Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principle...
Uloženo v:
| Vydáno v: | Journal of biomechanics Ročník 34; číslo 9; s. 1157 - 1170 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Ltd
01.09.2001
|
| Témata: | |
| ISSN: | 0021-9290, 1873-2380 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A “damage-repair” tensor is defined in terms of the apparent density and Cowin's “fabric tensor”, respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcı́a, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355–378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. |
|---|---|
| AbstractList | In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcia, J. M., Martinez, M. A., Doblare, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. copyright 2001 Elsevier Science Ltd. All right reserved. In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A 'damage-repair' tensor is defined in terms of the apparent density and Cowin's 'fabric tensor', respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcia, J. M., Martinez, M. A., Doblare, M., 2001. An anisotrophic internal- external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. (ABSTRACT TRUNCATED). In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A “damage-repair” tensor is defined in terms of the apparent density and Cowin's “fabric tensor”, respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (Garcı́a, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355–378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour. |
| Author | Garcı́a, J.M. Doblaré, M. |
| Author_xml | – sequence: 1 givenname: M surname: Doblare fullname: Doblare, M – sequence: 2 givenname: J surname: Garcia middlename: M fullname: Garcia, J M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11506786$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhi1URNuBRwB5xWUROE4yiS2EUFVxkyqxANaWL8etIYlT24OYx-FNcWYKSF0wSLZsy9__-3L-U3I0hQkJecjgOQPWvfgEULNK1AKeAnsGAJ2o4A45YbxvqrrhcERO_iDH5DSlrwXq217cI8eMraHreXdCfp7N8-CNyj5MNDiqptJ8CjmG2Ruqy6FVxDFYHAY_XdLdjGqV0NKiUNSqUV0uzKx8pPkKQ9zSHJZZcVLDNvm0GC_rOYYfflQDdThuItXoQlwoS5XLWNQhl80rP9NiNyiDI075Prnr1JDwwc24Il_evvl8_r66-Pjuw_nZRWXWLeSqRcVA9dBobS1wa12vLG8E5412jUAntDG1U53jtRBCoVNaoO5abaDBVjcr8mTvW255vcGU5eiTKc9WE4ZNkn2_fBoT60I-_jfJQDDe1QfBmrUdb9ZwGAQmSuX4QZDxpm1Y6Svy6Abc6BGtnGP5-LiVvytfgPUeMDGkFNH9RUAuCZO7hMklPhKY3CVMLld9eUtnfN7FJ0flh4Pq13s1lkp-9xhlMh4ng9ZHNFna4A86vLrlYEowS4KHb7j9D_0vWn0ACg |
| CitedBy_id | crossref_primary_10_1016_j_jmbbm_2013_11_015 crossref_primary_10_1016_S1672_6529_16_60432_8 crossref_primary_10_1007_s10237_005_0067_x crossref_primary_10_1016_j_engfracmech_2006_01_005 crossref_primary_10_1080_10255840600792451 crossref_primary_10_1016_j_jbiomech_2011_04_009 crossref_primary_10_1243_09544119JEIM341 crossref_primary_10_1371_journal_pone_0148603 crossref_primary_10_1016_j_jmbbm_2021_104903 crossref_primary_10_1016_j_jbiomech_2009_09_045 crossref_primary_10_1016_j_jmbbm_2016_10_005 crossref_primary_10_1016_j_jbiomech_2009_01_020 crossref_primary_10_1080_10255842_2014_903933 crossref_primary_10_1080_10255842_2011_561793 crossref_primary_10_1016_j_jbiomech_2005_05_025 crossref_primary_10_1007_s11831_006_9001_3 crossref_primary_10_1177_1081286520984690 crossref_primary_10_1016_j_bone_2021_116032 crossref_primary_10_1016_j_medengphy_2005_09_007 crossref_primary_10_1016_j_jmbbm_2013_05_017 crossref_primary_10_1016_j_enganabound_2018_05_007 crossref_primary_10_1016_j_medengphy_2015_05_006 crossref_primary_10_1080_10255840903045029 crossref_primary_10_1016_j_medengphy_2005_12_008 crossref_primary_10_1016_S0045_7825_02_00538_8 crossref_primary_10_1007_s00466_014_0984_6 crossref_primary_10_1016_j_compbiomed_2022_105898 crossref_primary_10_1016_S0021_9290_02_00309_3 crossref_primary_10_1007_s00419_018_1438_y crossref_primary_10_1371_journal_pone_0173228 crossref_primary_10_1007_s10439_008_9616_7 crossref_primary_10_1016_j_compbiomed_2018_01_001 crossref_primary_10_1007_s10237_008_0122_5 crossref_primary_10_3390_math10183367 crossref_primary_10_1016_j_euromechsol_2021_104409 crossref_primary_10_1016_j_jmbbm_2008_08_005 crossref_primary_10_1016_j_jmbbm_2011_06_011 crossref_primary_10_1016_j_engfracmech_2003_08_003 crossref_primary_10_1016_j_jbiomech_2010_07_028 crossref_primary_10_1016_j_jbiomech_2010_07_027 crossref_primary_10_1016_j_mechrescom_2018_12_003 crossref_primary_10_1016_j_jmbbm_2012_02_011 crossref_primary_10_1016_j_jmbbm_2016_08_026 crossref_primary_10_1186_s13018_020_02025_6 crossref_primary_10_1243_09544119JEIM84 crossref_primary_10_3390_app13042738 crossref_primary_10_1016_j_cma_2004_06_031 crossref_primary_10_1016_j_medengphy_2018_06_001 crossref_primary_10_1007_s10237_019_01158_w crossref_primary_10_1007_s10439_007_9430_7 crossref_primary_10_1007_s10439_020_02550_9 crossref_primary_10_1016_j_jbiomech_2013_06_031 crossref_primary_10_1016_j_jmbbm_2025_107031 crossref_primary_10_1177_0954411912467884 crossref_primary_10_1016_j_jbiomech_2009_10_040 crossref_primary_10_1016_S0927_0256_02_00254_9 crossref_primary_10_1007_BF02905856 crossref_primary_10_1155_2017_5932545 crossref_primary_10_1016_j_medengphy_2021_103739 crossref_primary_10_1108_15736101011095118 crossref_primary_10_1007_s00161_017_0611_9 crossref_primary_10_1016_j_recot_2014_12_003 crossref_primary_10_1080_10255842_2020_1713484 crossref_primary_10_1007_s10237_020_01353_0 crossref_primary_10_1016_j_cma_2014_02_003 crossref_primary_10_1016_j_medengphy_2011_08_015 crossref_primary_10_1016_j_medengphy_2020_10_007 crossref_primary_10_1016_j_cma_2007_03_020 crossref_primary_10_1016_j_jcp_2023_112576 crossref_primary_10_1016_j_recote_2015_07_006 crossref_primary_10_1371_journal_pone_0184361 crossref_primary_10_3390_math13132156 crossref_primary_10_1016_j_medengphy_2013_10_013 crossref_primary_10_1155_2018_7243696 crossref_primary_10_1007_s11538_020_00808_w crossref_primary_10_1016_j_cma_2013_10_005 crossref_primary_10_1016_j_jmbbm_2024_106773 crossref_primary_10_1007_s10237_015_0678_9 crossref_primary_10_1016_j_jbiomech_2010_10_007 crossref_primary_10_1007_s12008_010_0097_1 crossref_primary_10_1016_j_cma_2008_02_010 crossref_primary_10_1016_j_cmpb_2021_106365 crossref_primary_10_1016_j_aanat_2015_02_004 crossref_primary_10_1016_j_medengphy_2020_08_004 crossref_primary_10_1023_A_1020835720405 crossref_primary_10_1007_s10237_021_01436_6 crossref_primary_10_1016_j_jmbbm_2015_01_015 crossref_primary_10_1016_j_jmbbm_2013_12_025 crossref_primary_10_1016_S1350_4533_03_00026_2 crossref_primary_10_1007_s10439_016_1551_4 crossref_primary_10_1016_j_bonr_2020_100271 |
| Cites_doi | 10.1115/1.2834756 10.1115/1.3225775 10.1007/978-94-009-6827-1_44 10.1016/0021-9290(87)90058-3 10.1016/S0021-9290(96)00177-7 10.1115/1.3138303 10.1016/0021-9290(89)90091-2 10.1007/BF02737117 10.1016/0021-9290(93)90058-M 10.1016/0021-9290(94)00087-K 10.1016/0020-7683(87)90083-7 10.1115/1.2895436 10.1080/10255849908907982 10.1115/1.2796084 10.1115/1.3138584 10.1111/j.1365-2818.1974.tb03878.x 10.1302/0301-620X.79B4.7173 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q 10.1016/S0021-9290(97)00074-2 10.1016/0021-9290(84)90029-0 10.1016/0021-9290(94)90223-2 10.1111/j.1365-2818.1990.tb02955.x 10.1016/0021-9290(87)90030-3 10.1016/S0021-9290(97)00041-9 10.1007/BF00121253 10.1007/978-3-642-71031-5 10.1080/10255840108908014 10.1002/jor.1100080507 10.1016/0021-9290(92)90056-7 10.1016/S0021-9290(96)00189-3 10.1016/S0021-9290(96)00149-2 10.1016/S0021-9290(99)00041-X 10.1002/nme.1620330702 10.1016/0021-9290(96)00093-0 10.1016/0142-9612(96)85767-X 10.2106/00004623-197456050-00012 10.1007/BF00540446 10.1097/00003086-199810000-00007 10.1002/nme.1620360508 10.1016/0021-9290(75)90075-5 |
| ContentType | Journal Article |
| Copyright | 2001 Elsevier Science Ltd |
| Copyright_xml | – notice: 2001 Elsevier Science Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QO 8FD FR3 P64 7X8 |
| DOI | 10.1016/S0021-9290(01)00069-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Calcium & Calcified Tissue Abstracts Engineering Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 1170 |
| ExternalDocumentID | 563962 11506786 10_1016_S0021_9290_01_00069_0 S0021929001000690 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFFDN AFKWA AHPSJ AJBFU AJOXV AMFUW F3I LCYCR RIG YCJ 9DU AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM PKN 7QP 7QO 8FD FR3 P64 7X8 |
| ID | FETCH-LOGICAL-c540t-4ea10a703bbdd08ddf7ad839883bf39ef9bcc2fa6f82999aefab9eb64bc03e4b3 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000170683400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 |
| IngestDate | Thu Oct 02 08:14:39 EDT 2025 Sun Sep 28 08:00:51 EDT 2025 Sun Sep 28 00:22:53 EDT 2025 Sun Nov 09 09:21:08 EST 2025 Sat Sep 27 23:20:12 EDT 2025 Wed Feb 19 02:34:09 EST 2025 Sat Nov 29 04:02:26 EST 2025 Tue Nov 18 21:30:49 EST 2025 Fri Feb 23 02:18:20 EST 2024 Tue Oct 14 19:30:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Damage mechanics Finite elements Exeter prosthesis Fabric tensor Bone implants Bone remodelling simulation Anisotropic internal bone remodelling |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c540t-4ea10a703bbdd08ddf7ad839883bf39ef9bcc2fa6f82999aefab9eb64bc03e4b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 11506786 |
| PQID | 18343134 |
| PQPubID | 23462 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_771506195 proquest_miscellaneous_71091862 proquest_miscellaneous_21468350 proquest_miscellaneous_20194798 proquest_miscellaneous_18343134 pubmed_primary_11506786 crossref_primary_10_1016_S0021_9290_01_00069_0 crossref_citationtrail_10_1016_S0021_9290_01_00069_0 elsevier_sciencedirect_doi_10_1016_S0021_9290_01_00069_0 elsevier_clinicalkey_doi_10_1016_S0021_9290_01_00069_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2001-09-01 |
| PublicationDateYYYYMMDD | 2001-09-01 |
| PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2001 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pettermann, Reiter, Rammerstorfer (BIB36) 1997; 4 Toni McNamara, Viceconti, Sudanese, Baruffaldi, Giunti (BIB44) 1996; 7 Weinans, Huiskes, Grootenboer (BIB47) 1992; 25 Stülpner, Reddy, Starke, Spirakis (BIB43) 1997; 30 Cowin (BIB9) 1986; 108 Rodrigues, H., Jacobs, C.R., Guedes, J.M., Bendsoe, M.P., 1998. Global and local material optimization models applied to anisotropic bone adaptation. Iutam Symposium-Synthesis in Bio Solid Mechanics. Harrigan, Hamilton, Reuben, Toni, Viceconti (BIB18) 1996; 17 Jacobs, Simo, Beaupré, Carter (BIB23) 1997; 30 Karlsson, L.M., Cruz-Orive, L.M., 1993. Application of the star volume distribution to characterize structural anisotropy of a duples stailess steel. In: Stereology in Materials Science: Demostration of Some Methods. Royal Institute of Technology, Stockholm. Fernandes, Rodrigues, Jacobs (BIB12) 1999; 2 Zysset, Goulet, Hollister (BIB54) 1998; 120 Goldberg, V.M., Davy, D.T., Lotzar, G.L., Heiple, K.G., Brown, R.H., Berilla, J., Burstein, A.H., 1988. In Vivo Hip Forces. Non-Cemented Total Hip Arthroplasty. Raven Press, pp. 251–255. Kerner, Huiskes, van Lenthe, Weinans, van Rietbergen, Engh, Amis (BIB26) 1999; 32 Bergmann, Graichen, Rohlmann (BIB4) 1993; 26 Cowin, Sadegh, Luo (BIB10) 1992; 114 Simo, Ju (BIB42) 1987; 23 Garcı́a, Martinez, Doblaré (BIB55) 2001; 4 Harrigan, Mann (BIB17) 1984; 19 Huiskes, Weinans, Grootenboer, Dalstra, Fudala, Sloof (BIB20) 1987; 20 Zienckiewicz, Zhu (BIB53) 1992; 33 Hibbit, Karlsson, Sorensen, Inc., 1998. ABAQUS. User's Manual. Version 5.8. Ashman, Cowin, Van Buskirk, Rice (BIB1) 1984; 17 Chang, Mann, Bartel (BIB7) 1998; 355 Cordebois, J.P., Sideroff, F., 1982. Damage induced elastic anisotropy. Mechanical Behavior of Anisotropic Solids, Proceedings of the EUROMECH Colloque, Vol. 115, pp. 761–774. Harrigan, Hamilton (BIB16) 1993; 36 Verdonschot, Huiskes (BIB46) 1997; 79B Lekhnitskii (BIB28) 1981 Beaupré, Orr, Carter (BIB3) 1990; 8 Fowler, Gie, Lee, Ling (BIB13) 1988; 19 Prendergast, Taylor (BIB37) 1994; 27 Whitehouse (BIB48) 1974; 101 Van Rietbergen, Odgaard, Kabel, Huiskes (BIB45) 1996; 29 Wolff (BIB50) 1892 Odgaard, Kaber, Van Rietbergen, Dalstra, Huiskes (BIB34) 1997; 30 Zhang, Victory (BIB52) 1996; 12 Reilly, Burstein (BIB39) 1974; 56 Carter, Orr, Pyhrie (BIB5) 1989; 22 Beaupré, Orr, Carter (BIB2) 1990; 8 Pedersen, Brand, Davy (BIB35) 1997; 30 Jacobs, Levenston, Beaupré, Simo, Carter (BIB22) 1995; 28 Lemaitre (BIB29) 1985; 107 Ling, R.S.M., 1997. The history and development of the exeter hip. Oxon: OBE MA BM. Jacobs, C.R., 1994. Numerical simulation of bone adaptation to mechanical loading. Ph.D.Thesis, Stanford University. Wolff, J., 1986. The Law of Bone Remodelling (translated by P. Maquet and R. Furlong). Verlag, Berlin. Carter, Pyhrie, Whalen (BIB6) 1987; 20 Levenston (BIB30) 1997; 30 Kuiper, Huiskes (BIB27) 1997; 119 Kachanov (BIB24) 1958; 8 Rakotomanana, L.R., Terrier, A., Leyvraz, P.F., 1996. Anisotropic bone adaptation models: application to orthopaedic implants. In: Computer Methods in Biomechanics and Biomedical Engineering. Gordon and Breach, London, pp. 95–104. Williams, Lewis (BIB49) 1982; 104 Garcı́a, J.M., 1999. Modelos de Remodelación Ósea: Análisis Numérico y Aplicaciones al Diseño de Fijaciones de Fracturas del Fémur Proximal. Tesis Doctoral, Universidad de Zaragoza. Reilly, Burstein (BIB40) 1975; 8 Odgaard, Jensen, Gundersen (BIB33) 1990; 157 Odgaard (10.1016/S0021-9290(01)00069-0_BIB33) 1990; 157 Levenston (10.1016/S0021-9290(01)00069-0_BIB30) 1997; 30 Pettermann (10.1016/S0021-9290(01)00069-0_BIB36) 1997; 4 Verdonschot (10.1016/S0021-9290(01)00069-0_BIB46) 1997; 79B Lekhnitskii (10.1016/S0021-9290(01)00069-0_BIB28) 1981 Reilly (10.1016/S0021-9290(01)00069-0_BIB39) 1974; 56 Toni McNamara (10.1016/S0021-9290(01)00069-0_BIB44) 1996; 7 Zienckiewicz (10.1016/S0021-9290(01)00069-0_BIB53) 1992; 33 10.1016/S0021-9290(01)00069-0_BIB38 Kuiper (10.1016/S0021-9290(01)00069-0_BIB27) 1997; 119 Harrigan (10.1016/S0021-9290(01)00069-0_BIB16) 1993; 36 10.1016/S0021-9290(01)00069-0_BIB31 Cowin (10.1016/S0021-9290(01)00069-0_BIB9) 1986; 108 Van Rietbergen (10.1016/S0021-9290(01)00069-0_BIB45) 1996; 29 Ashman (10.1016/S0021-9290(01)00069-0_BIB1) 1984; 17 Odgaard (10.1016/S0021-9290(01)00069-0_BIB34) 1997; 30 Zhang (10.1016/S0021-9290(01)00069-0_BIB52) 1996; 12 Prendergast (10.1016/S0021-9290(01)00069-0_BIB37) 1994; 27 Weinans (10.1016/S0021-9290(01)00069-0_BIB47) 1992; 25 Carter (10.1016/S0021-9290(01)00069-0_BIB5) 1989; 22 Carter (10.1016/S0021-9290(01)00069-0_BIB6) 1987; 20 Garcı́a (10.1016/S0021-9290(01)00069-0_BIB55) 2001; 4 Zysset (10.1016/S0021-9290(01)00069-0_BIB54) 1998; 120 10.1016/S0021-9290(01)00069-0_BIB8 Huiskes (10.1016/S0021-9290(01)00069-0_BIB20) 1987; 20 Beaupré (10.1016/S0021-9290(01)00069-0_BIB3) 1990; 8 10.1016/S0021-9290(01)00069-0_BIB25 Fowler (10.1016/S0021-9290(01)00069-0_BIB13) 1988; 19 Reilly (10.1016/S0021-9290(01)00069-0_BIB40) 1975; 8 10.1016/S0021-9290(01)00069-0_BIB21 Harrigan (10.1016/S0021-9290(01)00069-0_BIB17) 1984; 19 Jacobs (10.1016/S0021-9290(01)00069-0_BIB22) 1995; 28 Lemaitre (10.1016/S0021-9290(01)00069-0_BIB29) 1985; 107 Pedersen (10.1016/S0021-9290(01)00069-0_BIB35) 1997; 30 Jacobs (10.1016/S0021-9290(01)00069-0_BIB23) 1997; 30 Harrigan (10.1016/S0021-9290(01)00069-0_BIB18) 1996; 17 Fernandes (10.1016/S0021-9290(01)00069-0_BIB12) 1999; 2 10.1016/S0021-9290(01)00069-0_BIB19 Chang (10.1016/S0021-9290(01)00069-0_BIB7) 1998; 355 10.1016/S0021-9290(01)00069-0_BIB15 Bergmann (10.1016/S0021-9290(01)00069-0_BIB4) 1993; 26 10.1016/S0021-9290(01)00069-0_BIB14 Simo (10.1016/S0021-9290(01)00069-0_BIB42) 1987; 23 Beaupré (10.1016/S0021-9290(01)00069-0_BIB2) 1990; 8 Stülpner (10.1016/S0021-9290(01)00069-0_BIB43) 1997; 30 10.1016/S0021-9290(01)00069-0_BIB51 Kerner (10.1016/S0021-9290(01)00069-0_BIB26) 1999; 32 Williams (10.1016/S0021-9290(01)00069-0_BIB49) 1982; 104 Whitehouse (10.1016/S0021-9290(01)00069-0_BIB48) 1974; 101 Kachanov (10.1016/S0021-9290(01)00069-0_BIB24) 1958; 8 10.1016/S0021-9290(01)00069-0_BIB41 Cowin (10.1016/S0021-9290(01)00069-0_BIB10) 1992; 114 Wolff (10.1016/S0021-9290(01)00069-0_BIB50) 1892 |
| References_xml | – volume: 8 start-page: 662 year: 1990 end-page: 670 ident: BIB3 article-title: An approach for time-dependent bone modeling and remodeling-application publication-title: Journal of Orthopaedic Research – volume: 22 start-page: 231 year: 1989 end-page: 244 ident: BIB5 article-title: Relationships between loading history and femoral cancellous bone architecture publication-title: Journal of Biomechanics – volume: 20 start-page: 785 year: 1987 end-page: 794 ident: BIB6 article-title: Trabecular bone density and loading history publication-title: Journal of Biomechanics – volume: 30 start-page: 403 year: 1997 end-page: 407 ident: BIB30 article-title: Temporal stability of node-based internal bone adaptation simulations publication-title: Journal of Biomechanics – reference: Hibbit, Karlsson, Sorensen, Inc., 1998. ABAQUS. User's Manual. Version 5.8. – volume: 27 start-page: 1067 year: 1994 end-page: 1076 ident: BIB37 article-title: Prediction of bone adaptation using damage accumulation publication-title: Journal of Biomechanics – year: 1892 ident: BIB50 publication-title: Das gesetz der transformation der knochen – volume: 19 start-page: 761 year: 1984 end-page: 767 ident: BIB17 article-title: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor publication-title: Journal of Material Science – reference: Wolff, J., 1986. The Law of Bone Remodelling (translated by P. Maquet and R. Furlong). Verlag, Berlin. – volume: 12 start-page: 507 year: 1996 end-page: 524 ident: BIB52 article-title: Mathematical analysis of Zienckiewicz–Zhu's derivative patch recovery technique publication-title: Numerical Methods for Partial Differential Equations – volume: 120 start-page: 640 year: 1998 end-page: 646 ident: BIB54 article-title: A global relationship between trabecular bone morphology and homogenized elastic properties publication-title: Journal of Biomechanical Engineering – year: 1981 ident: BIB28 publication-title: Theory of Elasticity of an Anisotropic Body – volume: 30 start-page: 487 year: 1997 end-page: 495 ident: BIB34 article-title: Fabric and elastic principal directions of cancellous bone are closely related publication-title: Journal of Biomechanics – reference: Rakotomanana, L.R., Terrier, A., Leyvraz, P.F., 1996. Anisotropic bone adaptation models: application to orthopaedic implants. In: Computer Methods in Biomechanics and Biomedical Engineering. Gordon and Breach, London, pp. 95–104. – volume: 56 start-page: 1001 year: 1974 end-page: 1022 ident: BIB39 article-title: The mechanical properties of cortical bone publication-title: Journal of Bone and Joint Surgery – volume: 20 start-page: 1135 year: 1987 end-page: 1150 ident: BIB20 article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis publication-title: Journal of Biomechanics – volume: 119 start-page: 228 year: 1997 end-page: 231 ident: BIB27 article-title: The predective value of stress shielding for quantification of adaptive bone resorption around hip replacements publication-title: Journal of Biomechanical Engineering – reference: Karlsson, L.M., Cruz-Orive, L.M., 1993. Application of the star volume distribution to characterize structural anisotropy of a duples stailess steel. In: Stereology in Materials Science: Demostration of Some Methods. Royal Institute of Technology, Stockholm. – volume: 101 start-page: 153 year: 1974 end-page: 168 ident: BIB48 article-title: The quantitative morphology of anisotropic trabecular bone publication-title: Journal Microscopy – volume: 30 start-page: 1063 year: 1997 end-page: 1066 ident: BIB43 article-title: A three-dimensional finite analysis of adaptive remodelling in the proximal femur publication-title: Journal of Biomechanics – volume: 7 start-page: 149 year: 1996 end-page: 152 ident: BIB44 article-title: Bone remodelling after total hip arthoplasty publication-title: Journal of Materials Science: Materials in Medicine – volume: 19 start-page: 477 year: 1988 end-page: 489 ident: BIB13 article-title: Experience with the Exeter total hip replacement since 1970 publication-title: Orthopaedic Clinics of North America – volume: 108 start-page: 83 year: 1986 end-page: 88 ident: BIB9 article-title: Wolff's law of trabecular architecture at remodeling equilibrium publication-title: Journal of Biomechanical Engineering – volume: 79B start-page: 665 year: 1997 end-page: 669 ident: BIB46 article-title: Acrylic cement creeps but does not allow much subsidence of femoral stems publication-title: Journal of Bone and Joint Surgery – volume: 30 start-page: 959 year: 1997 end-page: 965 ident: BIB35 article-title: Pelvic muscle and acetabular contact forces during gait publication-title: Journal of Biomechanics – volume: 355 start-page: 57 year: 1998 end-page: 69 ident: BIB7 article-title: Cemented femoral stem performance effects of proximal bonding, geometry and neck length publication-title: Clinical Orthopaedic and Related Research – volume: 25 start-page: 1425 year: 1992 end-page: 1441 ident: BIB47 article-title: The behaviour of adaptive bone-remodeling simulation models publication-title: Journal of Biomechanics – volume: 2 start-page: 125 year: 1999 end-page: 138 ident: BIB12 article-title: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 4 start-page: 355 year: 2001 end-page: 378 ident: BIB55 article-title: An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies publication-title: Computer Methods in Biomechanics and Biomedical Engineering – reference: Garcı́a, J.M., 1999. Modelos de Remodelación Ósea: Análisis Numérico y Aplicaciones al Diseño de Fijaciones de Fracturas del Fémur Proximal. Tesis Doctoral, Universidad de Zaragoza. – volume: 32 start-page: 695 year: 1999 end-page: 703 ident: BIB26 article-title: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling publication-title: Journal of Biomechanics – volume: 23 start-page: 821 year: 1987 end-page: 840 ident: BIB42 article-title: Strain- and stress-based continuum damage models I. formulation publication-title: International Journal of Solids Structures – volume: 29 start-page: 1653 year: 1996 end-page: 1657 ident: BIB45 article-title: Direct mechanics assesment of elastic symmetries and properties of trabecular bone architecture publication-title: Journal of Biomechanics – reference: Goldberg, V.M., Davy, D.T., Lotzar, G.L., Heiple, K.G., Brown, R.H., Berilla, J., Burstein, A.H., 1988. In Vivo Hip Forces. Non-Cemented Total Hip Arthroplasty. Raven Press, pp. 251–255. – volume: 8 start-page: 26 year: 1958 end-page: 31 ident: BIB24 article-title: Time of the rupture process under creep conditions, IVZ Akad publication-title: Nauk S S R Otd Tech Nauk – volume: 36 start-page: 837 year: 1993 end-page: 854 ident: BIB16 article-title: Finite element simulation of adaptive bone remodelling publication-title: International Journal of Numerical Methods in Engineering – volume: 8 start-page: 551 year: 1990 end-page: 651 ident: BIB2 article-title: An approach for time-dependent bone modeling and remodeling-theoretical development publication-title: Journal of Orthopaedic Research – reference: Rodrigues, H., Jacobs, C.R., Guedes, J.M., Bendsoe, M.P., 1998. Global and local material optimization models applied to anisotropic bone adaptation. Iutam Symposium-Synthesis in Bio Solid Mechanics. – volume: 4 start-page: 295 year: 1997 end-page: 323 ident: BIB36 article-title: Computational simulation of internal bone remodeling publication-title: Archives of Computational Methods in Engineering – volume: 17 start-page: 349 year: 1984 end-page: 361 ident: BIB1 article-title: A continuous ware technique for the measurement of the elastic properties of bone publication-title: Journal of Biomechanics – volume: 107 start-page: 83 year: 1985 end-page: 89 ident: BIB29 article-title: A continuous damage mechanics model for ductile fracture publication-title: Journal of Engineering Materials and Technology – volume: 33 start-page: 1331 year: 1992 end-page: 1364 ident: BIB53 article-title: The superconvergent patch recovery and a posteriori error estimates. Part 1 publication-title: International Journal for Numerical Methods in Engineering – reference: Jacobs, C.R., 1994. Numerical simulation of bone adaptation to mechanical loading. Ph.D.Thesis, Stanford University. – volume: 30 start-page: 603 year: 1997 end-page: 613 ident: BIB23 article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations publication-title: Journal of Biomechanics – volume: 8 start-page: 393 year: 1975 end-page: 405 ident: BIB40 article-title: The elastic and ultimate properties of compact bone tissue publication-title: Journal of Biomechanics – volume: 114 start-page: 129 year: 1992 end-page: 136 ident: BIB10 article-title: An evolutionary Wolff's law for trabecular architecture publication-title: Journal of Biomechanical Engineering – volume: 104 start-page: 50 year: 1982 end-page: 56 ident: BIB49 article-title: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis publication-title: Journal of Biomechanical Engineering – reference: Ling, R.S.M., 1997. The history and development of the exeter hip. Oxon: OBE MA BM. – volume: 17 start-page: 223 year: 1996 end-page: 232 ident: BIB18 article-title: Bone remodeling adjacent to intramedulary stems—an optimal structures approach publication-title: Biomaterials – reference: Cordebois, J.P., Sideroff, F., 1982. Damage induced elastic anisotropy. Mechanical Behavior of Anisotropic Solids, Proceedings of the EUROMECH Colloque, Vol. 115, pp. 761–774. – volume: 28 start-page: 449 year: 1995 end-page: 459 ident: BIB22 article-title: Numerical instabilities in bone remodeling simulations publication-title: Journal of Biomechanics – volume: 157 start-page: 149 year: 1990 end-page: 182 ident: BIB33 article-title: Estimation of structural anisotropy based on volume orientation—a new concept publication-title: Journal of Microscopy – volume: 26 start-page: 969 year: 1993 end-page: 999 ident: BIB4 article-title: Hip joint loading during walking and running, measured in two patients publication-title: Journal of Biomechanics – volume: 120 start-page: 640 year: 1998 ident: 10.1016/S0021-9290(01)00069-0_BIB54 article-title: A global relationship between trabecular bone morphology and homogenized elastic properties publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2834756 – volume: 107 start-page: 83 year: 1985 ident: 10.1016/S0021-9290(01)00069-0_BIB29 article-title: A continuous damage mechanics model for ductile fracture publication-title: Journal of Engineering Materials and Technology doi: 10.1115/1.3225775 – ident: 10.1016/S0021-9290(01)00069-0_BIB8 doi: 10.1007/978-94-009-6827-1_44 – volume: 20 start-page: 785 year: 1987 ident: 10.1016/S0021-9290(01)00069-0_BIB6 article-title: Trabecular bone density and loading history publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(87)90058-3 – volume: 30 start-page: 487 issue: 5 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB34 article-title: Fabric and elastic principal directions of cancellous bone are closely related publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(96)00177-7 – volume: 104 start-page: 50 year: 1982 ident: 10.1016/S0021-9290(01)00069-0_BIB49 article-title: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.3138303 – volume: 22 start-page: 231 issue: 3 year: 1989 ident: 10.1016/S0021-9290(01)00069-0_BIB5 article-title: Relationships between loading history and femoral cancellous bone architecture publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(89)90091-2 – volume: 4 start-page: 295 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB36 article-title: Computational simulation of internal bone remodeling publication-title: Archives of Computational Methods in Engineering doi: 10.1007/BF02737117 – volume: 26 start-page: 969 issue: 8 year: 1993 ident: 10.1016/S0021-9290(01)00069-0_BIB4 article-title: Hip joint loading during walking and running, measured in two patients publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(93)90058-M – volume: 28 start-page: 449 issue: 4 year: 1995 ident: 10.1016/S0021-9290(01)00069-0_BIB22 article-title: Numerical instabilities in bone remodeling simulations publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)00087-K – volume: 23 start-page: 821 year: 1987 ident: 10.1016/S0021-9290(01)00069-0_BIB42 article-title: Strain- and stress-based continuum damage models I. formulation publication-title: International Journal of Solids Structures doi: 10.1016/0020-7683(87)90083-7 – ident: 10.1016/S0021-9290(01)00069-0_BIB14 – ident: 10.1016/S0021-9290(01)00069-0_BIB41 – volume: 114 start-page: 129 year: 1992 ident: 10.1016/S0021-9290(01)00069-0_BIB10 article-title: An evolutionary Wolff's law for trabecular architecture publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2895436 – volume: 8 start-page: 26 year: 1958 ident: 10.1016/S0021-9290(01)00069-0_BIB24 article-title: Time of the rupture process under creep conditions, IVZ Akad publication-title: Nauk S S R Otd Tech Nauk – volume: 2 start-page: 125 year: 1999 ident: 10.1016/S0021-9290(01)00069-0_BIB12 article-title: A model of bone adaptation using a global optimisation criterion based on the trajectorial theory of Wolff publication-title: Computer Methods in Biomechanics and Biomedical Engineering doi: 10.1080/10255849908907982 – year: 1981 ident: 10.1016/S0021-9290(01)00069-0_BIB28 – volume: 119 start-page: 228 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB27 article-title: The predective value of stress shielding for quantification of adaptive bone resorption around hip replacements publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2796084 – volume: 108 start-page: 83 year: 1986 ident: 10.1016/S0021-9290(01)00069-0_BIB9 article-title: Wolff's law of trabecular architecture at remodeling equilibrium publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.3138584 – year: 1892 ident: 10.1016/S0021-9290(01)00069-0_BIB50 – volume: 101 start-page: 153 year: 1974 ident: 10.1016/S0021-9290(01)00069-0_BIB48 article-title: The quantitative morphology of anisotropic trabecular bone publication-title: Journal Microscopy doi: 10.1111/j.1365-2818.1974.tb03878.x – volume: 79B start-page: 665 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB46 article-title: Acrylic cement creeps but does not allow much subsidence of femoral stems publication-title: Journal of Bone and Joint Surgery doi: 10.1302/0301-620X.79B4.7173 – volume: 12 start-page: 507 year: 1996 ident: 10.1016/S0021-9290(01)00069-0_BIB52 article-title: Mathematical analysis of Zienckiewicz–Zhu's derivative patch recovery technique publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q – ident: 10.1016/S0021-9290(01)00069-0_BIB38 – volume: 30 start-page: 1063 issue: 10 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB43 article-title: A three-dimensional finite analysis of adaptive remodelling in the proximal femur publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00074-2 – volume: 17 start-page: 349 year: 1984 ident: 10.1016/S0021-9290(01)00069-0_BIB1 article-title: A continuous ware technique for the measurement of the elastic properties of bone publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(84)90029-0 – volume: 27 start-page: 1067 issue: 8 year: 1994 ident: 10.1016/S0021-9290(01)00069-0_BIB37 article-title: Prediction of bone adaptation using damage accumulation publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)90223-2 – volume: 19 start-page: 477 issue: 3 year: 1988 ident: 10.1016/S0021-9290(01)00069-0_BIB13 article-title: Experience with the Exeter total hip replacement since 1970 publication-title: Orthopaedic Clinics of North America – ident: 10.1016/S0021-9290(01)00069-0_BIB15 – ident: 10.1016/S0021-9290(01)00069-0_BIB21 – ident: 10.1016/S0021-9290(01)00069-0_BIB19 – volume: 157 start-page: 149 year: 1990 ident: 10.1016/S0021-9290(01)00069-0_BIB33 article-title: Estimation of structural anisotropy based on volume orientation—a new concept publication-title: Journal of Microscopy doi: 10.1111/j.1365-2818.1990.tb02955.x – volume: 20 start-page: 1135 issue: 11/12 year: 1987 ident: 10.1016/S0021-9290(01)00069-0_BIB20 article-title: Adaptive bone-remodeling theory applied to prosthetic-design analysis publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(87)90030-3 – volume: 30 start-page: 959 issue: 9 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB35 article-title: Pelvic muscle and acetabular contact forces during gait publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00041-9 – volume: 7 start-page: 149 year: 1996 ident: 10.1016/S0021-9290(01)00069-0_BIB44 article-title: Bone remodelling after total hip arthoplasty publication-title: Journal of Materials Science: Materials in Medicine doi: 10.1007/BF00121253 – ident: 10.1016/S0021-9290(01)00069-0_BIB51 doi: 10.1007/978-3-642-71031-5 – volume: 4 start-page: 355 issue: 4 year: 2001 ident: 10.1016/S0021-9290(01)00069-0_BIB55 article-title: An anisotrophic internal–external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies publication-title: Computer Methods in Biomechanics and Biomedical Engineering doi: 10.1080/10255840108908014 – volume: 8 start-page: 662 issue: 5 year: 1990 ident: 10.1016/S0021-9290(01)00069-0_BIB3 article-title: An approach for time-dependent bone modeling and remodeling-application publication-title: Journal of Orthopaedic Research doi: 10.1002/jor.1100080507 – ident: 10.1016/S0021-9290(01)00069-0_BIB31 – volume: 25 start-page: 1425 issue: 12 year: 1992 ident: 10.1016/S0021-9290(01)00069-0_BIB47 article-title: The behaviour of adaptive bone-remodeling simulation models publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(92)90056-7 – volume: 30 start-page: 603 issue: 6 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB23 article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(96)00189-3 – ident: 10.1016/S0021-9290(01)00069-0_BIB25 – volume: 30 start-page: 403 issue: 4 year: 1997 ident: 10.1016/S0021-9290(01)00069-0_BIB30 article-title: Temporal stability of node-based internal bone adaptation simulations publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(96)00149-2 – volume: 32 start-page: 695 year: 1999 ident: 10.1016/S0021-9290(01)00069-0_BIB26 article-title: Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(99)00041-X – volume: 8 start-page: 551 issue: 5 year: 1990 ident: 10.1016/S0021-9290(01)00069-0_BIB2 article-title: An approach for time-dependent bone modeling and remodeling-theoretical development publication-title: Journal of Orthopaedic Research – volume: 33 start-page: 1331 year: 1992 ident: 10.1016/S0021-9290(01)00069-0_BIB53 article-title: The superconvergent patch recovery and a posteriori error estimates. Part 1 publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.1620330702 – volume: 29 start-page: 1653 issue: 12 year: 1996 ident: 10.1016/S0021-9290(01)00069-0_BIB45 article-title: Direct mechanics assesment of elastic symmetries and properties of trabecular bone architecture publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(96)00093-0 – volume: 17 start-page: 223 issue: 2 year: 1996 ident: 10.1016/S0021-9290(01)00069-0_BIB18 article-title: Bone remodeling adjacent to intramedulary stems—an optimal structures approach publication-title: Biomaterials doi: 10.1016/0142-9612(96)85767-X – volume: 56 start-page: 1001 year: 1974 ident: 10.1016/S0021-9290(01)00069-0_BIB39 article-title: The mechanical properties of cortical bone publication-title: Journal of Bone and Joint Surgery doi: 10.2106/00004623-197456050-00012 – volume: 19 start-page: 761 year: 1984 ident: 10.1016/S0021-9290(01)00069-0_BIB17 article-title: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor publication-title: Journal of Material Science doi: 10.1007/BF00540446 – volume: 355 start-page: 57 year: 1998 ident: 10.1016/S0021-9290(01)00069-0_BIB7 article-title: Cemented femoral stem performance effects of proximal bonding, geometry and neck length publication-title: Clinical Orthopaedic and Related Research doi: 10.1097/00003086-199810000-00007 – volume: 36 start-page: 837 year: 1993 ident: 10.1016/S0021-9290(01)00069-0_BIB16 article-title: Finite element simulation of adaptive bone remodelling publication-title: International Journal of Numerical Methods in Engineering doi: 10.1002/nme.1620360508 – volume: 8 start-page: 393 issue: 6 year: 1975 ident: 10.1016/S0021-9290(01)00069-0_BIB40 article-title: The elastic and ultimate properties of compact bone tissue publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(75)90075-5 |
| SSID | ssj0007479 |
| Score | 2.0487287 |
| Snippet | In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1157 |
| SubjectTerms | Anisotropic internal bone remodelling Anisotropy Arthroplasty, Replacement, Hip Biomechanical Phenomena Biomedical engineering Bone implants Bone Remodeling - physiology Bone remodelling simulation Computational methods Computer Simulation Continuum mechanics Damage mechanics Exeter prosthesis Fabric tensor Femur - injuries Femur - surgery Finite Element Analysis Finite elements Humans Models, Biological Postoperative Period Wound Healing Wounds and Injuries - physiopathology Wounds and Injuries - surgery |
| Title | Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929001000690 https://dx.doi.org/10.1016/S0021-9290(01)00069-0 https://www.ncbi.nlm.nih.gov/pubmed/11506786 https://www.proquest.com/docview/18343134 https://www.proquest.com/docview/20194798 https://www.proquest.com/docview/21468350 https://www.proquest.com/docview/71091862 https://www.proquest.com/docview/771506195 |
| Volume | 34 |
| WOSCitedRecordID | wos000170683400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DiF4QNAxKJfhB0CgKiVp0sR5LGUIkJiQGFLfIsexpUhrUqXpVH4Ov4C_yDl2bly6DSReIic9dtKcLz7HPjdCnk5VCEJXSAu-QgkLFDgw4SvLF0ks8ZQrU2wiODlhi0X4qdf7XsfCnJ8FWca223D1X1kN14DZGDr7F-xuBoUL0AamwxHYDscrMX7WmqS1kR-9jdN1Xhb5KhWjOM-kVUhdAEdHouvWCIVZgoYDPkr4EuYYoFnxtDCBjo2GyjspTEyMVb5NlxgDKZebYhRLUIGNPcLUHi9zHWuZrtA2gRv2jZ_N7_qwTgSAccgd__s3eQwrb2PM11u348ZfCLiGivBr59l8DuqwcfkdVwT1NobT-GlVe2t1fE3rzGRiDRwLsGR35-tq89PgMuxMvpg3qCPIsabOH4WE2a_43AwOqjyWK8DyqT48VCsZG39FTYuktqOJ7D2yPwmmIeuT_dn748WHRvjD6qzyKjJjt0Fjr9obvrCdl9XNdqlDu5Y7Wu05vU1uVfyhM4OzO6QnswE5mGW8zJdf6XOqPYi1aWZAbnaSWw7I9Y-V28YB-dbBJM0V5RntYJL-ikmqW1RjkkIPTn_CJDWYpGWOLVpjEgfG8xqTVGOSGkwCVUI1JqnGJAVM0g4m75Ivb49P5--sqjaIJWCNUVqe5I7NQVzFcZLYLElUwBNQ9hlzY-WGUoWxEBPFfcVA4Qq5VDwOZex7sbBd6cXuIeln8O_uE-pIm0ssOyAx35_rM6Fs5UkpQn8ilJMMiVezKBJV4nys33IWtR6SwNkIORvZTqQ5G9lDMm66rUzmmMs6-DX_ozosGgR5BLC9rCNrOlZ6s9GHr9L1SQ20COQKGgt5JvPNOgJRD2sL19tNAUuHENDOLqDAuE53esFd0BPcYf5kSOguigBzoDrhdEjumQ-hfZv4S8D8B__64h6SG-1U9Ij0y2IjH5Nr4rxM18UR2QsW7Kj6wH8Aqwgmtg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+an+anisotropic+bone-remodelling+model+based+on+a+damage-repair+theory+to+the+analysis+of+the+proximal+femur+before+and+after+total+hip+replacement&rft.jtitle=Journal+of+biomechanics&rft.au=Doblar%C3%A9%2C+M.&rft.au=Garc%C4%B1%CC%81a%2C+J.M.&rft.date=2001-09-01&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=34&rft.issue=9&rft.spage=1157&rft.epage=1170&rft_id=info:doi/10.1016%2FS0021-9290%2801%2900069-0&rft.externalDocID=S0021929001000690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |