volume: 8
  start-page: 662
  year: 1990
  end-page: 670
  ident: BIB3
  article-title: An approach for time-dependent bone modeling and remodeling-application
  publication-title: Journal of Orthopaedic Research
– volume: 22
  start-page: 231
  year: 1989
  end-page: 244
  ident: BIB5
  article-title: Relationships between loading history and femoral cancellous bone architecture
  publication-title: Journal of Biomechanics
– volume: 20
  start-page: 785
  year: 1987
  end-page: 794
  ident: BIB6
  article-title: Trabecular bone density and loading history
  publication-title: Journal of Biomechanics
– volume: 30
  start-page: 403
  year: 1997
  end-page: 407
  ident: BIB30
  article-title: Temporal stability of node-based internal bone adaptation simulations
  publication-title: Journal of Biomechanics
– reference: Hibbit, Karlsson, Sorensen, Inc., 1998. ABAQUS. User's Manual. Version 5.8.
– volume: 27
  start-page: 1067
  year: 1994
  end-page: 1076
  ident: BIB37
  article-title: Prediction of bone adaptation using damage accumulation
  publication-title: Journal of Biomechanics
– year: 1892
  ident: BIB50
  publication-title: Das gesetz der transformation der knochen
– volume: 19
  start-page: 761
  year: 1984
  end-page: 767
  ident: BIB17
  article-title: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor
  publication-title: Journal of Material Science
– reference: Wolff, J., 1986. The Law of Bone Remodelling (translated by P. Maquet and R. Furlong). Verlag, Berlin.
– volume: 12
  start-page: 507
  year: 1996
  end-page: 524
  ident: BIB52
  article-title: Mathematical analysis of Zienckiewicz–Zhu's derivative patch recovery technique
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 120
  start-page: 640
  year: 1998
  end-page: 646
  ident: BIB54
  article-title: A global relationship between trabecular bone morphology and homogenized elastic properties
  publication-title: Journal of Biomechanical Engineering
– year: 1981
  ident: BIB28
  publication-title: Theory of Elasticity of an Anisotropic Body
– volume: 30
  start-page: 487
  year: 1997
  end-page: 495
  ident: BIB34
  article-title: Fabric and elastic principal directions of cancellous bone are closely related
  publication-title: Journal of Biomechanics
– reference: Rakotomanana, L.R., Terrier, A., Leyvraz, P.F., 1996. Anisotropic bone adaptation models: application to orthopaedic implants. In: Computer Methods in Biomechanics and Biomedical Engineering. Gordon and Breach, London, pp. 95–104.
– volume: 56
  start-page: 1001
  year: 1974
  end-page: 1022
  ident: BIB39
  article-title: The mechanical properties of cortical bone
  publication-title: Journal of Bone and Joint Surgery
– volume: 20
  start-page: 1135
  year: 1987
  end-page: 1150
  ident: BIB20
  article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis
  publication-title: Journal of Biomechanics
– volume: 119
  start-page: 228
  year: 1997
  end-page: 231
  ident: BIB27
  article-title: The predective value of stress shielding for quantification of adaptive bone resorption around hip replacements
  publication-title: Journal of Biomechanical Engineering
– reference: Karlsson, L.M., Cruz-Orive, L.M., 1993. Application of the star volume distribution to characterize structural anisotropy of a duples stailess steel. In: Stereology in Materials Science: Demostration of Some Methods. Royal Institute of Technology, Stockholm.
– volume: 101
  start-page: 153
  year: 1974
  end-page: 168
  ident: BIB48
  article-title: The quantitative morphology of anisotropic trabecular bone
  publication-title: Journal Microscopy
– volume: 30
  start-page: 1063
  year: 1997
  end-page: 1066
  ident: BIB43
  article-title: A three-dimensional finite analysis of adaptive remodelling in the proximal femur
  publication-title: Journal of Biomechanics
– volume: 7
  start-page: 149
  year: 1996
  end-page: 152
  ident: BIB44
  article-title: Bone remodelling after total hip arthoplasty
  publication-title: Journal of Materials Science: Materials in Medicine
– volume: 19
  start-page: 477
  year: 1988
  end-page: 489
  ident: BIB13
  article-title: Experience with the Exeter total hip replacement since 1970
  publication-title: Orthopaedic Clinics of North America
– volume: 108
  start-page: 83
  year: 1986
  end-page: 88
  ident: BIB9
  article-title: Wolff's law of trabecular architecture at remodeling equilibrium
  publication-title: Journal of Biomechanical Engineering
– volume: 79B
  start-page: 665
  year: 1997
  end-page: 669
  ident: BIB46
  article-title: Acrylic cement creeps but does not allow much subsidence of femoral stems
  publication-title: Journal of Bone and Joint Surgery
– volume: 30
  start-page: 959
  year: 1997
  end-page: 965
  ident: BIB35
  article-title: Pelvic muscle and acetabular contact forces during gait
  publication-title: Journal of Biomechanics
– volume: 355
  start-page: 57
  year: 1998
  end-page: 69
  ident: BIB7
  article-title: Cemented femoral stem performance effects of proximal bonding, geometry and neck length
  publication-title: Clinical Orthopaedic and Related Research
– volume: 25
  start-page: 1425
  year: 1992
  end-page: 1441
  ident: BIB47
  article-title: The behaviour of adaptive bone-remodeling simulation models
  publication-title: Journal of Biomechanics
– volume: 2
  start-page: 125
  year: 1999
  end-page: 138
  ident: BIB12
  article-title: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 4
  start-page: 355
  year: 2001
  end-page: 378
  ident: BIB55
  article-title: An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– reference: Garcı́a, J.M., 1999. Modelos de Remodelación Ósea: Análisis Numérico y Aplicaciones al Diseño de Fijaciones de Fracturas del Fémur Proximal. Tesis Doctoral, Universidad de Zaragoza.
– volume: 32
  start-page: 695
  year: 1999
  end-page: 703
  ident: BIB26
  article-title: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling
  publication-title: Journal of Biomechanics
– volume: 23
  start-page: 821
  year: 1987
  end-page: 840
  ident: BIB42
  article-title: Strain- and stress-based continuum damage models I. formulation
  publication-title: International Journal of Solids Structures
– volume: 29
  start-page: 1653
  year: 1996
  end-page: 1657
  ident: BIB45
  article-title: Direct mechanics assesment of elastic symmetries and properties of trabecular bone architecture
  publication-title: Journal of Biomechanics
– reference: Goldberg, V.M., Davy, D.T., Lotzar, G.L., Heiple, K.G., Brown, R.H., Berilla, J., Burstein, A.H., 1988. In Vivo Hip Forces. Non-Cemented Total Hip Arthroplasty. Raven Press, pp. 251–255.
– volume: 8
  start-page: 26
  year: 1958
  end-page: 31
  ident: BIB24
  article-title: Time of the rupture process under creep conditions, IVZ Akad
  publication-title: Nauk S S R Otd Tech Nauk
– volume: 36
  start-page: 837
  year: 1993
  end-page: 854
  ident: BIB16
  article-title: Finite element simulation of adaptive bone remodelling
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 8
  start-page: 551
  year: 1990
  end-page: 651
  ident: BIB2
  article-title: An approach for time-dependent bone modeling and remodeling-theoretical development
  publication-title: Journal of Orthopaedic Research
– reference: Rodrigues, H., Jacobs, C.R., Guedes, J.M., Bendsoe, M.P., 1998. Global and local material optimization models applied to anisotropic bone adaptation. Iutam Symposium-Synthesis in Bio Solid Mechanics.
– volume: 4
  start-page: 295
  year: 1997
  end-page: 323
  ident: BIB36
  article-title: Computational simulation of internal bone remodeling
  publication-title: Archives of Computational Methods in Engineering
– volume: 17
  start-page: 349
  year: 1984
  end-page: 361
  ident: BIB1
  article-title: A continuous ware technique for the measurement of the elastic properties of bone
  publication-title: Journal of Biomechanics
– volume: 107
  start-page: 83
  year: 1985
  end-page: 89
  ident: BIB29
  article-title: A continuous damage mechanics model for ductile fracture
  publication-title: Journal of Engineering Materials and Technology
– volume: 33
  start-page: 1331
  year: 1992
  end-page: 1364
  ident: BIB53
  article-title: The superconvergent patch recovery and a posteriori error estimates. Part 1
  publication-title: International Journal for Numerical Methods in Engineering
– reference: Jacobs, C.R., 1994. Numerical simulation of bone adaptation to mechanical loading. Ph.D.Thesis, Stanford University.
– volume: 30
  start-page: 603
  year: 1997
  end-page: 613
  ident: BIB23
  article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations
  publication-title: Journal of Biomechanics
– volume: 8
  start-page: 393
  year: 1975
  end-page: 405
  ident: BIB40
  article-title: The elastic and ultimate properties of compact bone tissue
  publication-title: Journal of Biomechanics
– volume: 114
  start-page: 129
  year: 1992
  end-page: 136
  ident: BIB10
  article-title: An evolutionary Wolff's law for trabecular architecture
  publication-title: Journal of Biomechanical Engineering
– volume: 104
  start-page: 50
  year: 1982
  end-page: 56
  ident: BIB49
  article-title: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis
  publication-title: Journal of Biomechanical Engineering
– reference: Ling, R.S.M., 1997. The history and development of the exeter hip. Oxon: OBE MA BM.
– volume: 17
  start-page: 223
  year: 1996
  end-page: 232
  ident: BIB18
  article-title: Bone remodeling adjacent to intramedulary stems—an optimal structures approach
  publication-title: Biomaterials
– reference: Cordebois, J.P., Sideroff, F., 1982. Damage induced elastic anisotropy. Mechanical Behavior of Anisotropic Solids, Proceedings of the EUROMECH Colloque, Vol. 115, pp. 761–774.
– volume: 28
  start-page: 449
  year: 1995
  end-page: 459
  ident: BIB22
  article-title: Numerical instabilities in bone remodeling simulations
  publication-title: Journal of Biomechanics
– volume: 157
  start-page: 149
  year: 1990
  end-page: 182
  ident: BIB33
  article-title: Estimation of structural anisotropy based on volume orientation—a new concept
  publication-title: Journal of Microscopy
– volume: 26
  start-page: 969
  year: 1993
  end-page: 999
  ident: BIB4
  article-title: Hip joint loading during walking and running, measured in two patients
  publication-title: Journal of Biomechanics
– volume: 120
  start-page: 640
  year: 1998
  ident: 10.1016/S0021-9290(01)00069-0_BIB54
  article-title: A global relationship between trabecular bone morphology and homogenized elastic properties
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2834756
– volume: 107
  start-page: 83
  year: 1985
  ident: 10.1016/S0021-9290(01)00069-0_BIB29
  article-title: A continuous damage mechanics model for ductile fracture
  publication-title: Journal of Engineering Materials and Technology
  doi: 10.1115/1.3225775
– ident: 10.1016/S0021-9290(01)00069-0_BIB8
  doi: 10.1007/978-94-009-6827-1_44
– volume: 20
  start-page: 785
  year: 1987
  ident: 10.1016/S0021-9290(01)00069-0_BIB6
  article-title: Trabecular bone density and loading history
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(87)90058-3
– volume: 30
  start-page: 487
  issue: 5
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB34
  article-title: Fabric and elastic principal directions of cancellous bone are closely related
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(96)00177-7
– volume: 104
  start-page: 50
  year: 1982
  ident: 10.1016/S0021-9290(01)00069-0_BIB49
  article-title: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.3138303
– volume: 22
  start-page: 231
  issue: 3
  year: 1989
  ident: 10.1016/S0021-9290(01)00069-0_BIB5
  article-title: Relationships between loading history and femoral cancellous bone architecture
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(89)90091-2
– volume: 4
  start-page: 295
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB36
  article-title: Computational simulation of internal bone remodeling
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/BF02737117
– volume: 26
  start-page: 969
  issue: 8
  year: 1993
  ident: 10.1016/S0021-9290(01)00069-0_BIB4
  article-title: Hip joint loading during walking and running, measured in two patients
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(93)90058-M
– volume: 28
  start-page: 449
  issue: 4
  year: 1995
  ident: 10.1016/S0021-9290(01)00069-0_BIB22
  article-title: Numerical instabilities in bone remodeling simulations
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)00087-K
– volume: 23
  start-page: 821
  year: 1987
  ident: 10.1016/S0021-9290(01)00069-0_BIB42
  article-title: Strain- and stress-based continuum damage models I. formulation
  publication-title: International Journal of Solids Structures
  doi: 10.1016/0020-7683(87)90083-7
– ident: 10.1016/S0021-9290(01)00069-0_BIB14
– ident: 10.1016/S0021-9290(01)00069-0_BIB41
– volume: 114
  start-page: 129
  year: 1992
  ident: 10.1016/S0021-9290(01)00069-0_BIB10
  article-title: An evolutionary Wolff's law for trabecular architecture
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2895436
– volume: 8
  start-page: 26
  year: 1958
  ident: 10.1016/S0021-9290(01)00069-0_BIB24
  article-title: Time of the rupture process under creep conditions, IVZ Akad
  publication-title: Nauk S S R Otd Tech Nauk
– volume: 2
  start-page: 125
  year: 1999
  ident: 10.1016/S0021-9290(01)00069-0_BIB12
  article-title: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
  doi: 10.1080/10255849908907982
– year: 1981
  ident: 10.1016/S0021-9290(01)00069-0_BIB28
– volume: 119
  start-page: 228
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB27
  article-title: The predective value of stress shielding for quantification of adaptive bone resorption around hip replacements
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2796084
– volume: 108
  start-page: 83
  year: 1986
  ident: 10.1016/S0021-9290(01)00069-0_BIB9
  article-title: Wolff's law of trabecular architecture at remodeling equilibrium
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.3138584
– year: 1892
  ident: 10.1016/S0021-9290(01)00069-0_BIB50
– volume: 101
  start-page: 153
  year: 1974
  ident: 10.1016/S0021-9290(01)00069-0_BIB48
  article-title: The quantitative morphology of anisotropic trabecular bone
  publication-title: Journal Microscopy
  doi: 10.1111/j.1365-2818.1974.tb03878.x
– volume: 79B
  start-page: 665
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB46
  article-title: Acrylic cement creeps but does not allow much subsidence of femoral stems
  publication-title: Journal of Bone and Joint Surgery
  doi: 10.1302/0301-620X.79B4.7173
– volume: 12
  start-page: 507
  year: 1996
  ident: 10.1016/S0021-9290(01)00069-0_BIB52
  article-title: Mathematical analysis of Zienckiewicz–Zhu's derivative patch recovery technique
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q
– ident: 10.1016/S0021-9290(01)00069-0_BIB38
– volume: 30
  start-page: 1063
  issue: 10
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB43
  article-title: A three-dimensional finite analysis of adaptive remodelling in the proximal femur
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00074-2
– volume: 17
  start-page: 349
  year: 1984
  ident: 10.1016/S0021-9290(01)00069-0_BIB1
  article-title: A continuous ware technique for the measurement of the elastic properties of bone
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(84)90029-0
– volume: 27
  start-page: 1067
  issue: 8
  year: 1994
  ident: 10.1016/S0021-9290(01)00069-0_BIB37
  article-title: Prediction of bone adaptation using damage accumulation
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)90223-2
– volume: 19
  start-page: 477
  issue: 3
  year: 1988
  ident: 10.1016/S0021-9290(01)00069-0_BIB13
  article-title: Experience with the Exeter total hip replacement since 1970
  publication-title: Orthopaedic Clinics of North America
– ident: 10.1016/S0021-9290(01)00069-0_BIB15
– ident: 10.1016/S0021-9290(01)00069-0_BIB21
– ident: 10.1016/S0021-9290(01)00069-0_BIB19
– volume: 157
  start-page: 149
  year: 1990
  ident: 10.1016/S0021-9290(01)00069-0_BIB33
  article-title: Estimation of structural anisotropy based on volume orientation—a new concept
  publication-title: Journal of Microscopy
  doi: 10.1111/j.1365-2818.1990.tb02955.x
– volume: 20
  start-page: 1135
  issue: 11/12
  year: 1987
  ident: 10.1016/S0021-9290(01)00069-0_BIB20
  article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(87)90030-3
– volume: 30
  start-page: 959
  issue: 9
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB35
  article-title: Pelvic muscle and acetabular contact forces during gait
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00041-9
– volume: 7
  start-page: 149
  year: 1996
  ident: 10.1016/S0021-9290(01)00069-0_BIB44
  article-title: Bone remodelling after total hip arthoplasty
  publication-title: Journal of Materials Science: Materials in Medicine
  doi: 10.1007/BF00121253
– ident: 10.1016/S0021-9290(01)00069-0_BIB51
  doi: 10.1007/978-3-642-71031-5
– volume: 4
  start-page: 355
  issue: 4
  year: 2001
  ident: 10.1016/S0021-9290(01)00069-0_BIB55
  article-title: An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
  doi: 10.1080/10255840108908014
– volume: 8
  start-page: 662
  issue: 5
  year: 1990
  ident: 10.1016/S0021-9290(01)00069-0_BIB3
  article-title: An approach for time-dependent bone modeling and remodeling-application
  publication-title: Journal of Orthopaedic Research
  doi: 10.1002/jor.1100080507
– ident: 10.1016/S0021-9290(01)00069-0_BIB31
– volume: 25
  start-page: 1425
  issue: 12
  year: 1992
  ident: 10.1016/S0021-9290(01)00069-0_BIB47
  article-title: The behaviour of adaptive bone-remodeling simulation models
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(92)90056-7
– volume: 30
  start-page: 603
  issue: 6
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB23
  article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(96)00189-3
– ident: 10.1016/S0021-9290(01)00069-0_BIB25
– volume: 30
  start-page: 403
  issue: 4
  year: 1997
  ident: 10.1016/S0021-9290(01)00069-0_BIB30
  article-title: Temporal stability of node-based internal bone adaptation simulations
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(96)00149-2
– volume: 32
  start-page: 695
  year: 1999
  ident: 10.1016/S0021-9290(01)00069-0_BIB26
  article-title: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(99)00041-X
– volume: 8
  start-page: 551
  issue: 5
  year: 1990
  ident: 10.1016/S0021-9290(01)00069-0_BIB2
  article-title: An approach for time-dependent bone modeling and remodeling-theoretical development
  publication-title: Journal of Orthopaedic Research
– volume: 33
  start-page: 1331
  year: 1992
  ident: 10.1016/S0021-9290(01)00069-0_BIB53
  article-title: The superconvergent patch recovery and a posteriori error estimates. Part 1
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1620330702
– volume: 29
  start-page: 1653
  issue: 12
  year: 1996
  ident: 10.1016/S0021-9290(01)00069-0_BIB45
  article-title: Direct mechanics assesment of elastic symmetries and properties of trabecular bone architecture
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(96)00093-0
– volume: 17
  start-page: 223
  issue: 2
  year: 1996
  ident: 10.1016/S0021-9290(01)00069-0_BIB18
  article-title: Bone remodeling adjacent to intramedulary stems—an optimal structures approach
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(96)85767-X
– volume: 56
  start-page: 1001
  year: 1974
  ident: 10.1016/S0021-9290(01)00069-0_BIB39
  article-title: The mechanical properties of cortical bone
  publication-title: Journal of Bone and Joint Surgery
  doi: 10.2106/00004623-197456050-00012
– volume: 19
  start-page: 761
  year: 1984
  ident: 10.1016/S0021-9290(01)00069-0_BIB17
  article-title: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor
  publication-title: Journal of Material Science
  doi: 10.1007/BF00540446
– volume: 355
  start-page: 57
  year: 1998
  ident: 10.1016/S0021-9290(01)00069-0_BIB7
  article-title: Cemented femoral stem performance effects of proximal bonding, geometry and neck length
  publication-title: Clinical Orthopaedic and Related Research
  doi: 10.1097/00003086-199810000-00007
– volume: 36
  start-page: 837
  year: 1993
  ident: 10.1016/S0021-9290(01)00069-0_BIB16
  article-title: Finite element simulation of adaptive bone remodelling
  publication-title: International Journal of Numerical Methods in Engineering
  doi: 10.1002/nme.1620360508
– volume: 8
  start-page: 393
  issue: 6
  year: 1975
  ident: 10.1016/S0021-9290(01)00069-0_BIB40
  article-title: The elastic and ultimate properties of compact bone tissue
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(75)90075-5
SSID ssj0007479
Score 2.0487287
Snippet In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1157
SubjectTerms Anisotropic internal bone remodelling
Anisotropy
Arthroplasty, Replacement, Hip
Biomechanical Phenomena
Biomedical engineering
Bone implants
Bone Remodeling - physiology
Bone remodelling simulation
Computational methods
Computer Simulation
Continuum mechanics
Damage mechanics
Exeter prosthesis
Fabric tensor
Femur - injuries
Femur - surgery
Finite Element Analysis
Finite elements
Humans
Models, Biological
Postoperative Period
Wound Healing
Wounds and Injuries - physiopathology
Wounds and Injuries - surgery
Title Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929001000690
https://dx.doi.org/10.1016/S0021-9290(01)00069-0
https://www.ncbi.nlm.nih.gov/pubmed/11506786
https://www.proquest.com/docview/18343134
https://www.proquest.com/docview/20194798
https://www.proquest.com/docview/21468350
https://www.proquest.com/docview/71091862
https://www.proquest.com/docview/771506195
Volume 34
WOSCitedRecordID wos000170683400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF4QNAxKJfhB0CgKiVp0sR5LGUIkJiQGFLfIsexpUhrUqXpVH4Ov4C_yDl2bly6DSReIic9dtKcLz7HPjdCnk5VCEJXSAu-QgkLFDgw4SvLF0ks8ZQrU2wiODlhi0X4qdf7XsfCnJ8FWca223D1X1kN14DZGDr7F-xuBoUL0AamwxHYDscrMX7WmqS1kR-9jdN1Xhb5KhWjOM-kVUhdAEdHouvWCIVZgoYDPkr4EuYYoFnxtDCBjo2GyjspTEyMVb5NlxgDKZebYhRLUIGNPcLUHi9zHWuZrtA2gRv2jZ_N7_qwTgSAccgd__s3eQwrb2PM11u348ZfCLiGivBr59l8DuqwcfkdVwT1NobT-GlVe2t1fE3rzGRiDRwLsGR35-tq89PgMuxMvpg3qCPIsabOH4WE2a_43AwOqjyWK8DyqT48VCsZG39FTYuktqOJ7D2yPwmmIeuT_dn748WHRvjD6qzyKjJjt0Fjr9obvrCdl9XNdqlDu5Y7Wu05vU1uVfyhM4OzO6QnswE5mGW8zJdf6XOqPYi1aWZAbnaSWw7I9Y-V28YB-dbBJM0V5RntYJL-ikmqW1RjkkIPTn_CJDWYpGWOLVpjEgfG8xqTVGOSGkwCVUI1JqnGJAVM0g4m75Ivb49P5--sqjaIJWCNUVqe5I7NQVzFcZLYLElUwBNQ9hlzY-WGUoWxEBPFfcVA4Qq5VDwOZex7sbBd6cXuIeln8O_uE-pIm0ssOyAx35_rM6Fs5UkpQn8ilJMMiVezKBJV4nys33IWtR6SwNkIORvZTqQ5G9lDMm66rUzmmMs6-DX_ozosGgR5BLC9rCNrOlZ6s9GHr9L1SQ20COQKGgt5JvPNOgJRD2sL19tNAUuHENDOLqDAuE53esFd0BPcYf5kSOguigBzoDrhdEjumQ-hfZv4S8D8B__64h6SG-1U9Ij0y2IjH5Nr4rxM18UR2QsW7Kj6wH8Aqwgmtg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+anisotropic+bone-remodelling+model+based+on+a+damage-repair+theory+to+the+analysis+of+the+proximal+femur+before+and+after+total+hip+replacement&rft.jtitle=Journal+of+biomechanics&rft.au=Doblar%C3%A9%2C+M.&rft.au=Garc%C4%B1%CC%81a%2C+J.M.&rft.date=2001-09-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=34&rft.issue=9&rft.spage=1157&rft.epage=1170&rft_id=info:doi/10.1016%2FS0021-9290%2801%2900069-0&rft.externalDocID=S0021929001000690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon